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Preface 

The nineteenth event of the Industrial Conference on Data Mining ICDM was held in 
New York (www.data-mining-forum.de) running under the umbrella of the World 
Congress on “The Frontiers in Intelligent Data and Signal Analysis, DSA 2019” 
(www.worldcongressdsa.com). 

After the peer-review process, we accepted 39 high-quality papers for oral presen-
tation, which are published in the ICDM Proceeding by ibai-publishing (www.ibai-
publishing.org. The topics range from theoretical aspects of data mining to applica-
tions of data mining, such as in multimedia data, in marketing, in medicine, and in 
process control, industry, and society. Extended versions of selected papers will ap-
pear in the international journal Transactions on Machine Learning and Data Mining 
(www.ibai-publishing.org/journal/mldm). 

In all, twenty one papers were selected for poster presentations, which are pub-
lished in the ICDM Poster Proceeding by ibai-publishing (www.ibai-publishing.org. 

A tutorial on Data Mining and a tutorial on Case-Based Reasoning were held after 
the conference. 

The conference was running in an inspiring atmosphere. The presenters of the oral 
presentations gave excellent talks and the audience acknowledged each talk with ex-
cellent questions. The poster presenters presented well prepared posters and gave in 
front of their posters a summary of their work in five minutes for the audiences. Af-
terwards the audience could step to the poster that they were interested in. The audi-
ence had a lot of questions and they gave valuable comments and new directions for 
the work in progress. In all was the poster session a very successful session.  

We would like to thank all reviewers for their highly professional work and their 
effort in reviewing the papers.  

We also thank the members of the Institute of Applied Computer Sciences, Leip-
zig, Germany (www.ibai-institut.de), who handled the conference as secretariat. We 
appreciate the help and understanding of the ibai-publishing publishing house 
(www.ibai-publishing.org) that handled the papers and published the proceedings. 

Last, but not least, we wish to thank all the speakers and participants who contrib-
uted to the success of the conference. We hope to see you in 2020 in New York at the 
next World Congress on “The Frontiers in Intelligent Data and Signal Analysis, DSA 
2020” (www.worldcongressdsa.com), which combines under its roof the following 
three events: International Conferences Machine Learning and Data Mining MLDM 
(www.mldm.de) , the Industrial Conference on Data Mining ICDM (www.data-
mining-forum.de), and the International Conference on Mass Data Analysis of Signals 
and Images in Artificial Intelligence and Pattern Recognition with Applications in 
Medicine, Biotechnology, Chemistry and Food Industry, MDA-AI&PR (www.mda-
signals.de). 

July 2019 Petra Perner 
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Ensemble of Customized DenseNet with SVM for 
Refining Iris Contact Lens Features   

Meenakshi Choudhary, Venkanna U. and Vivek Tiwari 

DSPM IIIT Naya Raipur, India  
{meenakshi,vivek,venkannau)@iiitnr.edu.in 

Abstract. Although, Iris Recognition (IR) has achieved sublime progression, yet 
is prone to be forged by contact lenses. Since, contact lens conceals the iris tex-
ture and inhibits sensor from capturing genuine iris. Moreover, cosmetic lenses 
are prone to forge the IR system by registering an individual with fake iris signa-
ture. Therefore, it is foremost to detect presence of contact lens in human eyes 
prior to access an IR system. In this paper, a novel Densely Connected Contact 
Lens Detection Network (DCLNet) is proposed, that is a deep convolutional net-
work with dense connections among layers. DCLNet has been designed through 
a series of customization over Densenet121 with addition of Support Vector Ma-
chine (SVM) classifier on top. It accepts raw iris images without segmentation 
and normalization. To ascertain the strength of proposed model, comprehensive 
experiments are simulated on two publicly available databases (IIIT-D Contact 
Lens and Notre Dame (ND) Contact Lens 2013). Experimental results vindicate 
that DCLNet enhances Correct Classification Rate (CCR) up to 4% as compared 
to state of the arts.  

Keywords: DCLNet, DenseNet, Contact Lens Detection, Convolutional Neural 
Network (CNN), Support Vector Machine (SVM). 

1 Introduction 

Among all biometric traits, human iris is prevailing due to its complex texture with 
discriminating patterns. During last decade, researchers achieved improved perfor-
mance in Iris Recognition (IR) with state of the art accuracy up to 99% [1]. Neverthe-
less, IR encounters various challenges, specifically with unconstrained image acquisi-
tion. Further, the surrounding factors such as pupil dilation [2] and sensor interopera-
bility [3-4] significantly affect iris recognition. Furthermore, IR system is prone to be 
forged through contact lenses that contain two variants: Transparent (Soft) and Tex-
tured (Cosmetic or Colored). Transparent lens does not modify iris texture, yet changes 
the reflection property of iris region to great extent. On the other side, textured lens 
interpolates iris with high intense color and overlays the actual texture with exterior 
texture printed over it. With aforesaid features of contact lenses, these may be exploited 
to forge the IR system [5]. Therefore, contact lens detection is considered as a perfor-
mance influencing constituent for IR system.  



To accomplish contact lens detection, several approaches have been proposed in lit-
erature. Previously, Lee et al. [6] attempts to generate purkinje image (focused enough 
for recognition) using collimated Infra-Red Light Emitting Diode (IR-LED). The au-
thors also proposed an IR camera (with wavelength 760nm and 880nm) and reported 
False Recognition Rate (FRR) as 0.33%. However, this approach requires additional 
hardware. Afterward, He et al. [7] incorporated statistical textural analysis to select 
distinctive features based on Gray Level Co-occurrence Metrics (GLCM) with Support 
Vector Machine (SVM), to classify between fake and real iris. However, only lower 
half region of eye images is examined. Similarly, Wei et al. [8] employed Co-occur-
rence matrix, Iris-Textons and, edge sharpness to identify fake iris. Furthermore, He et 

al. [9] used Local Binary Patterns (LBP) for several iris sub-regions, then trained a 
model with Adaboost learning for the most discriminative LBP feature identification. 
Later, by using similar approach, Yadav et al. [5] analyzed the influence of contact lens 
on iris recognition then, proposed a region oriented LBP method to reduce it. All afore-
mentioned techniques depend upon manual feature extraction from iris images (i.e. 
handcrafted features), and employs hand-coding to generate corresponding iris tem-
plates.  

In recent years, researchers [10-11] have started utilizing Convolutional Neural Net-
works (CNN), to automatically extract features from iris images, that are used to clas-
sify given image to accurate lens category, using classifiers such as Softmax, SVM [12] 
etc.  Earlier, Silva et al. [13] built a CNN with Softmax classifier for deep image rep-
resentation; however, due to shallow architecture it exhibited degraded performance. 
Consequently, Raghavendra et al. [14] introduced a CNN model with 15 layers namely 
‘ContlensNet’, trained on multiple patches of normalized iris images. Nevertheless, it 
demands pre-processing of iris images. Conversely, the GHCLNet [15] shows better 
performance without pre-processing and normalization. However, it uses two parallel 
ResNet50 [16] models (each with 170 layers), therefore it possess very complex archi-
tecture and is computationally expensive to train.   

1.1 Research Contribution 

In this paper, Densely Connected Contact Lens Detection Network (DCLNet) has been 
proposed to identify contact lenses in iris images captured from distinct sensors. The 
prime contribution is two-fold: 

 The proposed work attempts to customize DenseNet121, a well-known CNN model
pre-trained on ImageNet (animal dataset). The customized model is then fine-tuned
on Near Infra-Red (NIR) iris images to learn complex iris patterns.

 The layer specific feature analysis is carried out to inspect the contribution of indi-
vidual layers of proposed model in contact lens detection, where the iris patterns
learnt by random layers are visualized.

The remaining paper is organized as; Section 2 describes the background, architec-
ture and working of proposed model. Section 3 represents the experimental results, per-
formance comparison with state of the arts and layer specific feature analysis. Finally, 
Section 4 concludes the work. 
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2 Proposed Model: Densely Connected Contact Lens 
Detection Network (DCLNet) 

The proposed model utilizes DenseNet121 [17] as fundamental building block with 
quite customization. It enables feature reuse at consequent layers within a dense block, 
and therefore enhances the feature map generation. It addresses vanishing gradient 
problem as well, using direct paths to all prior layers, to route residuals throughout 
backpropagation.  

2.1 Model Designing and Fine-Tuning 

Figure 1 depicts schematic design of proposed model that employs DenseNet as feature 
extractor and SVM as classifier. DenseNet121 endues 4 dense blocks with 6, 12, 24 
and 16 dense layers respectively. A bottleneck layer is placed between dense layers that 
performs 1*1 convolution. Therefore, a dense block has following sequence of layers; 
BN→ReLU→Conv(1×1)→BN→ReLU→Conv(3×3). Here, BN, ReLU and Conv rep-
resents Batch Normalization, Rectified Linear Unit and Convolution respectively. At 
the end of dense block, a transition layer is used, that performs 1×1 convolution and 
average pooling [17]. The transition layer is defined by; BN→Conv(1×1) →AvgPool-
ing(2×2). These collectively constitute over 400 layers. Since this model is huge and 
couldn’t be trained with available iris images in dataset, DCLNet selects only up to first 
two dense blocks (with approx. 50 layers) for feature extraction. The output of pooling 
layer (pool_2) after second dense block represents the iris features learnt by DCLNet. 
Then, a flatten layer is added to form 401408 dimensional feature vector. For further 
down-sampling, three fully connected layers are added i.e. fc1, fc2, fc3 with 512, 128, 
3 units, with fc3 as output layer. Two dropout layers (with probability 0.4) are also used 
to remove overfitting in fc layers. In our experiment, SVM exhibits better performance 
than Softmax, therefore, Multiclass SVM (with Radial Basis Function (RBF) kernel) is 
added as classifier on top. The entire model design ends up with total 56 layers includ-
ing Batch Normalization, ReLU and Dropouts. Since initial layers are aimed to consti-
tute basic features such as points, edges, blobs etc. they are not involved in training and 
remaining layers are fine-tuned. In proposed model, initial 27 layers are kept freeze and 
rest 29 layers are retrained as shown in Fig. 1 on NIR iris images of contact lens da-
tasets. Table 1 describes the learning parameters used by the model. 

Fig. 1. Proposed Model Design 
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 Table 1. Learning Parameters of DCLNet 

2.2 Image Augmentation 

A deep convolution network requires large number of images per subject to learn fea-
ture representation. In order to generate more training images, augmentation techniques 
are used such as shearing, flipping, rotation, rotation after shearing, shearing after rota-
tion at various angles and directions etc. Due to the fact that large image size creates 
more parameters that leads to overfitting [18-19], the input image is down-sampled to 
128×128. Subsequently, further augmentation techniques are incorporated to generate 
identical but pixel based position variant images.  

2.3 Feature Extraction 

The model begins with a zero padding layer where, the length of output feature map is 
given by (1) [17].  

 2
1

w k p
o

s

 
  (1) 

where o = length of output feature map, w = input length, p = size of zero padding, k = 
filter size, and s = stride. Furthermore, each convolutional block is represented by 
BN→ReLU→Convolution. BN takes a mini batch of features from previous activation 
layer and normalizes them by subtracting each element by the Batch Mean and dividing 
by Standard Deviation as given in (4). 
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where xi  and N denote individual and total number of elements in Batch respectively. 
µB and σB denote mean and standard deviation of mini batch (B). The first convolution 
layer uses a filter of 5×5 and the convolution operation is expressed as: 

,*
j i i j j

i

Y X w B  (5) 

where Xi and Yj represents the ith input and the jth output feature map respectively. The 
wi,j is the kernel convolving over set of pixels i ϵ Xi. Bj denotes the bias and * denotes 

No. Parameters  Value 
1 Optimizer SGD 
2 Momentum 0.9 
3 Learning Rate 0.0001 
4 Batch Size 32 
5 Epochs 50 
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convolution. The ReLU layer is used to impose non-linearity by using Yr
j = max(0,Yj). 

The Max-pool layer attempts to down-sample the convolved feature maps by applying 
max-pooling across 2×2 pixels with stride of 2 while retaining same depth. It is math-
ematically represented by following expression [20]. 

, .p m,k .p n
0 ,

Y( )maxi i

j k j
m n s

z
 

 

 (6) 

Here, Zi
j,k represents a neuron in ith feature map Yi

j,k., computed over an (p×p) region. 
After last dense block, a global average pooling layer is used. For an iris image, let 
fk(x,y) is the activation of kth unit, at spatial location (x,y) in last convolution layer. Then, 
for unit k, the global average pooling results Fk →∑x,yfk(x,y). Next, the flatten layer is 
used to rearrange the output feature map from Global Average Pooling to 401408 di-
mensional vector to feed them in fc layers. The output of fully connected layer l is 
denoted as   

( 1)

( ) ( ) ( 1) ( ) ( )

1

( ). ( , ) ( )
l

M
l l l l l

j

i

z z i w i j b j







 
 
 
 
 (7) 

where Zj
(l) represents jth output of lth layer. ( 1)l

M
  is the term representing the number of 

neurons in (l-1)th layer, w(l)(i,j) is the weight on connection between ith neuron of layer 
l-1 and jth neuron of layer l, b(l)(j) is bias for neuron j in layer l, σ(l) is the activation for
layer l.

2.4 Network Implementation Description 

The proposed DCLNet has been implemented in python using Keras [21] library with 
Tensorflow [22] at backend. The system configuration is as: Intel Scalable processors 
Xeon 4114, 64GB DDR4 RAM, GTX 1080Ti 11GB GPU card. 

3 Experiments 

This section describes experimental setup and result interpretation based on IIIT Delhi 
(IIITD) Contact Lens and Notre Dame (ND) Iris datasets by following validation pro-
tocols. DCLNet is trained and tested on raw iris images (without segmentation and nor-
malization) and Correct Classification Rate (CCR) has been chosen as a primary meas-
ure for performance comparison.   

3.1 Description of the dataset and validation protocols 

This subsection provides details about the datasets namely: ND Cosmetic Contact Lens 
2013 database [23] and IIITD Contact Lens Iris Database [24]. The proposed architec-
ture is trained and validated on these two datasets based on the given evaluation proto-
cols.  

ND Database: The ND database is composed of two separate datasets ND-I and ND-
II. ND-I contains images captured using IrisGuard AD100 [25] sensor and conceptually 
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partitioned into training and probe sets of 600 and 300 images respectively. Whereas, 
images of ND-II were captured using LG4000 sensor [26]. It is divided into training 
and probe set of 3000 and 1200 images.  

IIITD Database: It contains total 6570 iris images collected from 101 subjects; with 
Conget and Vista sensors are used for image acquisition. Since each subject contains 
left and right iris, collectively they form 202 unique iris instances. The dataset is given 
with an evaluation protocol as 50 subjects should be used for training and rest 51 for 
testing the model performance.  

3.2 Experimental Outcomes 

In this subsection, several experiments are performed on aforementioned datasets with 
three validation strategies i.e. intra-sensor validation, inter-sensor validation and multi-
sensor validation. 

Intra-sensor validation 
Training and validation performed on images captured from same sensor is termed as 
intra-sensor validation. Table 2 presents the performance comparison of proposed 
DCLNet with existing methods such as; Deep Image Representation (DIR) [13], 
ContlensNet [14] and GHCLNet [15]. As, both datasets have two sensors, Table 2 con-
tains total four experiments that calculate CCR for individual lens category, where C-
C represents “Colored-lens to Colored-lens”, N-N is “No-lens to No-lens” and S-S is 
“Soft-lens to Soft-lens” classification. Final result is obtained by averaging individual 
CCRs. 

Table 2. Model Performance (in CCR %) for Intra-Sensor Validation 

Data Base Classification DIR [28] ContlensNet [29] GHCLNet [30] DCLNet 

IIITD-
Conget 

C-C 
N-N 
S-S 

73.00 
35.50 
98.21 

100 
68.68 
93.62 

100 
89.86 
91.26 

99.10 
94.19 
92.33 

Average 69.05 86.73 93.71 95.20 

IIITD-Vista 
C-C 
N-N 
S-S 

55.88 
60.80 
98.30 

100 
74.50 
87.50 

100 
94.6 
91.88 

100 
93.19 
92.89 

Average 72.08 87.33 95.49 95.36 

ND-I 

C-C 
N-N 
S-S 

99.75 
84.50 
73.75 

100 
93.25 
97.50 

100 
91.67 
87.50 

98.50 
89.49 
90.86 

Average 86.00 96.91 93.05 92.95 

ND-II 

C-C 
N-N 
S-S 

97.00 
73.00 
65.00 

100 
88.00 
97.00 

99.75 
95.24 
89.74 

99.93 
92.86 
94.45 

Average 78.33 95.00 94.91 95.74 

It is observed that, with IIITD-Conget sensor, the proposed DCLNet exhibits aver-
age CCR of 95.20% with minimum hike of 2% than all state of the arts. With Vista 
Sensor, DCLNet performs better than DIR and ContlensNet [14], and comparable to 
GHCLNet [15] with 95.36% CCR. For ND-I database DCLNet achieves average 
CCR% of 92.95, which is less than state of the arts. This is due to less number of images 
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available in ND-I dataset for training. However, with ND-II, model gives 95.74% of 
CCR, which is best among all state of the art models. 

Inter-sensor validation 
Inter-sensor validation is performed on pair of sensors. With IIITD dataset, DCLNet 
model is trained and tested pair-wise among Conget and Vista sensors. Whereas, with 
ND dataset, the experiment is done on pair of ND-I and ND-II. Consequently, four 
different cases occur as presented in Table 3 that indicates the performance of proposed 
model for different sensor pairs.  

Table 3. Model Performance (in CCR %) for Inter-Sensor Validation 

Exp. Training Da-
tabase 

Test Data-
base 

Classification 
Type 

DIR 
[28] 

ContlensNet 
[29] 

GHCLNet 
[30] 

DCLNet 

1 
IIITD-
Conget 

IIITD-
Vista 

C-C 
N-N 
S-S 

89.61 
06.00 
45.47 

100 
96.19 
88.23 

99.25 
93.40 
83.37 

99.83 
89.55 
81.74 

Average 45.51 94.80 92.01 90.37 

2 IIITD-Vista IIITD-
Conget 

C-C 
N-N 
S-S 

38.15 
48.67 
42.25 

78.91 
87.75 
87.75 

85.36 
96.74 
65.73 

99.82 
81.43 
79.26 

Average 43.08 84.80 82.61 86.83 

3 ND-I ND-II 

C-C 
N-N 
S-S 

94.00 
75.00 
65.00 

97.50 
68.50 
98.00 

100 
81.25 
93.27 

97.92 
83.00 
92.90 

Average 78.00 88.00 91.51 91.27 

4 ND-II ND-I 

C-C 
N-N 
S-S 

97.00 
80.00 
49.00 

100 
81.33 
90.03 

98.00 
91.90 
81.84 

100 
92.00 
84.34 

Average 75.33 90.45 90.58 92.11 

It is observed that, when DCLNet is trained and tested on Conget and Vista images 
respectively, it under performs with respect to ContlensNet [14] and GHCLNet [15]. 
However, when Vista dataset is used for training and Conget for testing, DCLNet 
achieves best performance with minimum hike of more than 2%. For ND dataset, when 
training and testing is performed on ND-I and ND-II respectively, DCLNet performs 
better than DIR [13] and ContlensNet [14] and comparable to GHCLNet [15] with 
91.27% accuracy. Similar results are observed, when the model is trained and tested on 
ND-II and ND-I respectively, i.e. hike of 2%. 

Multi-sensor validation 
Here, images from heterogeneous sensors are combined to form multi-sensor database. 
In this view, Conget and Vista sensor images are combined to form IIITD-Combined 
dataset. Similarly, ND-I and ND-II images are merged to constitute ND-Combined da-
taset. The average reported CCR is 95.36%. Table 4 represents the DCLNet perfor-
mance comparison with state of the arts for multi-sensor validation.  

Some key observations are, with IIITD-Combined dataset, the performance of 
DCLNet is reported as 94.93%, which outperforms all state of the arts. With ND-
combined dataset, DCLNet performs best among all state of the arts with 96.04% CCR. 
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Table 4. Model Performance (in CCR %) for Multi-Sensor Validation 

Database Classification Type DIR [28] ContlensNet [29] GHCLNet [30] DCLNet 
IIITD-

Combined 
C-C 
N-N 
S-S 

61.07 
47.55 
97.99 

98.50 
96.56 
88.90 

99.73 
91.87 
92.85 

99.87 
92.82 
92.10 

Average 69.28 94.65 94.82 94.93 

ND-
Combined 

C-C 
N-N 
S-S 

99.60 
77.40 
71.40 

100 
95.40 
82.40 

100 
91.67 
95.04 

99.93 
93.89 
94.32 

Average 82.80 92.60 95.57 96.04 

3.3 Analyzing Discrimination power of DCLNet 

The proposed DCLNet is additionally assessed against more robust and consistent 
measure i.e. Receiver Operating Characteristics (ROC). It represents comparison be-
tween True Positive Rate (TPR) and False Positive Rate (FPR) returned by classifier, 
based on each possible threshold value. Another useful metric “Area Under the Curve 
(AUC)” is also employed that measures the performance of DCLNet across all possible 
thresholds. 

(a)       (b) 

(c) 
Fig. 2. ROC plot for DCLNet (a) Intra-sensor validation over IIITD Vista, (b) Inter-
sensor validation on ND-II and ND-I, (c) Multi-sensor validation over IIITD Dataset 

Here, three finest ROC curves are plotted for Intra, Inter and multi-sensor validation. 
The ROC plot shown in Fig. 2(a) depicts the generalizability of DCLNet for Intra-sen-
sor validation on IIITD-Vista. It makes correct prediction for Colored, No Lens and 
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Soft Lens with AUC=1, 1 and 0.98 respectively. It performs best for Vista, due to en-
riched quality of images with clearer iris texture. 

The ROC plot depicted in Fig. 2(b) is constructed for DCLNet while it is trained and 
tested on ND-II and ND-I sensor respectively, where classes 0, 1, 2 represent No lens, 
Colored lens and Soft lens respectively. The model’s performance is considerably im-
pressive for Colored and No Lens categories with higher AUC of 0.99 and 0.97 respec-
tively. However, slightly less AUC of 0.81 has been observed for soft lens, since it is 
misinterpreting Soft lens as No lens. This is due to poor quality of iris images in ND 
dataset that causes difficulty in accurately classifying between No lens and Soft lens. 
Figure 2(c) depicts the ROC plot for DCLNet, while it was trained and tested on Vista 
and Conget sensor respectively. Here, classes 1, 2, 3 denote Colored lens, No lens and 
Soft Lens respectively. The model is accurately predicting Colored lens with AUC=1 
and also exhibits good prediction for No lens and Soft lens images with AUC=0.97. 

3.4 Results and Discussion 

The experimental outcomes infer that the proposed model performs better or at least 
comparable to existing frameworks. With Intra-sensor validation DCLNet achieved 
best CCR in majority cases. Further, for Inter-sensor validation, the distinct classifica-
tion accuracy of DCLNet deficits for some classes, yet average performance is greater 
or equivalent to state of the arts. In case of multi-sensor validation, DCLNet unveils 
best accuracy. Moreover, our substantial contribution is that DCLNet endues less com-
plex architecture with optimum layer configuration, fewer training parameters, and re-
vealing analogous performance with state of the arts. 

ContlensNet [14] incorporated iris normalization by utilizing OSIRIS V4.1 tool [27] 
that exhibits limited accuracy due to some factors such as occlusion, illumination, and 
unconstraint image acquisition. Moreover, it involves added efforts to create patches of 
32*32 size from normalized iris images. The proposed DCLNet is less computation 
intensive, still attaining similar, in fact improved performance deprived of iris segmen-
tation and normalization. GHCLNet [15] shows better performance in most cases, how-
ever, computationally expensive. The proposed DCLNet can achieve comparable per-
formance with fewer layers and learning parameters. 

3.5 Individual Layer Features Visualization and Analysis 

Figure 3 visualizes the features learned by distinct convolutional layers of DCLNet. It 
is perceived with each lens type, that early layers (9th and 16th) learn broad features such 
as points, dark pixels, blobs etc. and spawn 128 feature-maps of size (56*56). After-
ward, 19th convolutional layer seeks for corners and edges with 32 feature maps of 
identical size. The 33rd convolutional layer shows major contribution in unravelling iris 
region from sclera. In this view, it can be deduced that as convolutional layers have 
enough potential to discover deeper patterns in iris images, therefore iris segmentation 
and normalization are not necessary. Accordingly, by diving deeper in the network, the 
layers learn further precise features analogous to three lens categories. At the end, the 
47th convolutional layer learns lens discriminating patterns. 
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Fig. 3. Layer Specific Visualization of Iris Features 

4 Conclusion 

Contact lens detection has been a prominent subject in the territory of iris recognition. 
As the contact lens dissimulates the genuine iris texture and can probably be exploited 
to counterfeit the Iris Recognition system. Numerous techniques were suggested in lit-
erature to resolve such issue. Conventional techniques incorporated hand-crafted iris 
features and attained satisfiable results. Recently, convolutional networks have been 
employed to accomplish this task. The proposed DCLNet is a densely connected con-
volutional network with fewer number of layers and learning parameters. Due to the 
dense connections amongst layers, it learns more key features. Moreover, it doesn’t 
demand iris segmentation and normalization. For performance assessment, comprehen-
sive tries are conducted on two global databases with three evaluation protocols. The 
qualitative results signify that proposed model attains comparable outcomes with state 
of the arts and even superior in some experiments.  
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Abstract. Weighted frequent pattern (WFP) mining is considered to
be more effective than traditional frequent pattern mining because of its
consideration of different semantic significance (weights) of items. How-
ever, most existing WFP algorithms assume a static weight for each item,
which may not be realistically hold in many real-life applications. In this
paper, we consider the concept of a dynamic weight for each item and
address the situations where the weights of an item can be changed dy-
namically. We propose a novel tree structure called compact pattern tree
for dynamic weights (CPTDW) to mine frequent patterns from dynamic
weighted item containing databases. The CPTDW-tree leads to the con-
cept of dynamic tree restructuring to produce a frequency-descending
tree structure at runtime. CPTDW also ensures that no non-candidate
item can appear before candidate items in any branch of the tree, and
thus speeds up the construction time for prefix tree and its conditional
tree during the mining process. Furthermore, as it requires only one
database scan, it can be applicable to interactive, incremental, and/or
stream data mining. Evaluation results show that our proposed tree
structure and the mining algorithm outperforms previous methods for
dynamic weighted frequent pattern mining.

Keywords: Data mining · Knowledge discovery · Weighted frequent
pattern mining · Dynamic weights.

1 Introduction

Discovery of meaningful and hidden knowledge from a large collection of data
is the main goal of data mining [4, 7, 10, 13, 16, 19]. Frequent pattern min-
ing [12,17,18] is an important data mining problem where the patterns that occur
frequently in a database are mined. However, in real-life scenarios, the frequency
of a pattern cannot be considered as a sufficient indicator to find the meaningful
patterns in large transaction databases. It is because, through frequency, only
the number of transactions in the database containing the pattern is reflected.
In many cases, the items in a transaction can be considered to have different



degrees of importance (weight). For example, in retail applications, an expen-
sive product generally contributes a large portion of overall revenue although it
may not appear in many transactions. For this reason, weighted frequent pattern
(WFP) mining [6, 21–23] was introduced to discover more useful knowledge by
considering different weights for different items. Some real life examples where
weight-based pattern mining can be applied are market data analysis where the
price of products is an important factor, web traversal pattern mining where
different web pages have different strength of impact.

Even though WFP mining considers diverse application specific weights for
different items, still it cannot reflect real world environment where the signifi-
cance (weight) of items vary with time. Most of the existing WFP algorithms
consider static weight for an item. But in real life, the significance of an item can
be affected by many factors. Consumer behaviors change with time which affect
the significance of products in retail market. For example, the demand of jack-
ets increase in winter, but their demand are quite likely to decrease in summer.
Again, at one period of time, the demand of a particular design or material of
jacket (e.g., jean jacket) can increase or decrease considering the current trend
and other factors. It signifies that considering different weights for a particular
item for different times is a requirement for several real-life applications.

Motivated by these real world scenarios, a new strategy for handling dynamic
weights in WFP mining was introduced [2]. However, the algorithm uses a less
compact tree structure (CanTree [14, 15]) and requires long mining time. The
main focus of the current work is to solve these problems all together. Our key
contributions of this paper include:

– A novel, highly compact tree structure—namely, Compact Pattern Tree for
Dynamic Weights (CPTDW)—is proposed to mine frequent patterns with
dynamic weights that significantly improves the performance with a single
database scan.

– A phase-by-phase tree restructuring method—namely, path adjusting method—
is proposed for dynamic weighted frequent pattern mining, which improves
the degree of prefix sharing in the tree structure.

– A single-scan mining algorithm is developed based on the above tree struc-
ture, that can be applied for finding dynamic weighted frequent patterns
over a data stream.

– Performance characteristics of a pattern-growth mining approach for dy-
namic weighted frequent pattern mining were observed through extensive
experimental study.

The remainder of this paper is organized as follows. The next section discusses
the required preliminary concepts with related works. Section 3 describes our
proposed methodology with proper examples. Section 4 presents our evaluation
results to show the supremacy of our proposed approach. Finally, conclusions
are drawn in Section 5.
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2 Preliminary Concepts and Related Works

2.1 Frequent Pattern Mining

The support/frequency of a pattern signifies the number of transactions that
contain the pattern in the transaction database. Frequent pattern mining is used
to find the complete set of patterns that satisfies a minimum support threshold
in the transaction database. The downward closure property states that, if a
pattern is infrequent, then all of its super patterns must be infrequent and can
be pruned.

The Apriori algorithm [1] is the first solution for the frequent pattern mining
problem. However, it needs several database scans and suffers from the level-
wise-candidate-generation-and-test problem. Frequent Pattern (FP)-Growth [9]
solves this problem by using an FP-tree based technique which requires only
two database scans. There has been several research works which are being used
to devise new algorithms or to improve the existing works for finding frequent
patterns.

2.2 Weighted Frequent Pattern Mining

The weight of an item is a non-negative real number that is assigned to reflect
the importance of that item in the transaction database. For a set of items I =
{i1, i2, ..., in}, the weight of a pattern, P {x1, x2, ..., xn} is given as follows:

Weight(p) =

∑length(P )
q=1 Weight(xq)

length(P )
(1)

For example, consider (i) an item “a” has weight 0.7 and frequency 2, and (ii) an
item “b” has weight 0.3 and frequency 5. Then, according to Eq. (1), the weight
of itemset “ab” will be 0.7+0.3

2 = 0.5. The weighted support of a pattern is the
result of multiplying the pattern’s support with the weight of that pattern:

WSupport(P ) = Weight(P )× Support(P ) (2)

A weighted frequent pattern is the pattern whose weighted support is at least the
minimum threshold.

Example 1. If (i) an item “a” has weight 0.7 and frequency 2 and (ii) item
“b” has weight 0.3 and frequency 5, then WSupport(“a”) = 0.7 × 2 = 1.4 and
WSupport(“b”) = 0.3 × 5 = 1.5 according to Eq. (2). If the minimum support
threshold is 1.2, then both “a” and “b” are weighted frequent patterns.

In real-life applications, normalized weight values are assigned to each item
based on their price. Normalization process is required to adjust the differences
among data from various sources so that a common basis of comparison is being
created [22,23]. Based on the normalization process, a specific weight range can
be determined so that the final item weights can be within that range.
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Some weighted frequent pattern mining algorithms [6, 21] have been devel-
oped based on Apriori technique, which makes the use of candidate generation-
and-test paradigm. These algorithms require multiple database scans, and result
in poor mining performance. Moreover, WFP mining is more challenge because
the weighted frequency of a pattern does not satisfy the downward closure prop-
erty.

Example 2. Continue with Example 1. With Eqs. (1) and (2), Weight(“ab”)
= 0.7+0.3

2 = 0.5 and WSupport(“ab”) = 0.5 × 3 = 1.5, but WSupport(“a”)
= 1.4 and WSupport(“b”) = 0.9. For the minimum support threshold of 1.2,
pattern “b” is infrequent but item “ab” is frequent, which means downward
closure property is not satisfied.

WFIM [23] and its extension WIP [22] maintain the property by multiplying
each item’s frequency by the overall maximum weight.

Example 3. Continue with Example 2. Item “a” has the maximum weight of
0.7. By multiplying it with the support count of item “b”, 2.1 is obtained. As
a result, “b” will not be pruned at an early stage and pattern “ab” will not
be missed. However, at the final stage, the overestimated pattern “b” will be
pruned by using its actual weighted support.

2.3 Dynamic Weighted Frequent Pattern Mining

In dynamic weighted frequent pattern mining, weight of each item changes dy-
namically in each batch based on the importance of that particular item. The
dynamic weighted support of a pattern is the result of adding the weighted sup-
ports of that pattern in each batch. A dynamic weighted frequent pattern is
the pattern whose dynamic weighted support is greater than or equal to the
minimum threshold. Dynamic weighted support of a pattern P is:

DWSupport(P ) =
N∑
j=1

Weightj(P )× Supportj(P ) (3)

where N is the number of batches. Consider an item “a” has weight 0.7 and
frequency 2 in first batch and weight 0.3 and frequency 5 in the second batch.
Then, according to Eq. (2), the weighted support of pattern “a” in the first and
second batches are 0.7 × 2 = 1.4 and 0.3 × 3 = 0.9, respectively. So, the total
DWSupport(“a”) = 1.4 + 0.9 = 2.3 according to equation (3). If the minimum
support threshold is 1.2, then “a” is a dynamic weighted frequent pattern.

Zhang et al. [24] proposed a strategy to find association rules in dynamic
databases by weighting. However, they considered one weight for a database
containing a group of transactions. By doing so, the recently added groups of
transactions are highlighted over the previously added groups. However, this
assumption is not realistic because the importance of an item or itemset can
vary with time.
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Ahmed et al. [2] proposed a dynamic weighted frequent pattern mining 
(DWFPM) algorithm to dynamically handle the changing item weights. It 
exploits pattern growth mining technique that removes the level-wise candidate 
generation-and-test methodology of the dynamic weight algorithm [24]. 
Furthermore, it requires only one database scan which makes it eligible for 
using in incremental, inter-active and stream data mining. However, the 
CanTree structure [14, 15] used in this algorithm results in a less compact 
tree structure and incurs very high mining time due to the canonical order of 
its tree structure.

3 Our Proposed Approach

3.1 Tree Construction

To capture transactions having items with dynamic weights, we construct a com-
pact pattern tree for dynamic weights (CPTDW). A header table is maintained 
with the tree structure. The first value of the header table is the item ID. The 
second value of the header table contains each item’s weight value in a batch-by-
batch fashion, and the third value of header table contains the I-list of items 
which contains the current frequency value of each item in a batch-by-batch 
manner. Our CPTDW builds an FP-tree [9] like compact frequency-descending 
tree structure with a single-scan of transaction database. At first, transactions of 
the first batch are inserted into the CPTDW tree one by one according to a 
predefined item order (e.g., lexicographic order). After inserting a batch of trans-
actions, the CPTDW tree structure is dynamically restructured by the current 
frequency descending item order and I-list is updated accordingly using the path 
adjusting method [3, 11]. In summary, CPTDW tree can be constructed in two 
phases:
1. Insertion phase: Transaction(s) of a batch is scanned, according to the

current item order of I-list, transactions are inserted into the tree and the
frequency count of the respective items is updated in the I-list.

2. Restructuring phase: The I-list is rearranged according to the frequency
descending order of the items and the tree nodes are restructured according
to the newly arranged I-list.

The construction of CPTDW starts with the insertion phase. The first in-
sertion phase begins by inserting the first transaction of the first batch in a
lexicographic item order into the tree. The tree will be restructured after the in-
sertion of all the transactions of the first batch. The tree is restructured by using
the path adjusting method [11]. The paths in a prefix-tree are adjusted through
recursive swapping of the adjacent node in the path until the path completely
achieves the new sorted order. Thus, bubble sort technique is used to process
the swapping between two nodes. One of the basic properties of FP-tree is that
the frequency count of a node cannot be greater than the frequency count of
its parent node. To maintain this property, the path adjusting method inserts a
new node of the same name as a sibling of the parent node in the tree when
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Algorithm 1 Path adjusting method algorithm.

1: Input: Let X,Y and Z be three nodes in a path in a prefix tree where X is the
parent of Y, Y is the parent of Z and Y and Z nodes are needed to be exchanged for
path adjustment. Consider nodeName.name, nodeName.count and nodeName.child
refer to the name, the support count (in the referred path) and a child of a node.
Therefore, the path adjusting is performed according to the following algorithm:

2: function EXCHANGE
3: Exchange parent and children links of Y and Z

4: function INSERTION
5: Insert Y ′ to X as a new child node such that Y ′.name = Y.name
6: Set Y ′.count = Y.count− Z.count
7: Assign all children of Y except Z to Y ′

8: Set Y.count = Z.count
9: function MERGE NODE(P,Q)

10: Set Q.count = Q.count+ P.count
11: for each child node of Q do
12: for each child node of P do
13: if Q.child == P.child then
14: Call MERGE NODE(Q.child, P.child)
15: else if Q.child not equals P.child then
16: Add P.child and its sub tree to Q.child list

17: function MERGE
18: if C is another child node of X and C.name = Z.name then
19: Call MERGE NODE(C,Z )
20: Delete C and its sub tree
21: function PATH ADJUST
22: if Y and Z need to be swapped and Y.count >Z.count then
23: Call INSERTION( )

24: Call EXCHANGE( )
25: Call MERGE( )

26: Repeat to Call PATH ADJUST with next two nodes of Y and Z in another
path to be exchanged and Terminate when no further node exchange is required.

the parent node needs to be exchanged with any child node which has a smaller
count value. Otherwise, if the frequency counts of both the nodes are equal,
then a simple exchange operation between the two nodes is sufficient. However,
after swapping, if two sibling nodes contain the same item due to the exchange
operation, then they should be merged. This insertion and restructuring phases
are executed alternatively until all the transactions of all batches are inserted
into the tree and restructured in the frequency descending order according to a
batch-by-batch fashion. The pseudo-code for path adjusting method is shown in
Algorithm 1.

Consider the example database of Table 1. At first, the items of the first batch
are inserted according to the lexicographic order as shown in Fig. 2(a). Then,
they are sorted in frequency descending order based on path adjusting method
[3,11]. Figure 2(b) shows the tree structure after restructuring the transactions of
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Table 1: An example of transaction database with dynamic weights

Batch TID Transactions Weights

T1 a, d, e
1st T2 c, d, e a: 0.9 b: 0.5 c: 0.3 d: 0.45 e: 0.2

T3 b, a, e

T4 b, d

2nd T5 a, c, e a: 0.7 b: 0.55 c: 0.4 d: 0.2 e: 0.3
T6 b, c, d

T7 d, e

3rd T8 b, e a: 0.5 b: 0.7 c: 0.8 d: 0.6 e: 0.5
T9 c, b, e

the first batch. Figure 2(c) shows the tree after inserting the transactions of the
second batch based on the item order which is achieved after restructuring the
transactions of the first batch. Then, the items are sorted in frequency descending
order based on their current frequency which includes their frequency count of
both the batches. Figure 2(d) shows the tree structure after restructuring. As
frequency information for each batch is kept separately in each node of the tree, it
can be easily discovered which transactions have occurred in which batch. At the
same way, Fig. 2(e) shows the tree structure after inserting the transactions of
the third batch. Figure 2(f) is our final CPTDW tree structure which is achieved
by inserting and restructuring all the transactions of all batches. Our proposed
CPTDW tree structure has the following properties:

– Property 1: The items in the tree are sorted according to the frequency
descending order.

– Property 2: The total frequency count of any node in the tree is greater
than or equal to the sum of total frequency counts of its children.

– Property 3: The tree structure can be constructed in a single database
scan.

3.2 Mining Process

According to the FP-growth mining algorithm [9], while creating a prefix-tree
for a particular item, all branches prefixing that particular item are taken with
their frequency value. After that, the conditional tree is built from the prefix tree
by deleting the nodes containing infrequent items. CPTDW algorithm performs
the same type of mining. The mining operation of CPTDW is done in a top-
down approach [20]. As discussed in Section 2.2, the main challenge in weighted
frequent pattern mining is that, the weighted frequent pattern of an item does
not hold the downward closure property. So, to maintain this property, global
maximum weight GMAXW has to be used. GMAXW is the maximum weight
of all the items in the global database. In our case, this is the highest weight
among every weight in all of the batches. For example, in Table 1, item “a”
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Fig. 2: CPTDW Tree construction

has the GMAXW of 0.9. The local maximum weight LMAXW is needed while
doing the mining operation for a particular item, and it is not always equal to
GMAXW.

As our CPTDW tree is sorted according to the frequency descending order,
LMAXW could be anywhere for a particular item. We start our pattern growth
mining operation from the top-most item of the CPTDW tree structure. So, for
this case, LMAXW is the weight of the first item for sure. After that, for the
second item, we compare its weight with the previous LMAXW and consider the
larger one as the current LMAXW. By moving in this way, LMAXW calculation
for each time can be saved.

We consider the database presented in Table 1, the tree constructed for
that particular database in Fig. 2(f) and minimum support threshold 1.2. Here,
GMAXW is 0.9. After multiplying GMAXW with the total frequency of each
item, we get a: 3 × 0.9 = 2.7, b: 5 × 0.9 = 4.5, c: 4 × 0.9 =3.6, d: 5 × 0.9 =
4.5, and e: 7 × 0.9 = 6.3. So, all items are single element candidates. We start
the mining process with the top-most item of the CPTDW tree, “e”. For ”e”,
LMAXW is 0.5, frequency of “e” is 3+1+3 = 7. By multiplying the frequency of
“e” with LMAXW, we get 0.5×7 = 3.5, which is greater than minimum support
threshold 1.2. So, single element pattern “e” is generated.

After that, we consider item “d” as it is the second top most item in Fig. 2(f).
So, the prefix tree of “d” is created by taking all the branches prefixing item “d”
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Algorithm 2 Mining and Test Candidate Procedure.

1: procedure PROCEDURE MINING(T, H, α, LMAXW)
2: for each item β of H do
3: if (frequency(β) × LMAXW <δ) then
4: Delete β from H and T

5: Let CT be the Conditional tree of α
6: Let HC be the Header table of Conditional tree CT
7: for each item β in HC do
8: Call TEST CANDIDATE(αβ, frequency(αβ),δ)
9: Create Prefix tree PTαβ with its Header table HPαβ for pattern αβ

10: Call Mining(PTαβ, HPαβ, αβ, LMAXW)

11: procedure TEST CANDIDATE(X,B,δ)
12: Let Dynamic weighted support of X be DWX

13: Let frequency(Xk) denotes frequency of pattern X in kth batch
14: Let weight(Xk) denotes weighted average of pattern X in kth batch
15: Set DWX = 0
16: for each Batch Bi in B do
17: DWX = DWX + (frequency(XBi) × weight(XBi)

18: if DWX ≥ δ then
19: Add X in the Dynamic weighted frequent pattern list

as shown in Fig. 4(a). For creating conditional tree, the nodes that cannot be
candidate patterns must be deleted from the prefix tree. For item “d”, LMAXW
is 0.6. After multiplying the frequency of the item in the header table shown
in Fig. 4(a), we get e: 3 × 0.6 = 1.8. As the value is greater than the minimum
support threshold value, that is 1.2, so no node should be deleted from the prefix
tree which signifies that, the prefix and conditional tree for item “d” is same.
So, the candidate patterns “de” and “d” are generated at this point.

The same procedure is conducted for all the items in the I-list of Fig. 2(f)
for finding out all the candidate patterns of our example database. The pseudo-
code of the mining procedure is illustrated in Algorithm 2 and the operations
are shown in Fig. 4. After generating all the candidate patterns, we calculate
the actual DWSupport of each candidate pattern according to Eq. (2) to check
whether they are actually frequent or not. This calculation is shown in Table 2.

4 Performance Evaluation

In this section, we present the overall performance of our proposed algorithm
CPTDW over several datasets. The performance of our proposed algorithm
CPTDW in compared with the existing DWFPM algorithm [2].

Experimental environment and datasets. To evaluate the performance
of our proposed tree structure and algorithm for dynamic weighted frequent
pattern mining, we have performed several experiments on IBM synthetic dataset
(e.g., T10I4D100K) using synthetic weights and real life datasets (e.g., retail,
chess, mushroom, pumsb*, connect, pumsb) using synthetic weights and real-life
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Fig. 4: Mining Operation

dataset (e.g., chain-store) with real weight values. All the datasets are collected
from frequent itemset mining dataset respiratory [5]. The performance of the
proposed algorithm is compared with the existing algorithm DWFPM [2], with
respect to runtime (aka execution time) and memory usage. Our programs are
written in Java programming language. Programs were run in a time sharing
environment with the Linux 16.04 operating system on a HP Notebook, 64 bits
machine, Intel(R) Core(TM) i3-6100U CPU, 2.30GHz processor, 4GB RAM,
100MHz clock, and 500 GB of main memory. We have divided all the datasets
in such a way that each batch contains at most 10 transactions. The minimum
support threshold values of 2%, 3%, 10% and 15% are used to conduct the
experiments.

Table 3 shows some important characteristics of synthetic and real-life data-
sets. Dense and sparse natures of datasets are very useful properties. A dense
dataset contains many items per transaction and small number of distinct items.
For the chess dataset in Table 3, it has a total of 75 distinct items, an average
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Table 2: DWSupport calculation of the candidate patterns of CPTDW algorithm

No Candidate
patterns

DW support calculation Results

1 e: 3,1,3 (0.2 × 3) + (0.3 × 1) + (0.5 × 3) = 2.4 Passed

2 de: 2,0,1 ( 0.45+0.2
2

× 2) + ( 0.6+0.5
2

× 1) = 1.2 Passed

3 d: 2,2,1 (0.45 × 2) + (0.2 × 2) + (0.6 × 1) = 1.9 Passed

4 be: 1,0,2 ( 0.5+0.2
2

× 1) + ( 0.7+0.5
2

× 2) = 0.95 Pruned

5 bd: 0,2,0 0.55+0.2
2

× 2 = 0.75 Pruned

6 b: 1,2,2 (1 × 0.5) + (0.55 × 2) + (0.7 × 2) = 3 Passed

7 ce: 1,1,1 ( 0.3+0.2
2

× 1) + ( 0.4+0.3
2

× 1) + ( 0.8+0.5
2

× 1) = 1.25 Passed

8 cd: 1,1,0 ( 0.3+0.45
2

× 1) + ( 0.4+0.2
2

× 1) = 0.675 Pruned

9 bc: 0,1,1 ( 0.55+0.4
2

× 1) + ( 0.7+0.8
2

× 1) = 1.225 Passed

10 c: 1,2,1 (0.3 × 1) + (0.4 × 2) + (0.8 × 1)= 1.9 Passed

11 ae: 2,1,0 ( 0.9+0.2
2

× 2) + ( 0.7+0.3
2

× 1) = 1.6 Passed

12 a: 2,1,0 (0.9 × 2) + (0.7 × 1) = 2.5 Passed

Table 3: Dataset characteristics

Datasets #trans. Avg. trans. len.
(A)

#distinct items
(D)

Dense & sparse
characteristics ratio
R = A

D
× 100(%)

T10I4D100K 100,000 10.1 870 1.16
mushroom 8,124 23 119 19.327
chess 3,196 37 75 49.33
pumsb* 49,046 50.48 2,088 2.42
retail 88,162 10.3 16,470 0.0625
Chain-store 1,112,949 7.2 46,086 0.0156

transaction length of 37, and 49.33% items are present in every transaction. If
R > 10%, then the dataset is considered dense, which may generate many long
frequent patterns and dynamic weighted frequent patterns. If R ≤ 10%, then the
dataset is sparse. The dataset chess is too dense and the dataset mushroom is
moderately dense. Similarly, datasets T10I4D100k and pumbsb* are moderately
sparse datasets; datasets retail and Chain-store are too sparse datasets.

Synthetic dataset with synthetic weight. We used IBM synthetic dataset
T10I4D100k developed by the IBM Almaden Quest research group. The dataset
was obtained from the frequent itemset mining dataset respiratory [5]. The
dataset do not provide weight values. According to the real world scenario, the
weight values of each item was heuristically chosen to be in the range from 0.1
to 0.9, and randomly generated by using a log-normal distribution. The pattern
generation times for this dataset for both the existing DWFPM algorithm and
our proposed CPTDW algorithm are shown in Fig. 6(a).

Real life datasets with synthetic weight. We used real-life datasets
chess, mushroom, pumsb* and Retail obtained from the frequent itemset mining
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(a) Runtime on T10I4D100K dataset (b) Runtime on chess dataset

(c) Runtime on mushroom dataset (d) Runtime on pumsb* dataset

(e) Runtime on retail dataset (f) Runtime on Chain-store dataset

Fig. 6: Experimental Results

dataset respiratory [5]. These datasets do not provide weight values. So, weights
for items were generated randomly by using log-normal distribution. The pattern
generation times for these datasets for both the existing DWFPM algorithm and
our proposed CPTDW algorithm are shown in Figs. 6(b)–6(e).

Real life dataset with real weight. We used real-life dataset Chain-
store obtained from SPMF, an open-source data mining library [8] consisting of
multiple data mining applications and databases. This dataset was taken from a
major chain store in California. We have taken real weight values for items from
their utility table. The experiment is conducted on the first half transactions
of the total transactions of the dataset. The pattern generation times of the
DWFPM and CPTDW algorithms for this dataset are shown in Fig. 6(f).

Scalability of CPTDW. The experimental results on different datasets
show that our proposed algorithm can easily handle large number of transaction
containing databses (e.g., T10I4D100k, Chain-store). Hence, these experimental
results demonstrate the scalability of our proposed algorithm to handle large
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Table 4: Node count of CPTDW and DWFPM algorithms

Dataset Node Count (CPTDW) Node Count (DWFPM)

mushroom 12 21
pumsb 21 61
pumsb* 36 70
Chain-store 789 804

Table 5: Runtime Distributions of CPTDW and DWFPM Algorithms

Dataset Tree construction
time of CPTDW
(ms)

Overall runtime
of CPTDW (ms)

Tree construction
time of DWFPM
(ms)

Overall runtime
of DWFPM (ms)

T10I4D100K 1,033 3,925 283 6,001
chess 19 37 3 40
mushroom 13 38 2 44
pumsb* 21 285 3 424
retail 36 367 10 518

number of transactions and distinct items. Our CPTDW algorithm outperforms
the existing DWFPM algorithm by using an efficient tree structure and pattern
growth mining technique in terms of runtime and memory usage.

Memory usage. Research on prefix-tree based frequent pattern mining
shows that, the memory requirement for the prefix tress is low enough to use
the gigabyte range memory available nowadays. Table 4 shows the total number
of nodes of the prefix-trees at the time of generating dynamic weighted frequent
patterns for different datasets for both the CPTDW and DWFPM algorithms.
We have handled our tree structure very efficiently. Our CPTDW tree can rep-
resent transaction information in a very compressed form because transactions
have many items in common. By using more prefix-sharing, our tree structure
can save memory space.

Runtime distribution. Recall from Section 3.1 about our CPTDW tree
construction process, CPTDW requires several swapping operations to restruc-
ture the tree structure in frequency descending order after the insertion of the
transactions of each batch. So, there might arouse an issue that, CPTDW should
require more time for the tree construction which is true. However, observed from
Table 5, although CPTDW requires more time to construct the tree structure,
we get a significant gain in overall runtime due to the frequency descending com-
pact structure of the tree. For the following experiments presented in Table 5,
the datasets were divided into 15 unique symbols and the minimum support
threshold value of 3% is used.
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5 Conclusions

Although there have been several efforts in mining weighted frequent patterns,
they are not designed for handling many real-life situations where the impor-
tance of an item varies dynamically over time. Our key contribution of this paper
is to provide a new tree-based approach to efficiently mine dynamic weighted
frequent patterns. By storing batch-by-batch frequency and weight information,
our compact pattern tree for dynamic weights (CPTDW) algorithm discovers
accurate knowledge about dynamic weighted frequent patterns. CPTDW is ap-
plicable to real time data processing because it requires only one database scan.
By using an efficient tree structure and mining approach, our CPTDW saves
memory space and time consumption. Extensive performance analyses shows
our algorithm is efficient when applied to both sparse and dense datasets, and
can handle a large number of distinct items and transactions. As ongoing and
future work, we are extending the current work for (i) incremental and interac-
tive mining on databases with dynamic weights and for (ii) sliding window based
dynamic weighted frequent patterns mining over data streams.
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Abstract. Network traffic classification, which has numerous applica-
tions from security to billing and network provisioning, has become a
cornerstone of today’s computer networks. Previous studies have devel-
oped traffic classification techniques using classical machine learning al-
gorithms and deep learning methods when large quantities of labeled
data are available. However, capturing large labeled datasets is a cum-
bersome and time-consuming process. In this paper, we propose a semi-
supervised approach that obviates the need for large labeled datasets.
We first pre-train a model on a large unlabeled dataset where the input
is the time series features of a few sampled packets. Then the learned
weights are transferred to a new model that is re-trained on a small
labeled dataset. We show that our semi-supervised approach achieves
almost the same accuracy as a fully-supervised method with a large la-
beled dataset, though we use only 20 samples per class. Duting inferene,
based on a dataset generated from the more challenging QUIC proto-
col, our approach yields 98% accuracy. To show its efficacy, we also test
our approach on two public datasets. Moreover, we study three differ-
ent sampling techniques and demonstrate that sampling packets from an
arbitrary portion of a flow is sufficient for classification.

Keywords: Transfer Learning · Semi-supervised Learning · Network
Traffic Classification · Packet Sampling · QUIC Protocol Classification

1 Introduction

Network traffic classification is one of the key components of network manage-
ment and administration systems. It has been used for Quality of Service (QoS)
provisioning, pricing, anomaly detection, malware detection, etc. Depending on
the usage scenario, traffic may be classified based on protocols (e.g. UDP, TCP or
FTP), traffic-types (e.g. voice, video or downloading), application (e.g. Youtube,
Facebook or WeChat), user-actions, operating system, etc [12]. Due to the inher-
ent differences of traffic in these applications, a model, approach or dataset that
is used for one application cannot be used for another application. As a result,
due to the lack of general approach, designing an accurate traffic classifier for
an application of interest a has been time-consuming and cumbersome task.



Classical machine learning approaches have been extensively used for more
than a decade and showed good accuracy. However, the emergence of new appli-
cations and encryption protocols has dramatically increased the complexity of
the traffic classification problem. Recently, deep learning algorithms have been
developed for traffic classification. Deep learning approaches are capable of auto-
matic feature selection and capturing highly complex patterns, and thus demon-
strated high classification accuracy in comparison to other methods.

However, deep learning requires a large amount of labeled data during train-
ing. Capturing and labeling a large dataset is a non-trivial and cumbersome pro-
cess. First, current Internet traffic is mostly encrypted that makes DPI (Deep
Packet Inspection) based labeling impossible. Hence, most labeling procedures
capture each traffic class in isolation. However, this is only possible at the edge
of a network or in an isolated environment. Unlike labeled dataset, unlabeled
data is abundant and readily available in the Internet. Therefore, it motivates us
to study how to use easily-obtainable unlabeled datasets to dramatically reduce
the size of labeled dataset needed for accurate traffic classification.

Furthermore, to make our approach practical, in particular for high speed
links or data centers, we propose to use sampled data packets instead of an entire
flow. Using sampled packets also reduces memory and computation complexity
needed for entire time series features [12]. In summary, in this paper, we make
the following contributions:

1. We propose a semi-supervised approach that utilizes large quantities of unla-
beled data and just a few labeled samples. Specifically, we first train a model
on a large unlabeled dataset and then re-train the model with a few labeled
data on the target classification problem.

2. We study three different sampling methods on the encrypted traffic classi-
fication problem: Fixed step sampling, random sampling, and incremental
sampling. We show that good sampling methods can almost achieve the
upper-bound accuracy in certain datasets.

3. We evaluate the proposed approach using captured QUIC traffic and show
that our semi-supervised approach using sampled packets can accurately
classify QUIC traffic that has fewer unencrypted fields during handshake.

4. We test our approach on different public datasets. Surprisingly, we show that
we can train a model using a completely separate unlabeled dataset and then
retrain the model with a small number of labels in the target dataset and
still achieve good accuracy.

2 Related Work

In pre-deep learning era, traditional machine learning algorithms had been com-
monly used for traffic classification [16]. However, due to their simplicity, manual
feature extraction, and inability to capture complex patterns, their accuracy has
declined [12]. Recently, several studies develop deep learning models, such as
Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM),
for network traffic classification in a fully-supervised fashion. In [18], authors
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train six different CNN models based on LeNet-5 model on a public dataset
with 12 classes. They convert 249 statistical characteristics into a 2-d 16×16
image and report high accuracy. In [9], authors use CNN, LSTM and various
combinations on a private dataset captured at RedIRIS, a Spanish academic and
research backbone network. They use time series features of the first 20 packets,
including source port, destination port, payload size, window size, etc.

In [10], a framework comprising a CNN and Stacked Auto-Encoder (SAE)
is trained on a dataset containing 12 VPN and non-VPN traffic classes. They
use raw header and payload bytes as input. In [2], Reproducing Kernel Hilbert
Space (RKHS) is used to convert the time series features of a flow to an image.
Then, produced images are used as input to a CNN model. The only study that
investigate QUIC protocol is [14]. They capture five Google services: Google
Hangout Chat, Google Hangout Voice Call, YouTube, File transfer, and Google
play music. They use CNN model and report high accuracy. They capture 150GB
of data and train the model in a fully-supervised manner.

In [12], a general framework, covering all previous deep learning-based traffic
classifiers, is introduced that can deal with any typical network traffic classi-
fication task. The paper provide a seven-step training process, including data
capturing, data pre-processing, model selection and evaluation, etc. The frame-
work also requires large enough dataset for training. In summary, in comparison,
all work discussed above assumes large quantities of labeled data. Furthermore,
packet sampling is not considered in their approaches.

3 Problem Statement

As discussed earlier, deep learning models have been adopted for (encrypted)
traffic classification. Because deep learning approaches are capable of automatic
feature selection and capturing highly complex patterns, they demonstrate high
classification accuracy. However, a critical challenge is that deep models require
large amounts of labeled data during training. Capturing and labeling a dataset
is a non-trivial and cumbersome process.

First, because encryption mechanisms are heavily used in today’s Internet,
labeling a dataset captured in an operational network is almost impossible unless
an accurate classifier is already available. As a result, labeling process is usually
done by assuring that only one target class is available during capturing by
turning off all other applications on the device used to generate traffic. This is
typically done in an isolated environment or at the edge of the network. Traffic
distribution in such an environment may differ from an operational network,
especially at the core of the network. In addition, to capture large amounts of
labeled data, previous studies often runs scripts to automatically perform certain
actions that can be captured and labeled without manual labor. However, we will
show that network traffic generated by scripts may have a different distribution
from that of human-generated traffic, causing poor performance on real traffic.

In contrast, unlabeled data is abundant and readily available in an opera-
tional network. Capturing a large unlabeled dataset is an easy task. There are
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also many large and publicly available datasets. Hence, our objective is to use
easily-obtainable unlabeled datasets to significantly reduce the size of labeled
dataset needed for training an accurate traffic classifier. We only have a few
labeled samples for each class that we are interested in, called target classes.
We call this dataset Dl. At the same time, we assume we have a large unlabeled
dataset Du. This unlabeled dataset Du may contain numerous flows from various
traffic classes, even from classes that we are not interested in, i.e. they do not
exist in Dl. The goal is to leverage the two datasets to train a traffic classification
model for a target task while heavily exploiting Du dataset for training.

4 Methodology

4.1 Key Components

Our objective is to obtain an accurate traffic classifier with only a small number
of labeled samples from each traffic class. To achieve this objective, we propose
a semi-supervised learning approach. There are three key components in the
proposed scheme. The first is the classification model trained through semi-
supervised learning. Specifically, we pre-train a model with Du and then transfer
the model to a new architecture and re-trained the model with Dl. This is called
semi-supervised learning. This approach considerably reduces the number of
labeled data needed for the second supervised learning part. Moreover, the pre-
trained model can be reused for other network traffic classification tasks.

In order to use an unlabeled dataset, Du, we pre-train a model, F , such
that it does not need human labor for labeling1. An important step in the pre-
training stage is to decide the target of the regression function. We choose a set of
statistical features for this purpose, such as average packet length, average inter-
arrival time, etc. Moreover, the input of the model is a set of packets sampled
from the entire flow. For each packet, we only observe length, direction, and
relative time. In other words, F is pre-trained to estimate statistical features
of the entire flow by taking a set of sampled packets as an input. The idea is
based on the assumption that not all traffic patterns are valid and a model pre-
trained on a large unlabeled dataset will lay on a manifold of valid patterns and
hopefully can estimate statistical features.

Next, the pre-trained model, F , will be used as a part of another model, G.
Then, G will be re-trained with a small labeled dataset. Since a part of the model
has already observed many traffic patterns, G needs considerably less human-
labeled data. Note that F might not necessarily be an accurate estimator of
statistical features. But, it will be re-trained quickly to help the classification
task since it has already seen numerous traffic patterns during the pre-training.

The second key component is the features, including input features and the
pre-training targets. As it is categorized in [12], there are three input features
heavily used for network traffic classification tasks: time series features (such

1 We use pre-training and re-training to distinguish between the first and second step
of our semi-supervised approach.
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as packet length and inter-arrival time), statistical features obtained from the
entire flow (such as average packet length and average byte sent per second),
and header/payload features (such as TCP window size field, TLS handshake
data fields and data content). Header/payload data features have been used for
classification of encrypted traffic such as TLS 1.2 [10, 13]. These methods rely
upon unencrypted data fields or message types exchanged during handshake
phase of TLS 1.2. However, state-of-the-art encryption protocols, such as QUIC
and TLS 1.3, aim to reduce the number of handshake messages to improve the
speed of connection establishment. As a result, fewer unencrypted data fields and
packets are exchanged that makes it harder for header/payload based approaches
to achieve high classification accuracy. Furthermore, statistical features require
the model to observe the entire flow before classification which is not efficient
in practice. However, statistical features present useful information of flows, and
thus we use statistic features as the target, not input, in the pre-training stage.

The third component of our approach is sampling. As discussed earlier, sta-
tistical features and header/payload features have their limitations. Therefore,
we aim to use time series features. Specifically, we use time series features of
only a part of a flow as an input to predict the statistical features as a regression
target. Additionally, instead of using only the first few packets, which is used in
most studies based on time series features [2, 3, 9], we sampled a fixed number of
packets from a flow for the input. First, in practice, sampling is the only practi-
cal solution in some scenarios, such as in high bandwidth links or data centers.
Moreover, sampling obviates the need to start capturing from the beginning of
a flow or capturing the entire flow. Furthermore, storing the entire flow needs a
large amount of memory and a model trained on would be more complex. Ad-
ditionally, it allows the model to capture patterns from different part of a flow,
not just the beginning of a flow. The approaches that used the first few packets
can only capture specific patterns taken place at the beginning of a connection.
However, these patterns may not necessarily be distinguishable from one class
to another. For instance, user-specific behaviors, such as changing the quality
of Youtube video, renaming a file in a Google Drive, etc., are mostly performed
at the middle of a flow, not within the first few packets. Finally, it allows us to
sample a single flow several times which serve as a data augmentation method.

4.2 Semi-supervised Learning

We used Convolutional Neural Network (CNN) as a part of the model architec-
ture because of its shift invariant feature. CCN uses same set of small filters to
cover the entire receptive fields. Hence, it allows the model to be shift invariant,
that is, a pattern can be captured by CNN even if it is shifted to another region
of input. Recall that we used sampled packets as an input to the model and as a
data augmentation technique we sampled multiple times from different part of
the flow. Hence, same set of patterns may be observed in different part of the
input. Thus, the shift invariant model is more suitable.

As shown in Fig. 1, a CNN-based model is first pre-trained with an unlabeled
dataset. Then, the learned weights of the convolutional layers are transferred to
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Fig. 1: Semi-supervised steps and model architecture

Table 1: Structure of the CNN model
- Conv1 Conv2 Pool3 Conv4 Pool5 FC6 FC7 FC8

Number of filters/neurons 32 32 - 64 - 256 128 128

Kernel size 5 5 3 3 3 - - -

a new model with more linear layers. Finally, the new model is re-trained on a
small labeled dataset. The details of the model structure is presented in Table
1. We use max pooling and Rectified Linear Unit (ReLU) activation function.
Batch normalization is also used after convolutional and max pooling layers.

The input of the model is a 1-dimensional vector with 2 channels. The first
channel contains inter-arrival time of sampled packets and the second channel
contains the packet length and direction combined. To combine the packet length
and direction, we multiply the direction (+1 or -1) with packet length. So, if
packet length is positive, it shows packet length in forward direction, otherwise
it shows the packet length in backward direction. Moreover, we normalized the
input data range in [-1,+1] by considering the maximum value of 1434 Bytes
and 1 second for length and inter-arrival time.

4.3 Sampling Techniques

In this paper, we used 3 different sampling methods to examine the effect of
sampling on performance of the traffic classification task.

– Fixed step sampling: In fixed step sampling, a fixed number, l, is chosen
and only packets that are l packets away from are sampled.

– Random sampling: This technique simply samples each packet with prob-
ability p < 1. This is a common technique in operational networks with high
bandwidth because it requires less memory and computational overhead.

– Incremental sampling: Incremental sampling has three parameters, (l, α,
β). Similar to fixed step sampling, it samples packets that are l packets away
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from, but it increases the value of l by multiplying it by α after sampling
each β packets.

During data augmentation, we sampled a flow 100 times from the beginning
of the flow when random sampling was used. However, it would have given us the
same set of packets if we had started from the beginning of a flow multiple times
when using fixed step or incremental sampling. Hence, we started sampling at
different part of a flow 100 times, if the flow was long enough.

4.4 Datasets

As explained earlier, our semi-supervised approach needs an unlabeled dataset
for the pre-training stage and a labeled dataset for the re-training stage. In this
paper, we conducted experiments with three datasets:

QUIC Dataset: This is a dataset captured in our lab at UC Davis and con-
tains 5 Google services: Google Drive, Youtube, Google Docs, Google Search,
and Google Music [5]. We used several systems with various configurations, in-
cluding Windows 7, 8, 10, Ubuntu 16.4, and 17 operating systems. We wrote
several scripts using Selenium WebDriver [17] and AutoIt [1] tools to mimic
human behavior when capturing data. This approach allowed us to capture a
large dataset without significant human effort. Such approach has been used in
many other studies [14, 8, 3]. Furthermore, we also captured a few samples of
real human interactions to show how much the accuracy of a model trained on
scripted samples will degrade when it is tested on real human samples. Dur-
ing preprocessing, we removed all non-QUIC traffic. Note that all flows in our
dataset are labeled, but we did not use labels during the pre-training step. We
used class labels of all flows to show the accuracy gap between a fully-supervised
and semi-supervised approach.

Unlabeled Waikato Dataset: WAND network research group at the uni-
versity of Waikato published several unlabeled traces from 2009 to 2013. In
this paper, we use Waikato VIII [6] captured at the border of the University of
Waikato. The entire dataset is unlabeled and it is not clear what traffic classes
exist in the dataset. However, the dataset definitely do not contain QUIC traffics
because it was captured before the emergence of any practical implementation
of QUIC protocol. We use Waikato dataset to pre-train the CNN model. The
dataset is extremely large and due to the limited time and computational budget,
we only used traces of the first month, around 4% of the entire dataset.

Ariel Dataset: Ariel dataset [4] was captured in a research lab at Ariel
university over a period of two months. The original paper [11] used a fully-
supervised method to classify three category of class labels: operating system,
browser, and application. However, only the operating system and browser labels
are available in the public dataset. In this paper, we only use a small portion of
the dataset to re-trained a pre-trained model to test our methodology.

For all datasets, We ignore short flows because when short flows are sampled,
there will not be enough packets to feed a classifier. In our evaluation, short flows
are those with less than 100 packets before sampling.
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5 Evaluation

5.1 Implementation Detail

We used python and implemented the CNN architecture using PyTorch. We
used a server with Intel Xeon W-2155 and Nvidia Titan Xp GPU using Ubuntu
16.04. The CNN model has already been explained in section 4.2. During the
pre-training, we trained the model with Adam optimizer and MSE loss func-
tion for 300 epochs. We used 24 statistical features as targets of regression. We
used minimum, maximum, average, and standard deviation of packet length and
inter-arrival time. For each one, we considered forward, backward and both flow
directions that gave us a total of 24 features. During the supervised re-training,
we used Adam optimizer with cross-entropy as a loss function2.

There are two category of performance measures to evaluate a classifier:
macro-average and micro-average metrics [15]. Whenever the accuracy of the
entire model is shown, we used macro-averaging where the accuracy is averaged
over all classes. For pre-class performance evaluation, we used micro-averaging
metrics, including accuracy, precision, recall, and F1, similar to [14].

5.2 QUIC Dataset

We first pre-train our model on QUIC dataset consisting of 6439 flows without
using class labels. Recall that because we sample each flow up to 100 times, total
number of samples during the training is 544744. We use 24 statistical features
calculated from flows as regression targets. Then, we transfer the weights to a
new model and re-train with class labels. For this step, we capture 30 flows for
each class and divide the training and test with different number of flows 3.
We also perform cross-validation. Moreover, we train the same model without
transferring the weight to show the performance gap.

To tune the hyper-parameters, we separate 30 files for each target class and
conduct greedy search. We train the model with only 20 labeled flows and vali-
date with other 10 flows. This small number of training data may not yield opti-
mal parameters, but it is consistent with the assumption that a limited amount
of labeled data is available for the supervised training we conduct. We find that
the model shown in Fig. 1 is accurate enough and a deeper model does not
yield higher accuracy. We also find that re-training or fixing the convolutional
part of the transferred model during re-training does not significantly change
the accuracy. Note that we use these same hyper-parameters for other experi-
ments without re-tuning them. Hence, these sets of hyper-parameters seem to be
acceptable across different datasets, which makes our proposed approach more
practical. The sampling parameters we use for fixed, incremental and random

2 Codes are available at https://github.com/shrezaei/Semi-supervised-Learning-
QUIC-

3 In the entire paper, we use flow to refer to an unsampled flow and sampled flow for
the sampled case. In other words, a dataset with 30 flows per class contains up to
3000 sampled flows per class because each unsampled flow is sampled multiple times.
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sampling are 22, (22, 1.6, 10), and 1/22, respectively. We also sample only 45
packets from the entire flow.
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Fig. 2: Accuracy of QUIC dataset vs: (a) Supervised training set size (b) number
of samples in fixed step sampling

Fig. 2(a) presents the accuracy of our model with various settings. It shows
that increasing the size of the training set improves the accuracy except for
random sampling. The reason is that during random sampling, we always started
sampling from the beginning of the flow each 100 times we sampled a flow. Hence,
the data augmentation method with only 5 files gives the model enough data to
capture the patterns corresponding to the beginning of the flow. However, the
accuracy of random sampling barely increases as the training size increases. We
conjecture that this is because imposing randomness during random sampling
makes it more difficult for the model to fit to the true distribution. Fixed step and
incremental sampling methods work with sampled flows captured from different
parts of a flow. Therefore, if different parts of a flow show different patterns, data
augmentation of these two methods reveals more patterns. Hence, increasing the
training size boosts the accuracy.

As shown in Fig. 2(a), incremental sampling outperforms other sampling
methods. When random or fixed sampling is used, it is not easy to capture
both long and short patterns. Incremental sampling allows sampled flows to
contain many packets in short range and some packets in long range. That is
why incremental sampling outperforms other sampling methods. Furthermore,
the figure clearly shows the efficacy of our transfer learning model on fixed
step and incremental sampling, as expected. Our method improves the accuracy
around 10% when compared with a model without the pre-training step.

Table 2 represents the accuracy of the CNN model when the entire labeled
dataset is used in a supervised manner. In that case, we do not conduct the first
step pre-training because the entire dataset is used to train the second model.
This gives us the upper-bound for the accuracy of a fully-supervised learning
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Table 2: Accuracy of QUIC dataset with different sampling methods
Supervised training size Fixed step Random Incremental

20 flows per class 94.60% 91.35% 98.53%

Entire dataset 96.50% 96.92% 98.99%

when sampling is used. The accuracy of incremental sampling is close to the
upper-bound when only 20 flows per class are used for re-training. But, fixed
sampling and random sampling require larger labeled training set during the re-
training. To find how much sampling degrades accuracy, we also train a Random
Forest (RF) classifier that takes statistical features as input and predicts the
class labels. The accuracy of RF is 99.87% which shows that sampling degrades
performance up to around 4% for our dataset. Note that we deliberately avoid
using deep models such as CNN for this part because the input is a set of
statistical features which is not suitable for a shift-invariant model, such as
CNN. In our experiment, fully connected neural network is also unnecessarily
complex to be trained with our relatively small dataset. Note that our dataset
has only around 6500 flows. When using statistical features as an input, it is
not possible to augment the dataset. As a result, total number of data points
used during training RF was around 100 times fewer than training a model with
sampled data.

In the second experiment, we study the effect of number of sampled pack-
ets on the accuracy of the model. We change the number of sampled packets
from 30 to 75. We set the parameters of fixed step sampling method so that
it always covers around the range of 1000 packets. Interestingly, the accuracy
drops when we increase the number of sampled packets, as shown in Fig. 2(b).
Increasing the number of sampled packets improves the accuracy of statistical
feature prediction. However, it is harder for the model to learn class labels when
input dimension is larger because of the small training set.

Fig. 3(a) presents the performance metric of our best model, that is, a model
re-trained on a pre-trained model using 20 training flows with incremental sam-
pling. The high performance metric shows that it is possible to train a good
classifier with as small as 20 flows for each class if our semi-supervised approach
is used. Therefore, it dramatically reduces the data collection and labeling that
are the most time-consuming and labor-intensive steps.

To study whether automatically generated data with script represents hu-
man interaction, we capture 15 flows for each class from interactions of real
humans in those 5 Google services. We only use this dataset to test the same
model described above. Fig. 3(b) illustrates the performance metrics. Interest-
ingly, accuracy of the Google search and Google document have not changed
significantly. However, the accuracy of Google drive, Youtube, and Google mu-
sic drop up to 7%. This depends on how much human interactions can change
the traffic pattern, which is class-dependent. Moreover, there are some actions,
such as renaming a file or moving files in Google drive, that our scripts do not
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Fig. 3: Per class performance metrics of the model on the test set: (a) generated
by the scripts (b) generated by human interactions

Table 3: Accuracy of QUIC dataset with different sampling methods
Pre-trained on Waikato Fixed step Random Incremental

No 74.51% 72.14% 74.35%

Yes 81.50% 81.27% 80.76%

perform. So, these patterns are not available during re-training. This shows the
limitations of datasets and studies [14, 8, 3] that only use scripts to capture data.

QUIC protocol has been introduced in 2012 and Chrome browser has had an
experimental support for QUIC since 2014. Therefore, Waikato dataset captured
before 2014 cannot have QUIC protocol traffic. Our intuition is that a model
pre-trained on Waikato dataset can still be useful for the re-training step because
it basically learns how to predict statistical features. It can be considered as a
naive statistical feature predictor based on sampled data. Table 3 presents the
accuracy of our method when Waikato dataset is used for pre-training. Note that
sampling method’s parameters are different for this experiment. Waikato dataset
has many small flows that are not suitable for our previous sampling parameters
that covers around 1000 packets. Hence, we change the parameters of sampling
methods, similar to the parameter used in next section. That is the reason why
the accuracy of even model without pre-training is lower than the experiment
shown in Fig. 2. Table 3 clearly shows that the pre-trained model can boost the
accuracy even when target traffic does not exist in the pre-training stage. But,
the improvement is limited to less than 10% in this case.

5.3 Ariel Dataset

We conduct two additional experiments to evaluate the performance of our semi-
supervised learning method on public datasets. In the first experiment, we pre-
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Table 4: Accuracy of Ariel datasets with different configurations
Pre-trained on \Sampling Fixed step Random Incremental

- 53.37% 70.76% 40.37%

W 79.76% 75.65% 80.82%

W+A 81.66% 78.54% 84.53%

train a model with the unlabeled Waikato dataset to predict statistical features
based on sampled flows. Then, we re-train the model with 5 flows of each class
in Ariel dataset. We randomly select 5 flows and use the remainder as a test set
and repeat the procedure 10 times4. We only show the performance of OS class
labels here due to the lack of space. In the second experiment, we pre-train the
model with both Waikato and Ariel datasets. Then, we re-train the model similar
to the first experiment. When we combine two datasets for pre-training, Ariel
flows constitute only around 6% of the entire combined dataset. We deliberately
allow the combined dataset to remain imbalanced to mimic real scenarios where
only small portion of unlabeled dataset contains the target labels. Additionally,
the parameters we use for fixed sampling, incremental sampling and random
sampling are 10, (8, 1.2, 10), and 0.15, respectively.

The accuracy of both experiments as well as the one without semi-supervised
learning is shown in Table 4. For brevity, we represent Waikato and Ariel datasets
with W and A, respectively. When there is no pre-training, random sampling
shows the best accuracy. The similar trend is observed with our QUIC dataset
as well, in previous section. Interestingly, there is a small but meaningful gap
between the two experiments. That shows even if the target classes are only
a small portion of dataset during the pre-training step, they can improve the
accuracy. This is useful because the percentage of target task’s flows might be
probably small in real word when data is captured from an operational network.

To measure the performance gap between semi-supervised and fully-supervised
learning, we also train the same CNN-based architecture with the entire A
dataset in a fully-supervised manner. First, we train the CNN model with aug-
mented sampled flows from A dataset using fixed step sampling. As it shown in
Fig. 4, the accuracy is around 89% which can be considered as an upper-bound
when sampling is used. To compare how statistical feature prediction degrades
the accuracy in comparison with using true statistical features, we perform the
following experiment: We feed the true statistical features to the last three layers
of the model directly and remove all previous layers. However, the training phase
is extremely unstable and high variance with low accuracy. The main reason is
that several dense layers of fully connected neural network is too complex to be
trained with a small dataset. Recall that when we do sampling, we can sample
a single flow multiple times which increases the dataset size. However, in the
case of feeding the true statistical features, there is only one set of statistical

4 The reason we do not perform cross-validation is that if we limit each training folds
to only contain 5 flows, the total number of cross validation rounds would be too
large to be practically evaluated.
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features for each flow leading to small size dataset. Therefore, we use K-Nearest
Neighbor (KNN) for a fully-supervised training with statistical features 5.

The performance gap is shown in Fig. 4. We only show results of the fixed
step sampling due to the lack of space. The trends of other sampling methods
are similar. Interestingly, if a pre-trained model contains the target class labels,
it can reach the upper-bound accuracy (fully supervised with sampled flows)
with only around 30 labeled flows for each class. This is dramatically smaller
than typical datasets used for fully-supervised methods in literature. Moreover,
even if the unlabeled dataset does not contain target task’s flows, the pre-trained
model can act as a general function approximation of statistical features because
it has already observed a large number of samples during the pre-training step.
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Fig. 4: Effect of labeled dataset size on accuracy

6 Discussion

Typically, network traffic classifiers use one or combination of the following fea-
tures [12]: statistical features, time series, and header/payload contents. The
choice of input features depends on many factors, which are comprehensively
explained in [12]. During the pre-training step, our approach takes sampled time
series features and outputs statistical features. Hence, our approach does not
work on datasets for which time series or statistical features are not good enough
for classification. For instance, we also conducted an experiment on ISCX dataset
[7] for which the accuracy of model based on statistical and time series features
were reported to be around 80% [7]. Our approach failed to produce a model
with higher than 68% accuracy when only 20 flows were used from each class

5 It has shown that it is possible to get a better accuracy with Ariel dataset using
some other statistical features [11]. But, we use the same statistical features that we
used as regression targets during the pre-training step to have a fair comparison.
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during the supervised re-training step. However, a CNN model using payload
information achieved above 95% accuracy with fully-supervised learning in [10].

During the pre-training step, the model see most possible traffic patterns,
even the patterns that are not similar to any of the target classes. However, it
is possible that during the supervised re-training step, some distinctive patterns
are missed from labeled dataset which degrades the accuracy dramatically if the
model is used in real environment. Hence, the small labeled dataset should be
captured carefully. For instance, it has been shown that user actions in certain
Android applications, such as Facebook or Twitter can be identified using time
series features [3]. These actions are sending message, posting status, etc. This
means that if target classes are Android applications, one should ensure that all
actions are included in the labeled dataset at least once because the pattern of
each action is different from another. This is similar to the experiment we did
to test our model on human-triggered data where we realized some actions in
some Google services did not exist in our training set, such as renaming a file.

We show that incremental sampling outperforms other sampling methods.
Note that we need to choose the parameters appropriately to accommodate the
CNN model. CNN uses a set of kernels to cover the entire input. In incremental
sampling, the sampling parameter l is increased by α after sampling each β
packets. If one chooses a large value for α, distance between the first few sampled
packets are significantly smaller that the last few packets. In that case, CNN
model is not suitable because the same filter which is supposed to capture certain
pattern for close sampled packets will be used on the far apart samples packets.
Hence, when using incremental sampling, one should not use large α.

7 Conclusion

In this paper, we propose a semi-supervised learning method that reduces the
number of labeled data significantly for network traffic classification. We use
1-D CNN model that takes sampled time series features as input. In the pre-
training step, the model is trained to predict statistical features of the entire
flow, which does not require human effort for labeling. Then, we transfer the
learned parameters to a new model and re-train it with a small labeled dataset.
We capture 5 Google services that use QUIC protocol to evaluate our model. We
show that with the proposed semi-supervised approach and 20 labeled data from
each class the model achieves high accuracy close to a model trained in fully-
supervised fashions. We evaluate 3 sampling methods: fixed step, random, and
incremental sampling. We also conduct experiments on public datasets to show
the generalizability of the proposed approach. We show a model pre-trained on
a unlabeled public dataset can improve the accuracy of another labeled dataset.
This shows that a model pre-trained with our approach on a large unlabeled
dataset can be used as a general traffic classifier that can improve the accuracy
of probably any traffic classification tasks if weights are transferred.
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Abstract. Click through rate (CTR) estimation is a fundamental task
in personalized advertising and recommender systems. Recent years have
witnessed the success of both the deep learning based model and atten-
tion mechanism in various tasks in computer vision (CV) and natural
language processing (NLP). How to combine the attention mechanism
with deep CTR model is a promising direction because it may ensemble
the advantages of both sides. Although some CTR model such as At-
tentional Factorization Machine (AFM) has been proposed to model the
weight of second order interaction features, we posit the evaluation of
feature importance before explicit feature interaction procedure is also
important for CTR prediction tasks because the model can learn to selec-
tively highlight the informative features and suppress less useful ones if
the task has many input features. In this paper, we propose a new neural
CTR model named Field Attentive Deep Field-aware Factorization Ma-
chine (FAT-DeepFFM) by combining the Deep Field-aware Factorization
Machine (DeepFFM) with Compose-Excitation network (CENet) field
attention mechanism which is proposed by us as an enhanced version
of Squeeze-Excitation network (SENet) to highlight the feature impor-
tance. We conduct extensive experiments on two real-world datasets and
the experiment results show that FAT-DeepFFM achieves the best per-
formance and obtains different improvements over the state-of-the-art
methods. We also compare two kinds of attention mechanisms (atten-
tion before explicit feature interaction vs. attention after explicit feature
interaction) and demonstrate that the former one outperforms the latter
one significantly.

Keywords: CTR Prediction · Field-aware Factorization Machine · At-
tention · Squeeze-Excitation Network · Compose-Excitation network.

1 Introduction

CTR estimation is a fundamental task in personalized advertising and recom-
mender systems. Many models have been proposed to resolve this problem such
as Logistic Regression (LR) [1], Polynomial-2 (Poly2) [2], tree-based models [3],
tensor-based models [4], Bayesian models [5], and Field-aware Factorization Ma-
chines (FFMs) [6].



The contributions of our work are summarized as follows:

1) We propose a novel model named FAT-DeepFFM that enhances the DeepFFM
model by introducing the CENet field attention to dynamically capture each
feature’s importance before explicit feature interaction procedure.

2) We compare two different kinds of attention mechanisms(attention on fea-
tures before explicit feature interaction vs. attention on cross features after
explicit feature interaction ) and the experiment results demonstrate that
the former one outperforms the latter one significantly.

3) We conduct extensive experiments on two real-world datasets and the exper-
iment results show that FAT-DeepFFM achieves the best performance and
obtains different improvements over the state-of-the-art methods.

The rest of this paper is organized as follows. Section 2 introduces some re-
lated works which are relevant with our proposed model. We introduce our pro-
posed Field Attentive Deep Field-aware Factorization Machine (FAT-DeepFFM)
model in detail in Section 3. The experimental results on Criteo and Avazu
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datasets are presented and discussed in Section 4. Section 5 concludes our work
in this paper.

2 Related Work

2.1 Factorization Machines and Field-aware Factorization Machine

Factorization Machines (FMs) [2] and Field-aware Factorization Machines (FFMs)
[6] are two of the most successful CTR models. FMs use the dot product of two
embedding vectors to model the effect of pairwise feature interactions. FFMs ex-
tended the ideas of Factorization Machines by additionally leveraging the field
information and won two competitions hosted by Criteo and Avazu. When one
feature interacts with other features from different fields, FFMs will learn dif-
ferent embedding vectors for each feature.

2.2 Deep Learning based CTR Models

With the great success of deep learning in many research fields such as Computer
Vision and Natural language processing, many deep learning based CTR models
have also been proposed in recent years. How to effectively model the feature
interactions is the key factor for most of these neural network based models.

Factorisation-Machine Supported Neural Networks (FNN)[13] is a feed-forward
neural network using FM to pre-train the embedding layer. However, FNN can
capture only high-order feature interactions. Wide & Deep Learning[15] was ini-
tially introduced for App recommendation in Google play. Wide & Deep Learn-
ing jointly trains wide linear models and deep neural networks to combine the
benefits of memorization and generalization for recommender systems. However,
expertise feature engineering is still needed on the input to the wide part of
Wide & Deep model, which means that the cross-product transformation also
requires to be manually designed. To alleviate manual efforts in feature engineer-
ing, DeepFM[16] replaces the wide part of Wide & Deep model with FM and
shares the feature embedding between the FM and deep component. DeepFM is
regarded as one state-of-the-art model in CTR estimation field.

Deep & Cross Network (DCN)[19] efficiently captures feature interactions of
bounded degrees in an explicit fashion. Similarly, eXtreme Deep Factorization
Machine (xDeepFM) [17] also models the low-order and high-order feature inter-
actions in an explicit way by proposing a novel Compressed Interaction Network
(CIN) part.

Our approach is based on neural FFM which was firstly proposed by Yang[20]
in Tencent Social Ads contest . It can be regarded as replacing the FM part of
DeepFM with FFM and we will describe the model in detail in section 3.

2.3 Attentive CTR Models

Attention mechanism is motivated by human visual attention and it can filter
out the uninformative features from raw inputs by reducing the side effects of
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noisy data. Attention-based model has been widely used and shown promising
results on tasks such as speech recognition and machine translation. Attention
mechanism is also introduced in some CTR models. For example, Attentional
Factorization Machine (AFM)[14] improves FM by discriminating and learning
the importance of different feature interactions from data via a neural attention
network. DIN[22] represents users diverse interests with an interest distribution
and designs an attention-like network structure to locally activate the related
interests according to the candidate ad.

3 Field Attentive DeepFFM

3.1 DeepFFM

Our work initially aims at introducing the FFM model into neural CTR systems.
However, a similar effort to ours has been reported by Yang etc. [20] in Tencent
Social Ads competition 2017. The authors report substantial gains after using
neural FFM in their CTR prediction system. Neural FFM was quite successful in
that competition: the 3rd place winner solution was based on this single Model
and the ensemble version won the 1rd place in the competition. Because its
hard to find the detailed technical descriptions about this model, we will firstly
introduce the neural FFM which will be called DeepFFM model in this paper.

As we all know, FMs[2] model interactions between features i and j as the
dot products of their corresponding embedding vectors as follows:

ŷ(x) = w0 +

m∑
i=1

wixi +

m∑
i=1

m∑
j=i+1

〈vi, vj〉xixj (1)

An embedding vector vi ∈ Rk for each feature is learned by FM, k is a
hyper-parameter which is usually a small integer and m is the feature number.
However, FM neglects the fact that a feature might behave differently when
it interacts with features from other fields. To explicitly take this difference
into consideration, Field-aware Factorization Machines (FFMs) learn extra n-1
embedding vectors for each feature(here n denotes field number):

ŷ(x) = w0 +
m∑
i=1

wixi +
m∑
i=1

m∑
j=i+1

〈vij , vji〉xixj (2)

where vij ∈ Rk denotes the embedding vector of the j-th entry of feature i when
feature i is interacting with fields j. k is the embedding size.

As depicted in Figure 1, DeepFFM is designed to embody the idea of FFM
through neural network. An input instance is firstly transformed into a high-
dimensional sparse features via one-hot encoding to denote the raw feature in-
put. The following embedding matrix layer is fully connected with sparse in-
put layer to compress a raw feature to a low dimensional, dense real-value ma-
trix. Specifically, for feature i, a corresponding 2-dimensional embedding matrix
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Fig. 1. The Neural Structure of Inner-Product version DeepFFM

EMi = [vi1, vi2, · · · , vij , · · · , vin] with size k × n is used to measure its impact
of interactions with other features, where vij ∈ Rk refers to the j-th embedding
vector of field i, n is the number of fields and k is the size of embedding vector.
So its obvious that embedding matrix layer EM is a 3-dimensional matrix with
size k × n × n because we have n fields and each field has one corresponding
2-dimensional embedding matrix.

The following feature interaction layer tries to capture the two way feature
interactions between any pair of features from different fields on the embed-
ding matrix EM . Denoting the feature interaction layer as vector A, we have
two different types of feature interaction approaches: inner-product version and
Hadamard-product version. We can formalize two methods in this layer as fol-
lows:
A = [v12⊕ v21, v13⊕ v31, · · · , vij ⊕ vji, · · · , v(n−1)n⊕ vn(n−1)] Inner Product
A = [v12⊗v21, v13⊗v31, · · · , vij×vji, · · · , v(n−1)n⊗vn(n−1)] Hadamard Product
where n is field number, vij ⊕ vji means the inner product of two embedding
vectors as a scalar 〈vij , vji〉 and vij × vji refers to the Hadamard product of two
embedding vectors as following vector:

vij ⊕ vji = [v1ij · v1ji, v2ij · v2ji, · · · , vkij · vkji]
where k is the size of embedding vector vji. Notice that j > i is required in order
to avoid the repeated computation. We can see from here that feature interaction
layer A is a wide concatenated vector and the size of this vector is n(n − 1)/2
if we adopt inner-product version while the size is kn(n− 1)/2 if the Hadamard
product version is adopted.
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Multiple hidden layer is a feed-forward neural network on the feature interac-
tion layer to implicitly learn high-order feature interactions. Denote the output
of the feature interaction layer as vector and we can feed it into hidden layer of
feed-forward neural network. So the forward process is :

x1 = σ(W 1A+ b1) (3)

xl = σ(W lx1−1 + bl) (4)

where l is the layer depth, σ is an activation function, and xl is the output of
the l-th hidden layer.

Adding the linear part, the output unit of DeepFFM behaves as follows:

ŷ(X) = σ(W1inearxlinear +W l+1xl + bl+1) (5)

where σ is the sigmoid function, xlinear is the raw features, xl is the output of
multiple hidden layer, W1inear, W l+1 and bl+1 are learnable parameters.

3.2 CENet like Field Attention on Embedding Matrix Layer

Hu proposed the Squeeze-and-Excitation Network (SENet) [21] to improve the
representational power of a network by explicitly modeling the interdependencies
between the channels of convolutional features in various image classification
tasks. The SENet is proved to be successful in image classification tasks and
won first place in ILSVRC 2017 classification task.

Our work is inspired by SENet’s success in computer vision field. To improve
the representational ability of deep CTR network, we introduce the Compose-
Excitation network (CENet) attention mechanism which is an enhanced version
of SENet into DeepFFM model on embedding matrix Layer. We aim to dynam-
ically capture each feature’s importance by explicitly modeling the interdepen-
dencies among all different features before FM’s feature interaction procedure.
Our goal is to use the CENet attention mechanism to perform feature recalibra-
tion through which it can learn to selectively highlights the informative features
and suppress less useful ones.

It can be seen from Figure 2 that the CENet like field attention mechanism
involves two phases: Compose phase and Excitation phase. The first phase calcu-
lates “summary statistics” of each embedding vector of each field by composing
all the information of one embedding vector into a simple feature descriptor;
the second phase applies attentive transformations to these feature descriptors
and then rescales the original embedding matrix using the calculated attention
values.
Compose Phase: Let EMi = [vi1, vi2, · · · , vij , · · · , vin] denotes the 2-dimensional
k × n embedding matrix of field i, where vij ∈ Rk refers to the j-th embedding
vector of field i, n is the number of fields and k is the size of embedding vec-
tor. In this phase we compose the embedding vector vij into one single number
to represent the summary information of the feature. This can be achieved by
using 1 × 1 convolution[23] to generate feature-wise statistics instead of those

48



Fig. 2. CENet like Field Attention

squeeze operations such as global max pooling or sum operation commonly used
in SENet. The 1× 1 convolution, also called a pointwise convolution, is respon-
sible for building new features through computing linear combinations of one
input feature embedding. In SENet, we generate a statistic vector z ∈ Rn for
field i by shrinking each embedding vector, where the f-th element of zi is zif ∈ R
which can be calculated by:

zif = Fsq(vif ) = max
1≤t≤k

vtif Global Max Pooling (6)

Here, k means the embedding size of each embedding vector.
The most commonly used squeeze operation is global max pooling in CV field

which can capture the strongest feature in corresponding channel. We change
the method in this phase by using 1 × 1 convolution because we posit each
position in feature embedding vector is informative in CTR task. So the 1 × 1
convolution can introduce parameters to learn the composing weight of each
position in feature embedding. The 1× 1 convolution is calculated as follows:

zif = conv1d(Uif , vif ) = Relu(Uifvif ) (7)

where Uif is the convolution weight, the size of convolution kernal is 1× 1, the
number of filters is 1 and the activation function is set to ’Relu’.
Excitation phase: After the first phase, the embedding matrix of field i EMi =
[vi1, vi2, · · · , vij , · · · , vin] has been transformed into a descriptor vector DVi =

49



[zi1, zi2, · · · , zij , · · · , zin] . We have n different fields, so we summarize all the
descriptors by concatenating each descriptor vector as follows:

D = concate(DV1, DV2, · · · , DVn) (8)

where the size of vector D is n2.
To calculate the attention from descriptor vector , two fully connected (FC)

layers are used. The first FC layer is a dimensionality-reduction layer with pa-
rameters W1 with reduction ratio r which is a hyper-parameter and it uses ReLU
as nonlinear function. The second FC layer increases dimensionality with param-
eters W2 , which is equal to dimension of descriptor vector D and it also uses
ReLU as nonlinear activation function. Formally, the field attention is calculated
as follows:

S = Fex(D,W ) = δ(W2δ(W1D)) (9)

where δ refers to the ReLU function, W1 ∈ R
n2

r ×n2

and W1 ∈ Rn2×n2

r ,the size
of attention vector S is n2 .

The activation of the ReLU function is used as the final field attention value
without softmax normalization operation because we want to encourage multiple
features to be important instead of just few of them. Then the values in original
embedding matrix EMi of field i are rescaled by the accordingly calculated field
attention vector Si as follows:

AEMi = Fscale(Si, EMi) = [Si1 · vi1, Si2 · vi2, · · · , Sij · vij , · · · , Sin · vin] (10)

where Fscale(Si, EMi) refers to vector-wise multiplication between embedding
vector vij and the scalar Sij . The bigger attention value Sij implies that the
model dynamically identifies an important feature and this attention value is
used to boost the original embedding vector vij . On the contrary, small attention
value Sij will suppress the uninformative features or even noise by decreasing
the values in the corresponding embedding vector vij .

After the compose phase and excitation phase, we have a new 3-dimensional
embedding matrix AEM with size k × n × n, which is equal to the size of the
original embedding matrix EM . We call the new embedding matrix attentive
embedding layer in our paper.

3.3 Combining the field attention and DeepFFM

As discussed in Section 3.2, the CENet attention mechanism can perform feature
recalibration through which it can learn to selectively highlights the informative
features and suppress less useful ones. We can enhance DeepFFM model which
is described in section 3.1 by inserting the CENet attention module into it.
Figure 3 provides overall architecture of our proposed Field Attentive Deep Field-
aware Factorization Machine (FAT-DeepFFM). It’s similar in neural structure
to DeepFFM while the original embedding matrix layer is replaced by the SE-
Net like field attention module. We call this newly plugged-in module attentive
embedding matrix layer. The other components of FAT-DeepFFM are same as
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Fig. 3. Neural Structure of Field Attentive DeepFFM (Inner product version)

the DeepFFM model. Similar to the DeepFFM, there are also two versions of
FAT-DeepFFM according to the feature interaction type: inner-product version
and Hadamard-product version.

We can see from the above-mentioned descriptions that our proposed atten-
tion mechanism is a kind of attention before cross features were produced. So a
natural research question arises that which one will perform better if we intro-
duce attention on cross features after the explicit feature interaction procedure
just like AFM does? To answer this question, we also conduct some experiments
to compare the performance difference of two kinds of attention mechanisms.
The experimental results demonstrate that the attention before feature interac-
tion outperforms the one after feature interaction consistently. We will discuss
these experiments in detail in Section 4.3.

4 Experimental Results

To comprehensively evaluate our proposed method, we design some experiments
to answer the following research questions:
RQ1 Can our proposed FAT-DeepFFM outperform the state-of-the-art deep
learning based CTR models?
RQ2 Which attention mechanism (attention on features before explicit feature
interaction vs. attention on cross features after explicit feature interaction) will
perform better on the real world CTR datasets?
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RQ3 Which feature interaction method (Inner-Product vs. Hadamard-product)
is more effective in neural network based CTR models?

4.1 Experiment Setup

Datasets The following two data sets are used in our experiments:

1. Criteo1 Dataset. As a very famous public real world display ad dataset with
each ad display information and corresponding user click feedback, Criteo
data set is widely used in many CTR model evaluation. There are 26 anony-
mous categorical fields and 13 continuous feature fields in Criteo data set.
We split the data into training and test set randomly by 90%:10%.

2. Avazu2 Dataset. The Avazu dataset consists of several days of ad click-
through data which is ordered chronologically. For each click data, there are
24 fields which indicate elements of a single ad impression. We split the data
into training and test set randomly by 80%:20%.

Table 1. Statistics of the evaluation datasets

Datasets #Instances #Fields #Features

Criteo 45M 39 2.3M

Avazu 40.43M 24 0.64M

Table 1 lists the statistics of the evaluation datasets. For these two datasets,
a small improvement in prediction accuracy is regarded as practically significant
because it will bring a large increase in a company’s revenue if the company has
a very large user base.

Evaluation Metrics AUC (Area Under ROC) and Logloss (cross entropy)
are used in our experiments as the evaluation metrics. These two metrics are
very popular for binary classification tasks. AUC is insensitive to the classi-
fication threshold and the positive ratio. AUC’s upper bound is 1 and larger
value indicates a better performance. Log loss measures the distance between
two distributions and smaller log loss value means a better performance.

Models for Comparisons We compare the performance of the following CTR
estimation models as baseline:LR, FM, FFM, FNN, DeepFM, AFM, Deep&Cross
Network(DCN) , xDeepFM and DeepFFM, all of which are discussed in Section
2 and Section 3.

1 Criteo http://labs.criteo.com/downloads/download-terabyte-click-logs/
2 Avazu http://www.kaggle.com/c/avazu-ctr-prediction
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Implementation Details We implement all the models with Tensorflow in
our experiments. For optimization method, we use the Adam with a mini-batch
size of 1000 and a learning rate is set to 0.0001. Focusing on neural networks
structures in our paper, we make the dimension of field embedding for all models
to be a fixed value of 10. For models with DNN part, the depth of hidden layers
is set to 3, the number of neurons per layer is 1600 for FFM-related models
and 400 for all other deep models, all activation function are ReLU and dropout
rate is set to 0.5. For CENet component, the activation function is ReLU and
the reduction ratio is set to 1 in all the related experiments. We conduct our
experiments with 2 Tesla K40 GPUs.

4.2 Performance Comparison (RQ1)

Table 2. Overall performance of different models on Criteo and Avazu(the model name
with suffix “I” means inner-product version while with suffix “H” means Hadamard
product version)

Criteo Avazu
Model Name AUC Logloss AUC Logloss
LR 0.7808 0.4681 0.7633 0.3891
FM 0.7923 0.4584 0.7745 0.3832
FFM 0.8001 0.4525 0.7795 0.381
FNN 0.8057 0.4464 0.7802 0.38
AFM 0.7965 0.4541 0.774 0.3839
DeepFM 0.8085 0.4445 0.7786 0.381
DCN 0.7977 0.4617 0.768 0.394
xDeepFM 0.8091 0.4461 0.7808 0.3819

DeepFFM-I 0.8087 0.4434 0.7839 0.3783
DeepFFM-H 0.8088 0.4434 0.7835 0.3782

FAT-DeepFFM-I 0.8099 0.4422 0.7857 0.3763
FAT-DeepFFM-H 0.8104 0.4417 0.7861 0.3773

The overall performance for CTR prediction of different models on Criteo
dataset and Avazu dataset is shown in Table 2. We have the following key ob-
servations:

1. FAT-DeepFFM achieves the best performance in general and obtains dif-
ferent improvements over the state-of-the-art methods. As the best model,
FAT-DeepFM outperforms FM by 3.64% and 1.80% in terms of Logloss
(2.28% and 1.50% in terms of AUC) and outperforms LR by 5.64% and
3.29% in terms of Logloss (3.79% and 2.99% in terms of AUC) on Criteo
and Avazu datasets.

2. FAT-DeepFFM consistently outperforms DeepFFM on both datasets. This
indicates that CENet field attentive mechanism is rather helpful for learning
the importance of raw features.
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4.3 Attention Mechanism Comparison (RQ2)

In this subsection, we will discuss the performance of two different kinds of
attention mechanisms: one is an attention before explicit feature interaction just
like above-mentioned field attention; the other is the attention on cross features
after explicit feature interaction procedure just like AFM does.

As for the specific approach for the attention on cross features, two methods
are implemented: the similar CENet attention as described in section 3.2 and
the MLP based attention just like AFM does, the hyper-parameters are tuned to
achieve the best performance. The experimental results is shown in table 3 and
the experiments with prefix “MLP” refer to the MLP based attention on cross
features while the experiments with prefix “CE” mean the CENet attention is
used on cross features.

Table 3 lists the overall performance of two attention mechanisms on Criteo
dataset and Avazu dataset. We have the following key observations:

1. No matter which method (CENet or MLP based model as AFM does) is
used as the specific attention approach on cross features, attention on fea-
tures before feature interaction outperforms the attention on cross features
after explicit feature interaction consistently, sometimes with a large mar-
gin. We infer it’s perhaps because the attention on features highlights the
important information while suppressed the unimportant features and noise
more effectively compared with the attention on cross features.

2. Under some conditions, the attention on cross features is harmful for some
real world CTR prediction task. From the results of the inner-product group
experiments shown in table 3, we can see that both the MLP-DeepFFM-
I and CE-DeepFFM-I model underperform the original DeepFFM model.
This result demonstrates that attention on cross features is harmful for CTR
prediction task if we use inner-product function as the feature interaction
method. The behind reason still needs further investigation.

4.4 Feature Interaction Method(RQ3)

As we discussed in section 3, both the DeepFFM and FAT-DeepFFM model have
two kinds of feature interaction approaches: inner product version vs. hadamard
product version. So a natural research question arises that which approach will
perform better? Table 3 also shows 4 groups of comparable experiments (model
names with same prefix and different suffixes form one group such as DeepFFM-I
and DeepFFM-H ) on two datasets. We have the following key observations:

1. No apparent performance difference is observed if we dont adopt any atten-
tion to the DeepFFM model, no matter which feature interaction method is
used (DeepFFM-I vs. DeepFFM-H).

2. The Hadamard product function should be preferred to the inner product
function if we adopt attention to the DeepFFM model, no matter attention
on features or attention on cross features. We can see from table 3 that this
conclusion holds in most cases.
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Table 3. Overall performance of two attention mechanisms on Criteo and Avazu(the
model name with suffix “I” means inner-product version while with suffix “H” means
Hadamard product version)

Criteo Avazu

Model Name AUC Logloss AUC Logloss

DeepFFM-I 0.8087 0.4434 0.7839 0.3783
Inner Product MLP-DeepFFM-I 0.8022 0.4499 0.7819 0.3796

Group CE-DeepFFM-I 0.808 0.444 0.7816 0.381
FAT-DeepFFM-I 0.8099 0.4422 0.7857 0.3763

DeepFFM-H 0.8088 0.4434 0.7835 0.3782
Hadamard Product MLP-DeepFFM-H 0.8083 0.444 0.7847 0.3778

Group CE-DeepFFM-H 0.8092 0.443 0.7822 0.3786
FAT-DeepFFM-H 0.8104 0.4417 0.7861 0.3773

5 Conclusion

In this paper, we propose a new neural CTR model called Field Attentive
Deep Field-aware Factorization Machine (FAT-DeepFFM) by combining the
deep field-aware factorization machine (DeepFFM) with CENet field attention
mechanism. We conduct extensive experiments on two real-world datasets and
the experiment results show that FAT-DeepFFM achieves the best performance
and obtains different improvements over the state-of-the-art methods. We also
show that FAT-DeepFFM consistently outperforms DeepFFM on both datasets
which indicates that CENet field attentive mechanism is rather helpful for learn-
ing the importance of raw features when the task has many input features. We
also compare two different types of attention mechanisms (attention before ex-
plicit feature interaction vs. attention after explicit feature interaction) and the
experiment results demonstrate that the former one outperforms the latter one
significantly.
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Abstract. This paper defines a novel conceptual framework of business
process mining approach and implements a process mining system based
upon the framework. The core algorithm of the conceptual framework
is named as ρ-Algorithm that is able to completely discover a business
process model with its enacted proportions from a process enactment
event log dataset. The authors’ research group has implemented all the
essential components of the framework including the ρ-Algorithm as a
proportional process mining system. Especially, the implemented mining
system supports a couple of mining-related activities in a fashion of vi-
sual and interactive user operations from opening a dataset to visualizing
its mined business process model via a series of stepwise and interactive
discovering operations. The discovered business process model mined by
the system is represented by the mathematical model of proportional
information control nets, formally as well as graphically, constructed by
an arbitrary number of combinational building blocks of the primitive
process patterns such as linear (sequential), disjunctive (exclusive-OR),
conjunctive (parallel-AND) and repetitive (iterative-LOOP) process pat-
terns. Finally, in order to prove the correctness of the proportional pro-
cess mining system, the paper performs an experiment by applying the
implemented mining system to the real dataset that contains non-noise
and synthetic event logs from the enactment history of 10,000 business
process instance event traces of the Large Bank Transaction Process
Model, and shows the final discovered outcomes through a visualized
screen of a proportional information control net process model captured
from the experiment.



1 Introduction

According for the business process (or workflow) automation [1,8] technologies
to swiftly grow and be increasingly used by many newly formed process-aware
enterprises and organizations, a new branch of requirements and demands has
been raised, which is surely a novel concept of business process fidelity. It is
eventually related with reengineering and redesigning those deployed business
processes and their models running on the process-aware enterprises and orga-
nizations. For the sake of deploying business processes and their models onto
the enterprises and organizations, it ought to be necessary for any types of the
general-purpose business process management systems to be installed on those
enterprises and organizations and we name them as the so-called process-aware
enterprises and organizations. In general, a business process management sys-
tem (BPMS) [8,13] is defined as a system that partially or fully automates the
definition, creation, execution, and management of work procedures through the
use of software that is able to interpret the procedure definition, interact with
business-task participants, and invoke their uses of IT tools and applications.
Steps of a work procedure are called activities [11,13], and jobs or transactions
that flow through the system are called workcases [9,25] or business process
instances. Such BPMSs and their related technologies have been constantly de-
ployed and so gradually hot-issued in the IT arena. This atmosphere booming
business process modeling and reengineering is becoming a catalyst for trigger-
ing emergence of the concept of business process intelligence [1,2,3,4,5,21] and
knowledge mining [7,8,9,14,16] that rediscovers several perspectives of business
processes such as control flow, data flow, resource allocation planning, social, and
organizational perspectives from their execution histories collected at runtime.

Fig. 1. A Situational View of the Process Mining Concept
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Fig. 1 is to illustrate a situational view of the process-aware enterprises and
organizations. As you see, the enterprise and organization have been supported
from a variety of different information systems that manage all the valuable as-
sets of data, information and knowledge available and produced in the business
and organizational environments. One of the recent trends in the traditional
business and managerial information systems ought to be the adoption of busi-
ness process management systems and the deployment of the business process
automation methodologies as a means of monitoring and controlling business
activities and managements. We call those enterprises and organizations for-
tified with business process automation and management methodologies, tools
and systems as the process-aware enterprises and organizations. The core com-
petitiveness of the process-aware enterprises and organizations ought to be on
the process mining functionality that is able to continuously manage as well as
repeatedly evolve all the business processes deployed in the corresponding enter-
prises and organizations. The process mining functionality is mainly composed
of the process discovery [7,8,19,20] functionality and the process rediscovery
[1,17,24] functionality. The former is to discover business-activity processes from
the event logs of the executions of the traditional information systems, while the
later is to rediscover the enacted business-activity processes from the event logs
stored whenever the corresponding business-activity processes are enacted and
executed by their business process management system. Especially, the rediscov-
ered business processes can be re-engineered and re-designed according to their
performances measured and mined from the event logs by the process knowl-
edge mining tools and the process intelligence solutions as well. This paper has
something to do with the process rediscovery functionality. That is, the paper
proposes a process mining framework with its related algorithms for rediscover-
ing a so-called proportional process patterns from the business process enactment
event log dataset, implements the process mining framework, and carries out an
empirical study based upon a dataset of the specific business process execution
event logs particularly delivered from the 4TU.Centre for Research Data.

2 Related Works

The main research challenges of this paper are to devise an algorithmic mining
framework for discovering a structured model of information control nets from a
business process enactment event log dataset and to propose the process-aware
knowledge of enactment proportions on the gateway-activity of the process pat-
terns with thinking out a series of process-aware knowledge discovery algorithms.
Therefore, the literature surveys of these challenges are summarized in this sec-
tion. The most popular approaches of the theoretical modeling methodologies to
formally define and graphically represent business process models are the Petri-
net model [5,6] of process modeling methodology and the information control net
model [11,13] of process modeling methodology. Both of them are based upon
the mathematical representation and the graphical representation at the same
time. The Petri-net process model has a strong advantage in terms of the mathe-
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matical and analytical power, whereas the information control net process model
has a much stronger merit in terms of the expressiveness of the business process
domain. So far, there have been several business process rediscovery algorithms
in the literature. One of the typical rediscovery algorithms for rediscovering the
Petri-net process models is the α-Algorithm [4,5], whereas the typical rediscov-
ery algorithm for rediscovering the information control net process models is the
σ-Algorithm [1,17]. Note that the name of the rediscovery algorithm proposed
in the paper is the ρ-Algorithm, and the naming reason of the ρ-Algorithm will
be explained later. The crucial idea and characteristics of these algorithms and
their comparisons with the ρ-Algorithm are arranged in this section.

The essential goal of the paper is concerned with the concept of propor-
tional process models, which can be formally represented by the proportional
Information Control Net process model, and it can be discovered from the busi-
ness process enactment event logs. As stated in the previous subsections, for the
sake of eventually supporting the model-log comparison, which is the business
process fidelity issue, the literature has produced so far the two concepts and
theories; one is the Petri-net process modeling methodology and the other is the
information control net process modeling methodology. Also, the literature has
published the α-Algorithm [4] and the σ-Algorithm [17] for discovering Petri-net
process models and information control net process models, respectively. How-
ever, all of these discovery approaches have the limitations that they are able to
deal with only sequential, parallel and selective process patterns out of all the
types of the process patterns such as sequential, parallel, selective and repeti-
tive process patterns. In other words, both of the discovery algorithms have a
limitation in dealing with the repetitive-LOOP process patterns. Conclusively
speaking, the algorithm (named as the ρ-Algorithm3) proposed in the paper is
able to appropriately deal with the repetitive-LOOP process pattern.

3 A Proportional Process Mining System

In this section, we implement a proportional process mining system supported
a process pattern discovery (from now on, we use the broader term, discovery.)
framework. That is, we propose a conceptual framework and implement the
proposed framework as a system that is able to eventually discover a proportional
and structural information control net model from a business process enactment
event log dataset especially formatted in a form of the XES standardized log
format [12]. Especially, the core component of the system is the ρ-Algorithm
that is firstly introduced and so named by this paper.

3 In the ρ-Algorithm, the symbol and name of rbo (ρ) comes from the A programming
language (APL) firstly released in 1960’s. The function rho, coded like ρX in APL,
implies that it gives the number of elements in X. The central idea of the discovery
algorithm of the framework is exactly same to the implication of the APL function,
rho (ρ).
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3.1 A Conceptual Framework

In the paper, the emphasis is placed on the quality and reengineering of busi-
ness process models that are usually built by a combination of the four types of
process patterns, such as linear, disjunctive, conjunctive and repetitive process
patterns formally defined in the previous section. That is, we used to model a
proportional business process model [1,24] by a combination of four types of
proportional process patterns, such as linear (sequential), disjunctive (exclusive-
OR), conjunctive (parallel-AND), and repetitive (iterative-LOOP) of propor-
tional process patterns. The conceptual framework is to conceptually define a
procedural approach to discover a proportional business process model from
its enactment event histories logged by executing all the four types of process
patterns. After defining the conceptual framework, this section implements the
conceptual framework for discovering a proportional business process model from
its enactment event histories and logs dataset. Fig. 2 illustrates a series of pro-
cedural components of the conceptual framework.

Fig. 2. A Conceptual Framework of the Proportional Process Mining System

The conceptual framework is concretized by a formal framework of discover-
ing a process model of the structured information control nets, and it is composed
of a series of formal concepts and their algorithmic formalism such as business
process enactment event logs, business process warehouses, temporal workcases,
temporal workcase filters and so on. Fig. 2 is to illustrate a series of these proce-
dural concepts and formal implications in the conceptual approach to be used for
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realizing the discovery framework proposed in the paper. Especially, the figure
highlights the conceptual role of the ρ-Algorithm4. that is the detailed imple-
mentation of the algorithmic discovery approach. Due to the page limitation, this
section simply describes only the major components of the framework, such as
business process enactment event log dataset as input and proportional process
model as output of the conceptual framework and its implemented system.

Fig. 3. The IEEE XES Event Log Format

3.2 Preparing the Event Log Format

The algorithmic discovery approach of the framework is mainly for the detailed
implementation of the ρ-Algorithm simply stated in the conceptual approach,
and it is composed of seven procedural concepts and six transformation algo-
rithms, each of which conducts a transformation from one concept to another
concept, one after another, to support the procedural process discovery and

4 In the ρ-Algorithm, the symbol and name of rho (ρ) comes from the A programming
language (APL) firstly released in 1960’s. The function rho, coded like ρX in APL,
implies that it gives the number of elements in X, from which the concept of mass
comes. The central idea of the discovery algorithm of the framework is exactly same
to the implication of the APL function, rho (ρ).
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process-aware knowledge mining experiments. These concepts are procedurally
listed as business process enactment event log histories in the IEEE XES-format
[12]: business process instance event traces, temporal workcase models, pairs
of temporally ordered adjacent-activity groups, quantitative adjacent-activity
set, proportional process pattern graph, and proportional information control
net model, whereas the transformation algorithms are listed as a series of the
functional analytics algorithms: event trace mining algorithm, temporal work-
case composing algorithm, adjacent-activity fragmentizing algorithm, adjacent-
activity quantifying algorithm, proportional process pattern discovering algo-
rithm, and proportional information control net discovering algorithm. Note that
the paper needs to axiomatically formalize the procedural discovery approach
with its core concepts and algorithms related with the ρ-Algorithm in particu-
lar. Due to the page limitation, however, the paper won’t describe all of these
concepts.

Fig. 3 shows the UML-based meta-data model of the IEEE XES (extensible
event stream) format [12] and its samples from a real dataset of the business
process enactment event logs recorded at enacting the business process instances
of a corresponding business process model. As shown in the lefthand-side of the
figure, the XES schema structure has a hierarchical inclusion relationship among
Log, Trace and Event classes. Accordingly, in the righthand-side of the figure
the real dataset file (BPI-Challenge-2013-open-problems.xes) is corresponding
to the Log class, the business process instance event traces in an XML tag
form of (<trace> ... </trace>) are corresponding to the Trace class, and the
business process enactment event logs in an XML tag form of (<event> ...

</event>) are corresponding to the Event class. The algorithm is to conceptually
extract a business process instance event log from the XES-formatted dataset,
and the algorithm is also able to conceptually fragmentize a workcase model into
a fragment-group of temporally ordered adjacent-activity pairs.

3.3 Mining Proportional Process Patterns in Structured
Information Control Nets

In terns of defining the concept of proportions in a business process model, we
would adopt a way of formalism for the stochastic information control nets and
semantically extend the meaning of stochastic to the concept of proportions.
There are a number of AND/OR/LOOP graph models in the business process
modeling literature. In particular, we take into account all the process patterns
like sequential (linear process pattern), exclusive-OR (disjunctive process pat-
tern), parallel-AND (conjunctive process pattern), and LOOP (iterative process
pattern) constructs with holding proportions. Through such constructs, we are
able to model decision-making gateway activities in a business process model,
and the conceptual approach to be proposed in the paper is able to measure
probability (proportion) of each branch of the decision-making choices by redis-
covering the observed process patterns and their frequencies from the enactment
event logs of a corresponding business process model.
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The Proportional Process Patterns For the sake of the formal represen-
tation of a proportional business process model, the paper extensively revises
the original information control net methodology by supporting the concept of
proportions. Fig. 4 shows a series of graphical representations for the primi-
tive constructs of proportional business process patterns, such as linear, dis-
junctive (OR-open/OR-close), conjunctive (AND-open/AND-close) and itera-
tive (LOOP-open/LOOP-close) process patterns, and their mathematical prop-
erties of probabilities holding to the outgoing edges of each of the open gateway
nodes.

Fig. 4. The Proportional Process Patterns

Based upon these four types of proportional business process patterns, we
define a formal representation of proportional business process model, which is
named as the Proportional Information Control Net model using the graph the-
ory. That is, the paper conceives the idea of proportional information control
nets by extending the classic information control net definition with appending
proportions to outgoing arcs of the constructs. Each arc in the graph so has a
proportional value after all. In any given node, the sum of all the proportions
of the arcs must be one as shown in the Fig. 4. Also, all the activity nodes in a
single proportional information control net have to have only one outgoing arc
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(out-degree = 1), the proportion of the activity node’s arc so must be one. For
convenience, such an activity node’s arcs are unlabeled in our graphical repre-
sentation of the graph. In particular, assume that the iterative-LOOP process
pattern is syntactically structured in a similar form of the DO-WHILE pattern
in the mediocre programming languages.

The ρ-Algorithm The overall algorithmic approach is a stepwise mining pro-
cedure with the functional components to be used for discovering all the types of
the proportional process patterns that constitute a structured information con-
trol net process model. The approach is named as ρ-Algorithm that consists of
three major transformation steps, such as STEP-1, STEP-2 and STEP-3, from
forming temporal workcases out of the process enactment event logs to discov-
ering a proportional information control net process model. The first transfor-
mation algorithm is to discover the enacted workcases from the event logs, each
of which can be modeled into a temporal workcase model. At the same time,
it is necessary to count the occurrence of each temporal workcase with its ac-
tivities. The second transformation algorithm is to discover an activity-driven
pattern graph by integrating all the members of the adjacent-activity set and
calculating the occurrences of the temporal workcases. In terms of discovering
the structured information control net process model from the corresponding
activity-driven pattern graph, we develop an algorithm that is able to deal with
an any combinational number of AND/OR/LOOP proportional process pat-
terns.

– STEP-1: Groups of Temporally Ordered Adjacent-Activity Pairs: The first
step of the ρ-Algorithm is to mine a group of temporally ordered adjacent-
activities pairs from temporal workcases of the process instance event logs.
Also, each of the temporal workcases is formally represented by one of the
workcase model types introduced in the conceptual framework. That is,
a temporal workcase represents an ordered enactment sequence of activ-
ity event logs, each of which is formed with its activity identifier and its
time-stamp extracted from its corresponding process enactment event log.

– STEP-2: Weighted Adjacent-Activity Set and Activity-Driven Pattern Graph:
The STEP-2 of the ρ-Algorithm is to build all the groups of temporally or-
dered adjacent-activity pairs, each of which corresponds to a process instance
event trace. The eventual output of this algorithm is a weighted adjacent-
activity set named as adjacencyList β. This set is built from all the groups
of temporally ordered adjacent-activity pairs through an internal transfor-
mation procedure.

– STEP-3: Discovering Proportional Process Patterns: The final step (STEP-
3) of the ρ-Algorithm is to discover proportional process patterns of a pro-
portional information control net process model from the activity-driven
pattern graph mined from all the groups of temporally ordered adjacent-
activity pairs. The eventual goal of the ρ-Algorithm is accomplished through
this step. Note that the proportional information control net process model
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must be satisfied with the proper nesting as well as the matched pairing
properties in forming gateway activities in each process graph pattern.

Summarily, the characteristics of the proportional process mining algorithm
proposed and implemented in the paper are as followings: First, the mining
system is able not only to discover the process patterns but also to discover
the enactment proportions of the process patterns from a dataset of the IEEE
XES-formatted enactment event logs of a corresponding business process model.
Second, the mining system is theoretically supported by the information control
nets modeling methodology of business process models. Third, the essential al-
gorithm of the mining system is named as ρ-Algorithm (rho-Algorithm) that is
able to discover a structured information control net model with the enactment
occurrences and proportions of the activities associated with an underlying busi-
ness process model. Fourth, the ρ-Algorithm is firstly developed in the business
process management and mining literature as the process mining algorithm that
discovers a structured business process model theoretically supported by the in-
formation control net modeling methodology. Fifth, the ρ-Algorithm is able to
discover all the process patterns such as linear (sequential), conjunctive (parallel-
AND), disjunctive (exclusive-OR), and repetitive (iterative-LOOP) process pat-
terns and discover the enactment occurrences and proportions of each branch of
the process patterns.

Fig. 5. The Dashboard Screen of the Proportional Process Mining System

3.4 The Implemented Mining System

By implementing the proportional process mining framework, it is necessary for
the algorithmic discovery approach to confirm the feasibility and the applica-
bility of the ρ-Algorithm and by applying the implemented system onto a real
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Fig. 6. The Rediscovered Proportional Process Patterns Mined from the Dataset of
Large Bank Transaction Process by the System

dataset and proving to ultimately discover all the proportional process patterns
in a structural information control net model from a business process enactment
event log dataset especially formatted in a form of the XES standardized log
format [12]. In other words, the paper implements a proportional process min-
ing system theoretically supported by the ρ-Algorithm-based discovery approach
and apply the system to a real dataset of business process enactment event logs,
which was released to the public by the 4TU.Centre for Research Data [10].
Fig. 5 is a screen-captured dashboard controlling all the proportional process
mining activities through the implemented process mining system. The dash-
board represents the current dataset chosen through the Choose Log button,
the name of which is 10000-all-nonoise-150MB.xes containing 10,000 business
process instance event traces and 113 activities are involved in the enactment
of the corresponding business process model, Large Bank Transaction Process
Model.

Also, the real dataset of 10000-all-nonoise-150MB.xes is a non-noise and syn-
thetic dataset made by logging the histories of enacting 10,000 business process
instances of the Large Bank Transaction Process Model [10]. This feasibility anal-
ysis is aiming to prove that the ρ-Algorithm is able to discover all the types of
proportional process patterns such as linear, disjunctive, conjunctive and repet-
itive process patterns and their proportions. According as a business process
instance is executed, the logging and auditing component of the business pro-
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Fig. 7. The Rediscovered Proportional Information Control Net Process Model Gen-
erated by the System

cess enactment engine records its workitem execution events on a log repository,
and those logged events are arranged in a form of the temporal sequence of
events. This execution sequence of a business process instance is forming a busi-
ness process instance event trace, from which we can extract a business process
instance’s workitem event trace and its formal representation is specified by a
model of temporal workcases. In recent, IEEE has released a standard tag-based
language, XES [12], whose aim is to provide designers of information systems
with a unified and extensible methodology for capturing systems’ behaviors by
means of event logs and event streams.

Fig. 6 is the system-made representation and the enlarged representation,
respectively, of the proportional process patterns with their proportions, which
is the proportional information control net model of the Subprocess Model with
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holding all the types of process patterns like sequential, disjunctive, conjunctive
and repetitive process patterns. These process patterns are perfectly matched
paired as well as properly nested. The algorithm so works perfectly. The feasibil-
ity analysis for verifying the ρ-Algorithm has been successfully done as presented
in this subsections. First of all, discovering the proportional disjunctive process
pattern type and the proportional conjunctive process pattern type from the
IEEE XES-formatted dataset was successfully fulfilled in the paper. In the next,
discovering the proportional repetitive process pattern type has been successfully
done in the system, too. Based upon these results of the feasibility analysis, the ρ-
Algorithm of the conceptual approach and the algorithmic approach proposed in
the paper ought to be reasonable and feasible in terms of their deployments and
applications in the real world. Finally, the time complexity of the ρ-Algorithm
is O(N × M), where N is the number of temporal workcases, which implies the
number of business process instance event traces in a dataset of business pro-
cess enactment event logs, and M is the number of activities associated with the
underlying business process model. Finally, Fig. 7 is the system-generated pro-
portional information control net process model from the proportional process
patterns rediscovered and graphically screen-visualized by the implemented min-
ing system. The left-hand side of the figure is all the proportional information
control net process model and the right-hand side is to enlarge a sub-portion of
the model.

4 Conclusions

So far, this paper has proposed the proportional process pattern discovery frame-
work and implemented the framework as the proportional process mining system.
The theoretical background of the mining system stems from the conceptual re-
discovery approach of rediscovering the proportional process patterns such as
linear, disjunctive, conjunctive and repetitive process patterns from the process-
aware warehouses and data-sets, whereas the implementable background of the
mining system is supported by the algorithmic discovery approach of the ρ-
Algorithm, by discovering the proportional information control net models from
the business process enactment event log data-sets. Based upon these theoreti-
cal and algorithmic approaches, the paper devised, implemented and developed
these concepts, algorithms and systems, respectively. Based upon the imple-
mented proportional process mining system, the paper carried practically out
an experimental analysis by deploying the business process enactment event log
data-set, which is name as the Large Bank Transaction Process dataset, provided
by the 4TU.Centre for Research Data.

Notes and Comments. This research was supported by the Basic Science Re-
search Program, (Grant No. 2017R1A2B2010697), through the National Re-
search Foundation of Korea (NRF) funded by the Ministry of Education, Re-
public of Korea. Collaboratively, this work was also supported by the National
Research Foundation of Korea (NRF) grant funded by the Korea government
(Ministry of Science and ICT, Grant No. NRF-2018R1C1B5086414).
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Abstract. Text modeling is a critical step in document classification problems. 
Word embedding techniques are among the most well-known text modeling 
methods which recently showed promising results in different applications com-
pared to other text modeling techniques. Word embedding algorithms use repos-
itory data to model the words; however, in almost all real-world document clas-
sification problems, the distribution of the repository data and the real-world dis-
tribution of classes are rarely equivalent. This phenomenon, termed inadequacy 
of knowledge, reduces the accuracy of the document classification methods. Also, 
out-of-vocabulary problem could be considered a subtype of this phenomenon. 
In this paper, we first address the out-of-vocabulary issue in GloVe embedding, 
by training this algorithm on n-gram char-level data, instead of words; this ver-
sion of GloVe is called here C-GloVe. Then we address the issue of inadequacy 
of knowledge by (1) combining different embedding algorithms and (2) training 
those embedding hybrids on combined sources of knowledge (universal and do-
main-specific). The algorithms considered include C-GloVe, GloVe, Word2Vec, 
ELMo, USE and FastText. Experimental results show that C-GloVe generates 
more accurate models for documents than GloVe especially when the size of the 
training dataset is small. More importantly, it is shown that (1) combining uni-
versal and local resources and (2) integrating the word embedding techniques 
resulted in higher F1-Score in document classification, compared to standalone 
sources of knowledge and standalone word embedding techniques. 

Keywords: Document classification, Word embedding, Text modeling. 

1 Introduction 

Vector space models are an effective way to numerically model the meanings of natu-
ral-language terms in a computational system. These models are created using embed-
ding techniques that represent words or phrases as vectors in a high-dimensional space, 
such that the cosine similarity of any two terms corresponds to their semantic similarity. 

These vectors, referred to as the embeddings of the terms in the vector space, can 
also be used as input to further feed into a machine learning algorithm. Word embed-
ding has been also widely used in many Natural Language Processing (NLP) tasks, 



such as language modeling [1, 2], named entity recognition and chunking [3, 4, 5]. 
Recently, the word embedding techniques were also extended to embed queries, docu-
ments, phrases, entities, etc. [6, 7], which could play a critical role in industry applica-
tions, such as large-scale web search and knowledge mining [8, 9]. 

In the recent years, dozens of algorithms have been proposed for word embedding. 
Some well-known representatives are GloVe [10], Continuous Bag-Of-Words 
(CBOW) and Skip-Gram[11], Fast-Text [12], Deep Contextualized Word Representa-
tions (ELMo) [13], and Google’s Universal Sentence Encoder (USE) [14].  

Depending on the text mining problem, each of these embedding methods should 
be trained first on a repository dataset. After training, a feature vector 𝑉" =
(𝑓&", 𝑓(", … , 𝑓*"),for a word 𝑤" or document 𝐷" in an n-dimensional real space 𝑅* could 
be generated [15]. However, in a real-world text mining problem, Local knowledge L 
(i.e. repository data) does not fully and precisely represent the characteristics of the 
problem –in comparison to the Universal knowledge U-. It was shown in [16] that for 
a classification problem P, the distribution of the data in L for each class often does not 
match the real distribution of the class concept in U, and this leads to inaccurate feature 
values. To demonstrate this problem visually, consider a word 𝑤"	that appears in the 
local knowledge L. Let	𝑈(𝑤", 𝐶3) and 𝐿(𝑤", 𝐶3)	be the relevance of word 𝑤" to the con-
cept of class	𝐶3based on the universal knowledge U and local knowledge L, respec-
tively. In a document classification problem, it is desirable to have	𝑈(𝑤", 𝐶3) =
		𝐿(𝑤", 𝐶3) or at least 	𝑈(𝑤", 𝐶3) ≅ 		𝐿(𝑤", 𝐶3). However, generally the local knowledge 
L suffers from incomplete knowledge about the word 𝑤" which causes difference -and 
sometimes significant difference, such as out-of-vocabulary situation- between 
𝑈(𝑤", 𝐶3) and 𝐿(𝑤", 𝐶3).  

Consider 𝐿(𝑤", 𝐶3) to be the modeling of the local knowledge L about word 𝑤" 
within class	𝐶3, calculated by Eq. 1: 

𝐿(𝑤", 𝐶3) 		=
𝑓67,89
𝑁89

																																																				(1) 

where 𝑁89 is the number of documents in class	𝐶3, and 𝑓67,89 is the number of docu-
ments (of class𝐶3) that have word 𝑤". Therefore, 𝐿(𝑤", 𝐶3) could be considered as the 
probability of having word 𝑤" in class	𝐶3. 

Consider Fig. 1, which illustrates the likelihood 𝐿(𝑤", 𝐶3) of having word 𝑤" in dif-
ferent classes	𝐶3, where 𝑤" ∈	{Paint,Light,Design,Machine,Device,Starter,Across,Bot-
tle,Complex} and 𝐶3 ∈ 	 {“comp. graphics”	and	“rec. autos”} of the 20-Newsgroups 
dataset [17].  Based on the general meaning (universal knowledge) of the above words, 
some words such as “paint” and “design” are more related to the “comp. graphics” 
class, whereas certain other words such as “device” and “machine” are more related to 
the “rec.autos” class. However, the calculated likelihoods for these words based on the 
local knowledge show a different inference: that these words are more related to the 
other class. Also, by considering the general meaning of words, “across”, “bottle” and 
“complex”, which do not have a significant relation to either of these classes, yet we 
see in the figure that there is a strong connection between these words and one of the 
classes. Therefore, the accuracy of the document classification algorithms which use 
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the word embedding of these words might be reduced if the word embedding algorithm 
is trained only on the local knowledge. In this paper, this phenomenon is called inade-
quacy of knowledge (IoK).  

Fig.  1. Relevance of some words to two different classes based on local knowledge -20news-
groups [16]. 

As another discrepancy between the local and the universal knowledge, consider Fig 2. 
This figure shows the relatedness between a focus word 𝑤Q	and two words 𝑤R	𝑜𝑟	𝑤Uus-
ing a local and universal knowledge. 

𝑆W(𝑤Q, 𝑤X) =
𝑉QW. 𝑉R	YZ	UW

[𝑉QW[. ‖𝑉XW‖
	]where	𝑤Xis	𝑤R	or	𝑤U_	 	(2) 

𝑆a(𝑤Q,𝑤X) =
𝑉Qa. 𝑉R	YZ	Ua

[𝑉Qa[. ‖𝑉Xa‖
				(where	𝑤Xis	𝑤R	or	𝑤U)																												(3) 

 where 𝑉Q , 𝑉R	and	𝑉U are the feature vectors of word 𝑤Q,𝑤R	𝑎𝑛𝑑	𝑤U respectively, gen-
erated by  Word2Vec (Skip-gram) algorithm, 𝑆(𝑤Q,𝑤X) is the cosine similarity between 
the feature vectors of the focus word 𝑤Q and word 𝑤X, and the superscripts 𝐿	and	𝑈	in-
dicate whether the embedding model has been trained on a local source (here Reuters 
[18]) or universal source of knowledge (here Wikipedia [19]).  

As Fig. 2 shows, the universal and local knowledge have different judgments about 
the relatedness of two words. For example, based on the universal knowledge, the word 
“sport” is related to both words “health” and “running” with the same weight; however, 
the local knowledge indicates that the word “sport” is more related to “health” than to 
“running”. More strikingly, with respect to the local knowledge, “love” is completely 
unrelated to “lovely”, and “student” is completely unrelated to “pencil”. This is caused 
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by the Out-Of-Vocabulary issue which is an instance of the IoK problem. Out-Of-Vo-
cabulary (OOV) words are unknown words that appear in the testing vocabulary but 
not in the training vocabulary. They are usually important content words such as names, 
locations and different forms of pre-known words which contain information crucial to 
the success of many text mining tasks. 

Fig.  2. Relatedness between a focus word wf and two words wg	or	wh using a local and universal 
sources of knowledge. 

In this paper, to solve the IoK problem: 
A. We combine two sources of knowledge for generating the word embeddings:

i. A universal source of knowledge, which is an external source of
knowledge that has the general information about the words.

ii. A local source of knowledge, which has the domain-specific infor-
mation of the words for a given problem P.

B. We train different embedding algorithms on both sources of knowledge. The
details of the proposed method will come in the next sections.

The rest of this paper is organized as follows: The proposed method for solving spe-
cifically the issue of Out-Of-Vocabulary of GloVe word embedding algorithm will be 
introduced in Section 2. In section 3, the IoK problem will be addressed by combining 
resources of knowledge and integrating the word embedding techniques. Section 4 co-
vers some document classification experiments and shows how the proposed methods 
could improve the performance of document classification problem. Finally, a discus-
sion of the achieved results and some suggestions for future directions will be presented 
in Section 5. 

2 C-GloVe: GloVe with no more OOV issue 

Glove and Word2Vec are two well-known word embedding algorithms, which suffer 
from the OOV problem; however, Facebook proposed an algorithm in 2016 to solve 
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the OOV problem in Word2Vec. This method is called FastText, an extension to 
Word2Vec, in which instead of feeding individual words into the Neural Network, it 
breaks words into several n-grams and feeds these n-grams to the Neural Network.  

As the first contribution of our work, to solve the OOV problem in GloVe, we apply 
the same extension to GloVe algorithm. The first step of GloVe is collecting word co-
occurrence statistics in a form of word co-occurrence matrix X. Each element Xij of the 
matrix represents how often word i appears in the context of word j. However, in our 
proposed method, i.e. C-GloVe, instead of computing the word co-occurrences, we 
compute the co-occurrences of n-grams..  

To do so, the n-grams of each word will be substituted for the word. For example, 
the tri-grams for the word “loves”, namely, “lov”, “ove”, and “ves”, take the place of 
“loves”. Then, the n-gram’ed corpus will be scanned in the way that for each n-gram 
ng, we look for context n-grams within an area defined by a parameter window_size 
before and after ng.  

After factorizing the calculated co-occurrence matrix using the GloVe algorithm, it 
will have word embeddings for all the n-grams generated from the training dataset. Rare 
and OOV words can now be properly represented since it is highly likely that some of 
their n-grams also appear in other words. Finally, the word embedding vector for each 
word will be the sum of the embeddings of all n-grams of the word. 

3 Solution to the Inadequacy of Knowledge Problem 

In this paper, to solve the IoK problem two sources of knowledge are considered for 
generating the word embeddings: Universal source of knowledge, such as Wikipedia 
[19], and the local source of knowledge, which has the domain-specific information of 
the words for a given problem P. Figure 3 shows the diagram of the proposed solution 
for solving the IoK problem. 

Depending on the text mining problem, different information about the words could 
be extracted from the universal source of knowledge, such as similarity and relatedness 
of the words. As it is shown in Fig 3, once the universal and local sources of knowledge 
are specified, the word embedding algorithms will be trained on each source of 
knowledge separately. Such that two models will result for each embedding algorithm: 
a local knowledge based model and a universal knowledge based model.  

Table 1 shows all the experimented models and the abbreviations assigned to them. 
In the next section we refer to each model by the assigned abbreviation. Note that any 
other word embedding algorithm could be considered in our approach; however, in this 
paper, we focused on the well-known and recent word embedding algorithms men-
tioned in Table 1. 

After having all trained models, the next step of the proposed method is to produce 
all possible pairs of models and to evaluate these pairs using the test sets. The details 
of generating feature vectors from each pair, and evaluating each pair, are given in the 
next section. Finally, based on the evaluation results, one or more pair will be identified 
as the suitable pair/pairs of models for each classification problem. 
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Fig.  3. The diagram of the proposed solution for solving the inadequacy of knowledge problem 

Table 1. List of experimented models and their abbreviations 

Model name Abbreviation Algorithm Source of Knowledge 
GloVe-Local G-L GloVe Local 
GloVe-Universal G-U GloVe Universal 
FastText-Local F-L FastText Local 
FastText -Universal F-U FastText Universal 
W2V-Local W-L W2V1 Local 
W2V -Universal W-U W2V Universal 
ELMO-Local E-L ELMO2 Local 
ELMO-Universal E-U ELMO Universal 
C-GloVe-Local C-G-L C-GloVe3 Local 
USE-Universal U-U USE4 Universal 

1 The Skip-gram algorithm has been selected, which showed better performance from view point 
of accuracy and precision. 

2Embedding from Language Models 
3 The proposed improvement on GloVe in the previous section. 
4Universal Sentence Encoder 
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4 Experiments 

4.1 Datasets 

In our experiment, we use five corpora as local sources of knowledge: 20-Newsgroups 
[17], Reuters [18], SUBJ [20], TREC [21], and IMDB [22] data sets. Table 2 shows the 
details of these datasets. 

Table 2. Details of the experimented datasets. 

Dataset Number of 
samples 

Number of 
classes 

Description 

Reuters 10788 90 Reuters is a benchmark dataset for document clas-
sification. To be more precise, it is a multi-class, 
multi-label dataset 

20 News-
groups 

18846 20 The 20 Newsgroups data set is a collection of ap-
proximately 20,000 newsgroup documents, parti-
tioned (nearly) evenly across 20 different news-
groups. 

SUBJ 10000 2 Subjectivity dataset where the task is to classify a 
sentence as being subjective or objective. 

TREC 5952 6 TREC question dataset - task involves classifying 
a question into 6 question types (whether the 
question is about person, location, numeric infor-
mation, etc.) 

IMDB 50000 2 This is a dataset for binary sentiment classifica-
tion containing substantially more data than pre-
vious benchmark datasets. 

4.2 Universal Knowledge 

Since there is no comprehensive source to be considered as the universal knowledge, 
instead different available huge datasets such as Wikipedia could be used for training 
the embedding algorithms to model the words or documents universally. In this paper 
we used “English wiki dataset 2018 Nov” [19], which includes all the English articles 
on the Wikipedia website. 

4.3 Evaluation 

The first experiment shows how C-GloVe could solve the IoK problem, especially 
when the size of the training set is small. To do so, we train GloVe and C-GloVe with 
only n% of  the samples at a time. For example, if n=1, we first select 1% of the whole 
samples randomly, then we train both methods using the selected samples. However, 
in the classification phase, we use all the training samples of the dataset to train a SVM 
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classifier, and we use all testing samples of the dataset to evaluate the trained classifier. 
For each value of n, this process was performed 10 times and the performance, i.e. 
Precision, Recall and F1-score, of the classifier was calculated by averaging each metric 
over these 10 runs. 

Table 3. The performance of the SVM classifier on Reuters dataset when C-GloVe and GloVe 
algorithms are trained on n% of the dataset 

Percentage 
(n) 

Precision Recall F1-Score 

GloVe C-GloVe GloVe C-GloVe GloVe C-GloVe

1 61.8 72.2 70.6 77.0 65.9 74.5 

2 71.0 76.8 75.8 79.0 73.3 77.9 

5 75.7 78.5 79.1 80.8 77.4 79.6 

10 78.5 80.0 81.5 82.5 80.0 81.2 

20 81.0 82.2 83.1 83.8 82.0 83.0 

35 82.5 83.2 84.5 85.1 83.5 84.1 

50 84.0 84.3 85.9 86.3 84.9 85.3 

70 85.6 85.7 87.1 87.2 86.3 86.4 

100 86.5 86.6 87.7 87.7 87.1 87.1 

Table 4. The performance of the SVM classifier on 20 newsgroups dataset when C-GloVe 
and GloVe algorithms are trained on n% of the dataset 

Percentage 
(n) 

Precision Recall F1-Score 

GloVe C-GloVe GloVe C-GloVe GloVe C-GloVe

1 47.80 56.20 56.60 61.00 51.83 58.50 

2 57.00 61.80 61.80 63.80 59.30 62.78 

5 61.70 64.20 65.10 66.10 63.35 65.14 

10 64.50 65.90 67.50 67.70 65.97 66.79 

20 67.00 67.50 69.10 69.10 68.03 68.29 

35 68.50 68.50 70.50 70.00 69.49 69.24 

50 70.00 69.30 71.90 70.70 70.94 69.99 

70 71.60 70.50 73.10 71.50 72.34 71.00 

100 73.00 71.40 73.80 71.90 73.40 71.65 
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Fig.  4. The performance of SVM classifier on Reuters [the curves on the left] and 20news-
groups dataset [the curves on the right] when C-GloVe and GloVe algorithms are trained on n% 
of the dataset 

This experiment has been performed on two different datasets, Reuters and 20-new-
groups. As shown in Table 3 and Fig. 4 [the curves on the left side], the performance 
of the classifier when C-GloVe is used for generating the samples’ models of Reuters 
dataset are higher than when GloVe is used, specially when the size of the training set 
is small. Also, considering 20-newsgroups dataset (Table 4 and 2nd column of Fig. 4), 
although the performance of GloVe is higher than C-GloVe when the whole dataset is 
used for training, the performance of C-GloVe is higher than GloVe when less than 
40% of samples are used for training. Also, it is shown in this figure that the perfor-
mance of the classifier for both word embedding methods, i.e.  GloVe and C-GloVe, 
converges to almost the same level as more training samples are used for training 

In the second experiment, we found that a combined local and universal model 
mostly resulted in higher F1-Score then standalone models based on either the local 
knowledge or the universal knowledge. We also found that integrating different word 
embedding algorithms could result in higher F1-Score than standalone word embedding 
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algorithms. This experiment was performed on five well-known and recent word em-
bedding algorithms, namely, GloVe, Word2Vec, FastText, USE, ELMO, and C-GloVe 
that we outline above. To do so, two models were generated based on each word em-
bedding algorithm: 

• The Local Word Embedding Model: The word embedding algorithm is
trained on a local repository. This experiment has been performed on five
different datasets: 20-Newsgroups, Reuters, SUBJ, TREC, and IMDB.

• The Universal Word Embedding Model: The word embedding algorithm is
trained on the Wikipedia dataset [19].

Tables 5, 6, 7, 8 and 9 show the F1-Score of  the SVM classifier using different 
combinations of the models on Reuters, 20-Newsgroups, SUBJ, TREC, and IMDB re-
spectively. To illustrate, consider the gray cell in the third row and second column of 
Table 5. This cell shows the F1-Score of the SVM classifier for when the feature vector 
of each sample of the Reuters dataset is produced by concatenating the following fea-
ture vectors: 

• F-L embedder based feature vector: a feature vector which has been gener-
ated using a trained FastText model on the local source of knowledge which
is Reuters here.

• G-U embedder based feature vector: a feature vector which has been gener-
ated by a trained GloVe model on the universal source of knowledge.

Regarding the length of the feature vectors, our experimental results showed that 
having more than 300 features won't improve dramatically the accuracy of C-GloVe, 
GloVe, FastText and Word2Vvec, and training will be extremely slow. Therefore, the 
length of the feature set for these algorithms is set to 300, except if the models of a pair 
are the same, e.g. (G-L and G-L), in which the length of the feature set is set to 600. 
Also, the length of the feature set based on USE and ELMO models is 512 and1024 
respectively. Table 10 shows the length of the feature set for each pair of models. 

Table 5. F1-Score of  the SVM classifier using different combinations of the models on Reu-
ters dataset. 

G-L G-U F-L F-U W-L W-U E-L E-U C-G-L U-U
G-L 87 - - - - - - - - - 
G-U 88 85 - - - - - - - - 
F-L 86 87 85 - - - - - - - 
F-U 88 87 88 86 - - - - - - 
W-L 86 87 85 88 84 - - - - - 
W-U 88 87 87 87 87 84 - - - - 
E-L 85 86 86 86 85 86 85 - - - 
E-U 86 86 86 85 86 85 86 85 - - 

C-G-L 87 88 87 88 87 88 87 86 87 - 
U-U 88 86 87 87 86 87 87 85 88 80 
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Table 6. F1-Score of  the SVM classifier using different combinations of the models on 
20newsgroups dataset. 

G-L G-U F-L F-U W-L W-U E-L E-U C-G-L U-U
G-L 73 - - - - - - - - - 
G-U 75 68 - - - - - - - - 
F-L 76 75 73 - - - - - - - 
F-U 76 73 77 71 - - - - - - 
W-L 77 76 76 77 74 - - - - - 
W-U 75 72 76 74 76 69 - - - - 
E-L 73 72 73 73 73 73 68 - - - 
E-U 73 71 74 72 73 69 68 67 - - 

C-G-L 77 76 76 77 76 76 73 73 72 - 
U-U 77 73 77 74 76 73 74 71 77 69 

Table 7. F1-Score of the SVM classifier using different combinations of the models on the 
SUBJ dataset. 

G-L G-U F-L F-U W-L W-U E-L E-U C-G-L U-U
G-L 87 - - - - - - - - - 
G-U 91 91 - - - - - - - - 
F-L 97 98 97 - - - - - - - 
F-U 92 91 98 91 - - - - - - 
W-L 87 91 97 92 75 - - - - - 
W-U 92 91 98 91 90 90 - - - - 
E-L 90 91 97 92 89 90 90 - - - 
E-U 91 92 98 92 91 92 91 91 - - 

C-G-L 88 92 97 92 87 91 91 91 87 - 
U-U 95 95 99 95 95 95 93 94 95 95 

Table 8. F1-Score of  the SVM classifier using different combinations of the models on the 
TREC dataset. 

G-L G-U F-L F-U W-L W-U E-L E-U C-G-L U-U
G-L 88 - - - - - - - - - 
G-U 80 89 - - - - - - - - 
F-L 88 79 62 - - - - - - - 
F-U 85 83 81 80 - - - - - - 
W-L 87 79 66 79 56 - - - - - 
W-U 88 81 88 85 88 88 - - - - 
E-L 90 91 90 90 90 91 92 - - - 
E-U 91 90 90 91 90 90 93 94 - - 

C-G-L 91 78 84 84 81 87 89 90 80 - 
U-U 94 92 93 94 93 94 92 92 94 95 
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Table 9. F1-Score of  the SVM classifier using different combinations of the models on the 
IMDB dataset. 

G-L G-U F-L F-U W-L W-U E-L E-U C-G-L U-U
G-L 92 - - - - - - - - - 
G-U 92 88 - - - - - - - - 
F-L 92 91 90 - - - - - - - 
F-U 92 89 91 88 - - - - - - 
W-L 92 91 91 91 90 - - - - - 
W-U 92 90 91 90 91 90 - - - - 
E-L 92 89 91 91 90 91 90 - - - 
E-U 91 90 91 90 91 91 90 89 - - 

C-G-L 92 90 91 90 91 91 91 90 87 - 
U-U 93 91 92 91 92 92 91 91 92 91 

Table 10. Length of the feature set for each pair of models 

G-L G-U F-L F-U W-L W-U E-L E-U C-G-L U-U
G-L 600 - - - - - - - - - 
G-U 600 600 - - - - - - - - 
F-L 600 600 600 - - - - - - - 
F-U 600 600 600 600 - - - - - - 
W-L 600 600 600 600 600 - - - - - 
W-U 600 600 600 600 600 600 - - - - 
E-L 1324 1324 1324 1324 1324 1324 1024 - - - 
E-U 1324 1324 1324 1324 1324 1324 2048 1024 - - 

C-G-L 600 600 600 600 600 600 1324 1324 600 - 
U-U 812 812 812 812 812 812 1536 1536 812 512 

Looking at these tables, one can observe the following: 
• A combined local and universal model, in which both models are based on

the same embedding algorithm, mostly resulted in higher F1-Score than each 
standalone model.  In most cases, combinations of different embedding algo-
rithms resulted in the highest F1-Score.   

• Considering the combination types (i.e. Local-Local, Local-Universal and
Universal-Universal), the combination of type Local-Universal mostly re-
sulted in higher F1-Score than other combinations.

• Considering the F1-Score for each individual model (the diagonal of the above
tables), the average improvement of combining the model with either local or
universal source of knowledge and integrating different word embedding al-
gorithms over all five datasets is 1.4%, 1.2%, 5.66%, 2.48%, 9.73%, 2.17%,
1.26%, 1%, 3.77%, and 2.26% for G-L,  G-U,  F-L,  F-U,  W-L,  W-U,  E-L,
E-U,  C-G-L, and  U-U respectively.

• Also, considering the F1-Score for each individual model (the diagonal of the
above tables), the average improvement of combining the model with the sec-
ond source of knowledge (i.e. if the source of knowledge for the model is local,
the second source of knowledge should be the universal source and vise versa)
and integrating different word embedding algorithms over all five datasets is
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1.52%, 1.12%, 6.28%, 3.12%, 10.44%, 2.64%, 1.28%, 1.2%, 3.96%, and 2.8% 
for G-L,  G-U,  F-L,  F-U,  W-L,  W-U,  E-L,  E-U,  C-G-L, and  U-U respec-
tively.  

• The last two observations show that integrating different word embedding al-
gorithms will produce higher F1-Score if each algorithm of a pair is trained on
a different source of knowledge, i.e. one is trained on a local and the other one
is trained on a universal source of knowledge.

5 Conclusion 

In this paper we identified a phenomenon, termed inadequacy of knowledge, which 
manifests in many real-world document classification problems, meaning that  the dis-
tribution of the repository data and the real-world distribution of classes are rarely 
equivalent. We also showed that the out-of-vocabulary problem could be considered a 
subtype of this phenomenon. In this paper, first we addressed the issue of out-of-vo-
cabulary caused by the GloVe embedding algorithm, by training this algorithm on a tri-
gram’ed version of the dataset; a solution which we called C-GloVe. Experimental re-
sults on C-GloVe and GloVe showed that the performance of the SVM classifier when 
C-GloVe is used for generating the samples’ models is mostly higher than when GloVe
is used, especially when the size of the training set is small. Also, to mitigate the IoK
problem, we proposed to combine local and universal sources of knowledge and to
integrate different word embedding algorithms. Our Experiments showed that a com-
bined model always resulted in higher performance than both a standalone source of
knowledge and a standalone word embedding algorithm. It’s also observed that inte-
grating different word embedding algorithms will produce higher F1-Score if each al-
gorithm of a pair is trained on a different source of knowledge, i.e. one is trained on a
local and the other one is trained on a universal source of knowledge. In this way, the
experimental results showed average of 1.52%, 1.12%, 6.28%, 3.12%, 10.44%, 2.64%,
1.28%, 1.2%, 3.96%, and 2.8% improvement for G-L,  G-U,  F-L,  F-U,  W-L,  W-U,
E-L,  E-U,  C-G-L, and  U-U respectively. In these terms, the last letters L and U mean
if an embedding algorithm is trained on a Local or a Universal source of knowledge
respectively. Also, G, F, W, C-G, E and U stand for GloVe, Fast-Text, Word2Vec, C-
GloVe, ELMO and Universal sentence encoder algorithms respectively.
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Abstract. Feature engineering is one of the important factors to pro-
duce an e↵ective prediction model using a machine learning method.
For transaction fraud detection models, their feature engineering was
often manual based on expertise and experience, which is not only time-
consuming and laborious but also loses many predictive cross features
since the transaction data is discrete, sparse and high-dimensional. There-
fore, it is necessary and meaningful to automatically learn cross features
from complex data. In this paper, we propose an embedding-based hy-
brid method to learn cross features for fraud prediction. With the design
of embedding, we use DNN (Deep Neural Network) to automatically
learn the implicit cross features and GBDT (Gradient Boosting Decision
Tree) to extract the explicit cross features from the raw data. We then
combine them into a new feature vector as the input of LR (Logistic
Regression) and finally produce a prediction model for transaction fraud
detection. A set of experiments on two real transaction datasets show
that our method outperforms nine state-of-the-art ones.

Keywords: Finance · Transaction fraud detection · Machine learning
· Feature mining · Deep Neural Network · Gradient Boosting Decision
Tree

1 Introduction

E-commerce and mobile finance have boosted the economic development and
brought convenience to people. However, transaction fraud events occur fre-
quently and result in a lot of losses for companies or individuals 1. Therefore, it
is essential to establish an online monitoring system in order to judge the risk
of every transaction and prevent the occurrence of high-risk transactions.

The current popular methods are data-driven rules that can utilize supervised
learning models to learn the features from all previous labelled transactions, and
then mathematically determine the possibility of a standard fraudulent trans-
action. These models including Logistic Regression (LR) [1], Support Vector
Machine (SVM) [2], and Random Forests (RF) [3] are often used. However,

1 David Roberson. The Nilson Report on Historical Non-Cash Payment.
(2016/10/07).https://nilsonreport.com/upload/content promo/The Nilson Report 10-
172016.pdf



these early models only used the original transaction information as their input,
such as amount, location, and equipment number. It is challenging for them to
model highly variable and heterogeneous patterns since they ofen require costly
development, maintenance, and revision of handcrafted features. At present, a
relatively e↵ective method is to construct some aggregated statistical features of
users within a time interval so as to describe users’ spending habits [4].

Such a feature construction is still not enough, because it only depicts the
spending habits of a user at the individual level. Some cross features are also
necessary to more accurately distinguish legal and fraud transactions. Cross
features refer to the cartesian product of categorical features. For example, the
two raw feature fields (age, education background) can be transformed to several
2-order cross features after cartesian product between di↵erent feature values,
e.g. (old people, junior high school graduate degree) and (youth, master degree).
These cross features are very useful and distinctive accordding to data analysis
for di↵erent consumer groups. However, it is hard for those manual designs to
capture the subtle, high-order and predictive cross featuress hidden behind fraud
behaviours, especially in a high-dimensional feature space. Moreover, there is no
doubt that this is a time-consuming and laborious operation, relying on a large
amount of prior knowledge. Without a proper understanding of the business, this
is likely to backfire, since it possibly introduces a lot of irrelevant noise features
so that the performance of the model becomes worse.

In recent years, Neural Networks (NN) have achieved remarkable success in
many fields such as computer vision, speech, and natural language processing [5].
Literature [1] shows that deep neural networks (DNN) are of a good performance
for fraud detection under a feasible number of parameters. These successful
applications have established the e↵ectiveness of DNN-based feature learning
that involves pattern extraction from unstructured tabular data collected in
transactions logs [6]. One of the biggest advantages of NN are that the specific
representation is calculated autonomously and representation or feature learning
also improves the capacity of a model to extract unseen patterns that are not
well represented in the raw data, which is a major problem for other data-driven
models [6].

Deep learning is more like a black box, however, due to its highly non-linear
properties. We hardly understand the meaning of the parameters in a NN and
its importance with very solid basis of statistical hypothesis [7]. For the problem
of fraud detection, it is not completely enough to ensure that these feature rep-
resentation can reveal the correlation between the raw feature and the target.
Moreover, we believe it is crucial to supercharge a fraud detection system with
informative reasons like the cross feature (age, education background). Thus the
following questions are important: (1) How to e↵ectively extract those explicit
cross features so as to distinguish legal and fraud transactions more accurately?
(2) How to estimate feature-label score in an explainable way? (3) How to inte-
grate these cross features with the powerful NN?

Our Contribution : We combine the strong feature representation ability
of NN with the tree-based model that can automatically extract cross features.
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Therefore, we can get interpretable higher-order feature representations with
strong predictability. In the gradient boosted decision trees (GBDT) part of our
hybrid model, we use the stage-wise learning to extract richer and more complex
features and introduce a multi-level architecture. There is a factorization ma-
chine (FM) [8] over the GBDT [9] to learn higher order and deeper interpretable
cross features, integrating the attention mechanism to make feature presentation
more robust.

Additionally, we face a huge search space that makes model training time-
consuming extremely. For example, in our experiment on Ant dataset (see Sec-
tion 3), every record contains 299 fields (attributes) and then can be encoded
into more than 1 millon features. Obviously, it is very di�cult to process these
high-dimensional and high-volume data from the perspectives of the usefulness
of features and the feasibility of computation. Thus the challenge relies on how
to encode and represent cross features instead of the traditional approach such
as one-hot encoding [8].

The embedding design is popular in natural language processing and NN to
learn word vectors [10], and it is also applicable to other entities apart from
words [11] such as users and items [12]. We use the embedding design to map
discrete, sparse and high-dimensional categorical features into low-dimensional
dense vectors, aiming to learn cross features from raw data e↵ectively. It provides
us an e�cient parameter estimation for the sparse and high-dimensional data
and guarantees the e↵ectiveness of capturing the relations among features in a
low feature vector space.

In this paper we propose a deep learning based transaction fraud detection
approach for the high-dimensional and sparse data generated in electronic trans-
actions. The embedding-based network combines two components: one is DNN
that is based on embedding representations of categorical features and can learn
non-linear, high-order cross features, and another is GBDT that can mine those
interpretable and explicit cross features. High order features are learned by FM.
An attention network is also incorporated in order to learn robust representa-
tions. The proposed method is a supervised end-to-end classification model. The
experiments on two real financial datasets demonstrate a good performance.

2 Hybrid Model

In this section, we describe the overall structure of our hybrid model. As depicted
in Fig.1, it consists of two parts: the GBDT part and the DNN part. They are
followed by a final layer which combines the outputs from the two parts. The
final estimated target of the hybrid model is:

ŷ = ⇢

⇣
_
yGBDT +

_
yDNN

⌘
(1)

where
_
yDNN and

_
yGBDT are the outputs of DNN and GBDT parts, respectively.

⇢ is the sigmoid function.
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Fig. 1: The structure of our Hybrid model

2.1 Embedding layer

We assume that our data D = {(xi, yi)} consists of n labelled samples. Each
sample has m features, xi 2 Rm, and label yi 2 {0, 1} indicates whether
a transaction is fraudulent. The raw input feature can be classified into two
types: continuous features (e.g., age, transaction amount) and categorical fea-
tures (e.g., gender, transaction location). Continuous features can be input into
the model directly. Typically, each categorical feature is encoded as a group of
one-hot vectors. For example, one transaction record [user id = a101, gender =
male, ..., organization = tju, city = shanghai] is usually transformed into a
high-dimensional space feature vector via the field-aware one-hot encoding:

[0, 1, 0, 0, ..., 0, 0]| {z }
user id

[0, 1]|{z}
gender

... [0, 1, 0, ..., 0, 0]| {z }
organization

[0, 0, 1, ..., 0, 0]| {z }
city

Obviously, the above multi-field binary vector space is huge. Therefore, we
employ the embedding layer to project them into a dense, low-dimensional real-
value feature space:

ei = Wembed,ixi (2)

where ei 2 Rne is the embedding vector of the i-th field binary input xi 2 Rm,
and Wembed,i 2 Rne⇥nv is the parameter matrix of the corresponding embedding
layer which will be optimized during the training process as well as the whole
network. ne and nv are the embedding size and vocabulary size, respectively.

The specific transformation process is shown in Fig.1. Actually, we only need
to consider the embedding vectors for the non-zero features in the multi-field
binary input. This can greatly reduce computation cost.

The raw high-dimensional and sparse input features are finally transformed
into a dense concatenated vector:

e = [e1, e2, ..., em] (3)
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where m denotes the number of fields in the raw feature space. It is worth
mentioning that even though the lengths of one-hot vectors for di↵erent fields
are di↵erent, the lengths of their embedding vectors are the same: ne ⇥m.

2.2 GBDT Part

The prior work by Facebook [13] feeds the leaf nodes of GBDT into an LR
model. The cross features extracted by GBDT have the following four advan-
tages besides of saving a lot of manual work: (1) high-order and unobservable,
(2) interpretable and explicit by nature, (3) strongly predictive for the last pre-
diction under the mechanism of decision tree, and (4) for continuous features,
the optimal segmentation point can be selected automatically and the nonlin-
ear relation is introduced at the same time. It avoids a lot of work that would
be done with prior knowledge. For example, the feature (age), as a continuous
feature, is divided into the young and the old after data statistics and analysis.

We denote the structure of a decision tree model as Q, and the i-th leaf node
as Ni. Fig.2 shows the structure of decision trees: each decision node in white
refers to [xt < vt] or [xt = vt] that divides samples into two part. For continu-
ous features (e.g., age), a decision node chooses the most appropriate threshold
[14] vt to split the features into [xt < vt] and [xt � vt]. For categorical features,
it determines whether the feature equals to a certain value, e.g., [xt = vt] or
[xt 6= vt]. Each leaf node has a score !i, representing the prediction value of the
corresponding decision tree.

Fig. 2: The structure of GBDT (with two subtrees).

A path from the root node to a leaf node represents a decision rule on the
splitting features along the path and also indicates a cross feature. For exam-
ple, the leaf node N2 in Fig.2 represents cross feature [x0 < v0] & [x2 � v2] &
[x5 6= v5].

Every leaf node categorize samples as much as possible, therefore, tree-based
models are inherently self-explanatory and a path from the root to a leaf node
can be considered as the most prominent cross feature for prediction under this
splitting mechanism.
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A single decision tree with complex data generally falls into the problem of
insu�cient generalization. GBDT can settle this problem in an ensemble fashion.
Specifically, GBDT uses a boosting strategy to train multiple trees iteratively
and minimize the loss in each iteration. In each iteration, the ensemble trees give
each sample a prediction, which is the sum of the scores of all created subtrees.
Then all samples are re-labelled with the corresponding di↵erence between the
prediction and the original label, which can pay more attention to those samples
with poor predictions. Thus, a new decision tree trained in the next iteration can
try to correct the previous error. As a result, GBDT can make more accurate
predictions [9]. Formally, after the t-th round iteration, the objective function is
as follows:

`
t =

nX

i=1

`
�
yi, y

t�1
i + ft(xi)

�
(4)

where the subtree generated in the t-th iteration is represented as a function
ft 2 � and � =

�
f (x) = !Q(x)

 
. Q(x) represents the tree structure that maps

a sample x to the index of the corresponding leaf node, and the score of the
decision tree is !. The final prediction function is in the form of an additive
function with a learning rate ⌘t:

ŷ =
TX

t=1

⌘t·ft (x) (5)

Therefore, when a new tree is built, the remaining features are used to optimize
the prediction results and seek more explicit cross features for a better final
prediction. Thus it is reasonable to think that all leaf nodes in GBDT trees
represent more useful and in-depth cross features.

In our application, we employ the GBDT to learned not only some sim-
ple cross-over features such as (Transaction Completed Time=03:00a.m.; Trans-
action amount=10k$), also learned such characteristics as (Transaction Com-
pleted Location=Kunming, Account Registration Location=Shanghai, Transac-
tion Amount=10k$, Account Balance = 10.5k$, Merchant Tag=Virtual&electronics),
which is complex and di�cult to construct manually. But they are helpful for
evaluating a risky transaction.

Use GBDT to Extract Explicit Cross Features Therefore, the speciality
of this design is that every single tree can be considered as a categorical feature
field, and the index value of the leaf node in which a sample falls can be taken as
the feature value of the sample. Given a sample x, iteratively generating multiple
decision trees means multiple such categorical features, and thus all of them can
form a new feature vector :

q = [Q1 (x) , Q2 (x) , Q3 (x) , . . . , QT (x)]

Normally, we express q as a binary vector transformed by the one-hot encoding.
For example, as depicted in Fig.2, if the sample x falls into the third leaf node
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of the first tree and into the first leaf node of the second tree respectively, then
the corresponding new feature vector is:

[0, 0, 1, 0, 0| {z }
Q1

1, 0, 0, 0| {z }
Q2

, . . . , . . . ...| {z }
QT

]

Use Attention Net to Identify Key Cross Features and Use FM to

Mine More Cross Features Using new features to fit a linear model is to learn
the weights of these cross features or rules of dividing samples essentially. He et
al. [13] built a model in this way and took a global weighting mechanism. The
newly transformed features are directly put into LR for prediction. However, the
contribution of di↵erent cross features to the final prediction should be di↵erent.
Therefore, their method can be improve since the weights of these cross features
are all identical in their method. A cross feature with a high predictive power
should be assigned a higher weight before it is fed into LR.

We use Attention Network [15] to learn an attention score for each embedding
field of the whole embedding vector in order to select those useful cross features.
Let q = {q1, q2, . . . , qn}, qi 2 R1⇥ne , be a set of features. First of all, we feed each
element of this embedding vector into a fully connected layer, which is followed
by a ReLU layer for activations. The bias term is dropped for simplcity. The
output of the activation function is a set of learnt attention activations:

C = {c1, c2, ..., cT } , ci = ReLU (qiWattention) (6)

where qi 2 R1⇥ne , ci 2 R1⇥ne , and Wattention 2 Rne⇥ne denotes the weight
matrix of the hidden layer.

Secondly, we choose softmax as the normalizaion operation across all the
elements of the embedding vector, computing a set of attention scores S =
{s1, s2, ..., sN}:

si =
⇥
si

1
, si

2
, si

3
, ..., si

D
⇤
, si

d =
exp

�
c
d
i

�

neP
i=1

exp(cdi )
(7)

where ci
d is the d-th entry of ci.

Thirdly, the calculated attention scores S are multiplied by the corresponding
original embedding vector q and then generate a new set of weighted features:
O = {o1, o2, ..., oT }, where

oi = qi · si (8)

The above is the attention mechanism to capture the di↵erent importance of
cross features for prediction by assigning attention scores for each element of the
embedding vector. In addition, since these cross features almost are low-order,
we still need to explore the cross features in a higher level. Next step, we feed
these new features into FM to get higher-level cross features.

As shown in Fig.1, real-valued embedding vectors are transformaed into a
new feature vector O 2 RT , where T denotes the numbers of trees.
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As a linear model, FM is often used to learn the pair-wise cross features. This
limits its ability of feature representation. With transformed input of GBDT, it
is feasible for FM to learn non-linear relationships and complex patterns in real-
world transaction data. Then the FM layer learns pari-wise cross features in the
way of inner product of each pair of embedding vectors [8]:

ŷGBDT = w0 +
nX

i=1

wioi +
nX

i=1

nX

j=i+1

< Vi, Vj > oioj (9)

where ŷGBDT is the output of the GBDT part, w0 is the global bias, and wi is the
weight of the one-order features transformed by GBDT. < Vi, Vj > denotes the
pair-wise (2-order) cross features, where Vi 2 Rne and ne is the size of embedding
vectors. These 2-order factorized interactions represents higher level of implicit
cross features.

2.3 DNN Part

In the DNN part, its inputs are the embedding vectors transformed from the
original features. As shown in Fig.1, the dense field-aware embedding vectors are
fed into the hidden layers in order to capture the implicit and highly nonlinear
cross features.

We denote an embedding vector as e = [e1, e2, ..., em]. Then the output of
each fully-connected layer is:

x1 = ↵(W 1
e+ b1) (10)

xl = ↵(W l
xl�1 + bl) (11)

ŷDNN = ↵(WL
xL�1 + bL) (12)

↵ is an activation function such as ReLU and Tanh. l is the layer depth. xl and
xl�1 are the outputs of the l-th and (l � 1)-th hidden layers, respectively. bl is
the bias of the l-th layer. Wl is the parameter matrix for the l-th layer. L is the
number of hidden layers.

2.4 Combination layer

GBDT part and DNN part can be complementary since the former focuses on
explicit cross features and the latter on implicit cross features. Our hybrid model
combine the two parts. The final estimated target of the hybrid model is:

p = ⇢

⇣
_
yGBDT +

_
yDNN

⌘
(13)

where
_
yDNN and

_
yGBDT are the outputs of DNN part and GBDT part, respec-

tively. ⇢ is the sigmoid function. The objective function is the sum of the loss
function and the regularization term:

` = � 1

N

NX

i=1

yi log (pi) + (1� yi) log (1� pi) + �

X

t

kwlk2 (14)
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where pi is the prediction probability of the i-th sample computed by Equa-
tion 13, N is the number of all the trained samples, � is the L2 regularization
parameter, and w denotes all the parameters in the model.

3 Expriment and Result

The main contribution of our work is to produce a predication model for fraud
detection in e-commerce based on the above cross features in a huge, multiple-
discrete and sparse feature space. In this section, we illustrate a series of exper-
iments done on a public dataset and a private one, respectively. We answer the
following questions:

1. Q1: whether GBDT part has a positive e↵ect on the overall performance of
the model?

2. Q2: Can our hybrid model get a competitive performance compared with
the state-of-the-art supervised learning methods of fraud detection?

3. Q3: How do hyper-parameter settings a↵ect the performance of the model?

3.1 Datasets

We conduct experiments in the following two data sets and Table 1 shows the
statistics of the two data sets. We divide the data set into training set and test
set in a ratio of 8 to 2. Note that these data have been desensitized.

Table 1: Statistics of the evaluation datasets

Datasets Instances Fields features(sparse)

Ant 0.99M 299 1.1M

Bank 5.12M 64 170K

1. Ant Financial Service Group Dataset2: Ant Financial Service Group is a
company that provides online payment services. This open dataset contains
about one million labelled transaction records and each record has 299 fea-
tures. For simplicity, we call it Ant dataset.

2. Dataset from a financial company in China: Through cooperation with the
company, the company provides us about 5 million transaction records in-
cluding user demographics, transaction behaviour records, and context fea-
tures. The dataset is mostly composed of categorical features. For simplicity,
we call it Bank dataset.

2 ATEC ant developer competition: https://dc.cloud.alipay.com/
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3.2 Expriment Settings

Evaluation Metrics We use four common evaluation indicators: recall, pre-
cision, F1 score and AUC. Positive corresponds to Fraud cases and Negative
corresponds to legal ones.

Sampling strategy Fraud detection is a typical sample class imbalance prob-
lem [1][16], a high degree of imbalance between the minority class (fraudulent
transactions) and the majority class (legal transactions). We use a simple down-
sampling method [17] to obtain the samples from the majority class, so that the
ratio of positive and negative samples is about 20:1.

Model Comparison We compare our model with the most commonly used
machine learning methods in the industry such as LR, SVM, FM and DNN.
Two tree-based models are also used: RF and GBDT. GBDT2LR, GBDT+NN,
and Deepfm are also used. For those classical machine learning algorithms, the
state-of-the-art feature engineering [4] be performed first and then input them
to the model for the binary classification. All models are fine-tuned using grid
search. We employ equivalent hyper-parameter searches for all methods.

1. embedding2DNN: We use embedding vector as its input in order to testify
whether our GBDT part can improve the overall performance. We set the
dimension of the embedding vector from 5 to 30, which is the same as the
hybrid model. As for other parameters in DNN part: the number of hidden
layers is from 1 to 4, and the number of neural nodes in each layer is from
32 to 256. The learning rate is from 0.0001 to 0.001. For each parameter, we
set up early stopping to avoid overfitting. We choose ReLU as the activation
function. For fairness, our model and other deep models share the same
settings with grid search.

2. GBDT2LR[13]: We first train a GBDT on the whole training dataset using
LightGBM, then convert a real-valued feature vector into a binary-valued
vector and lastly feed them into LR for final prediction without embedding.

3. GBDT+NN: We remove the upper part of the GBDT part of our hybrid
model. The purpose of this comparison model is to verify that FM and
attention mechanisms extract richer features and improve the performance
of overall model, rather than redundant structures.

4. Deepfm [18]: This model is the state-of-the-art embedding-based model. It
applies DNN to learn cross features automatically and uses FM to learn low-
order cross features. However, the cross features generated by this model lack
a high-level interpretability. Therefore, the aim of comparing this method
with ours is to show the usefulness of high-level interpretable cross features.

5. Our Hybrid Model: Our hybrid model is basically implemented with tensorflow[19],
and the GBDT part is implemented via LightGBM. For the data preprocess-
ing, the continuous features of the original features is normalized through
mean removal and variance scaling. For the optimization method, we apply
the Adam [20] with a mini-batch size of 2048, and Batch normalization is
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also used for the optimization of deep networks. We use L2 Regularization
to avoid overfitting of deep networks.

3.3 Performance Comparision

Table 1 stand for the best results on testing data after the hyperparameter
tuning. We use cross-validation on training data and the parameters with the
best performance are selected. For Q1, we want to figure out whether the GBDT
part and FM layer can improve the overall performance, respectively. Therefore,
we compare our model with embedding2DNN and GBDT+NN. As shown in
Table 2, the predictions based on these implicit features are quite competitive
but not as good as our hybrid model. Furthermore, the GBDT+DNN model
without FM layer and attention mechanism yields much better results than
the embedding2DNN model, but less than our hybrid model since our model
uses the FM layer. In summary, explainable and explicit cross features

transformed by GBDT are helpful for prediction in a high-dimensional

and sparse feature space. The FM layer and attention does further

enrich the representation of these cross features.

Table 2: Performance Comparison on Ant and Bank respectively

Ant Bank

R(%) P (%) F1(%) AUC(%) R(%) P (%) F1(%) AUC(%)

LR 53.3 41.3 46.5 66.1 62.1 71.3 66.3 70.1

SVM 59.3 65.1 62.1 41.6 73.1 71.4 67.2 60.3

FM 67.6 42.4 52.1 55.3 73.6 39.3 51.2 67.2

RF 74.5 70.3 72.3 70.3 87.3 70.9 78.2 77.1

GBDT 74.4 76.1 75.2 71.0 80.5 69.3 74.5 74.9

embedding2DNN 72.1 78.5 75.2 66.1 86.0 49.7 63.0 65.1

GBDT2LR 76.9 74.6 75.7 70.8 78.1 70.0 73.8 76.3

Deepfm 73.5 78.9 76.1 72.9 92.4 78.8 85.6 79.0

GBDT+NN 77.8 83.2 80.7 73.4 92.1 80.7 86.0 79.6

Our Model 78.5 84.1 81.2 73.8 93.2 83.6 88.1 80.1

Q2 is that whether our method is competitive compared to the commonly
used supervised learning methods for fraud detection. As shown in Table 2, our
model has achieved the best results. Compared with Deepfm that is the state-
of-the-art embedding-based model to learn cross features, our model achieves a
better performance on both Ant dataset and Bank dataset. Meanwhile, we have
the following observations:
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We classified the representarion of cross features into four types: high-order,
low-order, explicit and implicit. The more types are considered, the better per-
formance is obtained for a model. Learning more comprehensive cross features
can lead to more abundant feature representation and more accurate predictions.
This observation is from the fact that FM (which only models low-order cross fea-
tures explicitly) and DNN (which only models high-order cross features implic-
itly) obtain lower performance than GBDT+DNN and our Hybrid model (since
GBDT+DNN and Hybrid model can learn not only implicit and explicit cross
features but also extract high-order and low-order ones). The features learned
by Deepfm include low-order and high-order ones, but all are implicit and unex-
plained. Obviously, the performance of Deepfm is lower than GBDT+DNN and
ours.

3.4 Hyper-Parameter Study (Q3)

In this section, we review the e↵ects of di↵erent hyper-parameter settings to the
performance of our hybrid model.

Hyper-Parameter in DNN part For the DNN part, hyper parameters in-
cludes (1) activation functions; (2) the number of neurons per layer; and (3) the
number of hidden layers.

(a) Activation units. (b) Number of neurons. (c) Number of layers.

Fig. 3: F1 Scores comparison of di↵erent hyper-parameters for DNN part

Activation Function: Activation functions play an important role in learn-
ing and understanding the complex and non-linear functions. We use four dif-
ferent activation functions including sigmoid, tanh, identity, and ReLU to figure
out which activation function works best. As shown in Fig.3 (a), ReLU is best
for the DNN part.

The number of neurons per layer: When increasing the number of neu-
rons per layer and keeping the other settings unchanged, we find the following
phenomenon, as shown in 3 (b): for the performance on the Ant dataset, the
generalization ability of our model is improved gradually. However, on the Bank
dataset, setting 40 neurons per layer would bring the performance to the peak,
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but the performance gradually declined after that. The reason is that the charac-
teristics of the two data sets are di↵erent: the data structure of the Ant dataset
is more complex than that of the Bank dataset. The increased number of neurons
per layer satisfies the requirement of Ant dataset for more powerful expression
and represents more complex dependencies. But for the Bank dataset, it is a
step towards overfitting.

The number of hidden layers: Fig.3 (c) shows the impact of the number
of hidden layers. The performance changes on the two datasets are quite similar.
The performance of our model is enhanced with the the increasing of depth of the
network. However, when the network depth is greater than 3, the performance
of the model decreases. Therefore, 3 is a more suitable setting for the depth of
the neural network.

(a) Number of leaves. (b) Number of trees. (c) Embedding Size

Fig. 4: F1 Scores comparison of di↵erent hyper-parameters for the GBDT part

Hyper-Parameters in GBDT part In the GBDT part, we measure the
impact of di↵erent hyper-parameters in GBDT by the predictive results of the
whole hybrid model, including: (1) the number of leaves in each decision tree,
(2) the number of the tree, and (3) the embedding size. We conduct experiments
by using the best settings for the DNN part while changing the settings for the
GBDT part.

The number of leaves in each decision tree: Adding the number of
leaves in each tree means enriching the information contained in the newly trans-
formed features, but meanwhile make the new feature vector more sparse. The
number of leaves in each decision tree has a huge impact on overall performance,
as shown in Fig.4(a): the di↵erence between the best and worst performance on
the Bank dataset (resp. the Ant dataset) is eight percentage points (resp. five per-
centage points). Di↵erent tree structures greatly a↵ect how we get information
from the original data through the tree. Therefore, this is a key hyper-parameter
that determines the overall performance.

The number of the tree: The number of trees in the GBDT part represents
how many new feature fields are transformed by GBDT and how much predictive
information are extracted from data. From Fig.4(b), we can see that as the
number increases, the performance on Ant dataset slightly increases. Using a
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small learning rate with a large number of trees can enhance the accuracy slightly.
However, it has to spend a large amount of time. For the performance on Bank
dataset, when the tree number exceeds the optimal setting (300), the F1 Score
drops sharply, which should su↵er from the overfitting problem.

Impact of Embedding Size We set four di↵erent values for the embed-
ding size. The results are shown in Fig.4(c). It has a huge impact to our hybrid
model. Expanding the embedding size, the model has a more powerful repre-
sentation to learn cross features. However, a too long embedding size possibly
causes overfitting and lows the performance of the model.

4 Conclusion

In this paper, we propose an embedding-based hybrid method to solve the pre-
diction problem in the field of transaction fraud detection. Our method makes
full use of the e↵ectiveness of the embedding-based design, the strong general-
ization ability of neural networks, and the explainability of tree-based models in
order to learn various types of cross features. It is good at dealing with those
high-dimensional sparse electronic transaction data. To the best of our knowl-
edge, we first propose this hybrid method for the transaction fraud detection
and obtain a good performance.
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Abstract. Predictive maintenance has evolved from a vision to reality
for several industries. Notwithstanding, there is not yet a clear view on
the behavior of the algorithmic tools proposed. The aim of this work
is to fill this gap and perform an insightful comparison and sensitivity
analysis of the main representatives for event-based predictive mainte-
nance, which typically rely on pattern mining and machine learning. We
provide a publicly available environment to compare techniques and we
perform extensive experiments. The results of our work show that fine
tuning is required and judicious feature generation and selection are two
important aspects in efficiently predicting faults.

Keywords: predictive maintenance, sequential pattern mining, multiple
instance learning, Industry 4.0

1 Introduction

The key goal of Industry 4.0 is towards personalized products, zero defects and
breakdowns along with lot size one. Not surprisingly, it has altered the daily
operation of factories, something that is commonly referred to as the fourth
industrial revolution [1].

Smart factories come with several features. Their cornerstone is data col-
lection and analysis to be employed at different levels and for complementary
objectives: from reducing operation expenses and equipment downtime through
predictive maintenance (PdM) to the support of new business models and after-
sales services. In this work, we focus on PdM, which involves continuous sensor-
based inspection managed by both reliability engineers and data scientists; the
latter are called to effectively apply proactive analytics.

According to a recent survey of 268 companies in Belgium, Germany and
the Netherlands3, PdM has departed from its early infancy and hype stages and
has been transformed into a powerful widely-spread technology that is capable
of yielding “tremenous” benefits. The above findings are supported by other

3 https://www.pwc.nl/nl/assets/documents/pwc-predictive-maintenance-beyond-the-
hype-40.pdf



surveys as well. For example, another survey predicts 11% growth in industry
due to AI-based applications, with PdM being the key one.4. Overall, the market
for PdM applications “is poised to grow from 2.2B in 2017 to 10.9B US dollars
by 2022, a 39% annual growth rate.5 In addition, PdM is supported by and has
attracted great interest from numerous big IT vendors, such as SAP, Siemens
and Microsoft.

Broadly, PdM can be either model-driven or data-driven. In the former case,
the maintenance prediction is based on expert knowledge captured in the form
of mathematical equations or rules derived by experts. In practice, such an ap-
proach is applicable to small-scale static systems only, as reported in [14]. In
the latter case, events or logs are subject to intensive processing in order to au-
tomatically derive patterns of machine failure and then leverage such patterns
in order to plan or advise on maintenance actions in a timely manner before
a failure occurs but not much earlier, e.g., [10,14,6]. Event- or log-based PdM
solutions rely on applied data mining concepts, and more specifically on pattern
mining, feature selection and machine learning [2]. The main assumption is that
equipment failures are preceded by patterns, the early detection of which can
be leveraged by sophisticated PdM techniques. The solutions can be regarded
as application independent higher-level methodologies consisting of a series of
techniques, as explained hereafter.

The contribution of this work is threefold: (i) to decompose state-of-the-art
data-driven PdM methodologies into their main building blocks; (ii) to develop
a tool that can simulate realistic settings, where the relevant events are a small
minority in all reported events (as, for instance, typically occurs in aviation in-
dustry [10]), in order to assess the behavior of each methodology in a repeatable,
controllable and configurable manner; and (iii) to compare existing methodolo-
gies and perform insightful sensitivity analysis regarding the main parameters
of each methodology under investigation.

The remainder of this paper is structured as follows. In the next section,
we provide a concise overview of data-driven predictive maintenance. Section
3 elaborates on the main methodologies and the techniques they employ. In
Sections 4 and 5, we describe the setting emulating a real industrial environment
and we conduct our thorough experiments. We conclude in Section 6.

2 Related Work

Data-driven techniques, where the data refer to past events, commonly in the
form of log entries, are widely used in PdM. One such approach applied to avia-
tion industry is presented in [10], where past events (i.e. post-flight logs) are used
to predict a specific target event (i.e., fault). The proposed approach penalizes
rare (more rare than the target event) and frequent events (implicitly perform-
ing feature selection) and amplifies the strength of the events closer to the target

4 https://www.elektroniknet.de/international/ai-achieves-over-11-percent-growth-in-
industry-158062.html

5 https://iot-analytics.com/top-20-companies-enabling-predictive-maintenance/
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event, using a Multi-Instance Learning (MIL) technique. Such preprocessed log
data form the training set, which is then fed into a regression analysis algorithm
for the prediction of the target event. In our work, we further elaborate on this
approach as a key representative of the state-of-the-art; further technical details
are provided in Section 3.2.

Another event-based approach is presented in [13], where historical and ser-
vice data from a ticketing system are combined with domain knowledge to train a
binary classifier for the prediction of a failure. As in the previous work, a feature
selection [4] and an event amplification technique (i.e. MIL) is used to enhance
the effectiveness of the SVM-based classifier. In [10] evidence is provided that
the work in [13] is less suitable in a real-world scenario with a sparse feature set
and rare interesting targeted events. Event-based analysis, based on event and
failure logs, is also performed in [14], where it is assumed that the system is ca-
pable of generating exceptions and error log entries that are inherently relevant
to significant failures. This work relies on pattern extraction and similarity be-
tween patterns preceding a failure, while emphasis is posed on feature selection.
We further discuss this technique in Section 3.3.

The work in [15] proposes a correlation-driven approach between different
sensor signals and fault events to guide the PdM process. This approach tries
to identify correlations between detected anomalies in different sensor signals,
which are mapped to specific faults. Here, we focus on log event processing.

Predicting a fault in the equipment is in-directly similar to estimating its
Remaining Useful Lifetime (RUL). The authors in [9] propose a RUL estima-
tion approach based on vibration analysis. Their approach uses domain experts
knowledge for the creation of a training set of health ranking of specific equip-
ment, which is used by a regression analysis approach for the estimation of RUL
of other equipment. A more general and domain-agnostic approach for the esti-
mation of the RUL is proposed in [8]. Data-driven PdM is also related to online
frequent episodes mining; research works [3] and [12] propose techniques in this
topic. A good overview of the the data-driven PdM is presented in [11].

3 Details of the state-of-the-art event-based PdM
methodologies

Life data analysis is a traditional process in the industry, which provides impor-
tant estimates about product life characteristics, such as reliability or probability
of failure at a specific time, the mean life and the failure rate of the product and
other useful statistical results. Fitting a statistical distribution (most commonly
the Weibull distribution) to life data from a representative sample of the prod-
ucts population, the process attempts to make predictions about the life of all
the products in the population. The effectiveness of the life data analysis, is
affected by the volume of the gathered life data for the product, the selected
lifetime distribution to fit the data and model the life of the product, and the
estimated parameters that will fit the distribution to the data. Although use-
ful to some degree, the life data analysis is attempting to use a single number
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Algorithm 1 Sequential pattern mining for PdM

procedure Pattern Extraction
nof ← number of failures
min support← α · nof, 0 < α ≤ 1
constraints← set constraints on the pattern period and the gap between events
Extract frequent sequential patterns given min support and constraints
Keep only the partners ending in the target event E1E2E3 . . . EnX
Result← ∅
for each subset S of E1E2E3 . . . En do

if support(S) ≤ (1 + ε) · support(E1E2E3 . . . EnX), ε ≥ 0 then
Result← Result

⋃
S

procedure Pattern Usage
Continuously check whether any pattern in Result applies

(e.g. Mean Time to Failure (MTTF)) to describe an entire lifetime distribution,
which can be misleading and may lead to poor business decisions especially when
a non-exponential lifetime distribution appears in reality. To overcome this pit-
fall, more versatile and powerful data-driven techniques, which are able to adapt
in dynamic environments, are progressively adopted.

3.1 Sequential pattern mining

A data-driven technique with a wide range of applications is the sequential pat-
tern mining (SPM). SPM consists of discovering useful patterns in the data, such
as frequent itemsets, associations, sequential rules, or periodic patterns. In PdM,
SPM can provide useful information about associations between fault events as
a sequence of minor faults or other events can potentially lead to a major failure.
Traditionally, SPM does not integrate the notion of time between the provided
associations [14]. However, there are research works like [7] that allow the spec-
ification of time constraints for the identification of the patterns, or works like
[3] and [12] that provide solutions for an extension of SPM for online processing
of temporal data sequences6.The combination of such techniques with Complex-
event processing (CEP) can predict failures in a variety of complex systems,
such as the ones encountered in the industry. In this work, we will examine the
prediction efficiency of a system that uses SPM with time constraints between
events. An outline is presented in Algorithm 1, where the main input parameters
consist of the constraints on the pattern period and the gap between events, the
α parameter, which sets the support threshold in relation to the occurrence of
faults in the training set, and ε, which keeps patterns not generating many false
alarms.

6 Open-source implementations are provided in libraries such as [5].
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3.2 Event-driven machine learning for PdM focusing on log
preprocessing

An advanced data-driven predictive maintenance approach is presented in [10].
The objective of this research work is to develop an alerting system that provides
early notifications to aviation engineers for upcoming aircraft failures, providing
the needed time for the maintenance actions. The aviation is a well-documented
field, as all the maintenance and flight data are systematically logged. Hence,
event-based techniques can leverage this special characteristic and provide effec-
tive predictive solutions. The main challenge is to cope with the large set of log
entries that are essentially irrelevant to the main failures.

In [10], the emphasis is placed on log preprocessing; therefore, we will refer
to this methodology as LPPdM . The post flight logs are partitioned in ranges
defined by the occurrences of the fault that PdM targets. These ranges are further
partitioned into time-segments, which may correspond to a day or to a single
usage of the equipment. The idea is that the segments that are closer to the end
of the range may contain fault events that are potentially indicative of the main
event. The goal is to learn a function that quantifies the risk of the targeted
failure occurring in the near future, given the events that precede it. Hence, a
sigmoid function is proposed, which maps higher values to the segments that are
closer to the target event. The steepness and shift of the sigmoid function are
configured to better map the expectation of the time before the target event at
which correlated events will start occurring. The segmented data in combination
with the risk quantification values are fed into a Random Forests algorithm as
a training set to form a regression problem, which is based on the minimization
of the mean squared error.

In order to increase the effectiveness of the approach standard preprocess-
ing techniques are applied: (1) Rare events (more rare than the target event),
are considered as extremely rare, hence they are removed to reduce the dimen-
sionality of the data. (2) Multiple occurrences of the same event in the same
segment can either be noise or may not provide useful information. Hence, mul-
tiple occurrences are shrank into a single one. (3) Most frequent events usually
do not contain significant information since they correspond to issues of minor
importance. A tf-idf (term-frequency - inverted document frequency) or a sim-
ple threshold-based approach can be used to remove most frequent events. (4)
Events of minor importance occur and appear in every segment until their un-
derlying cause is treated by the technical experts. Hence, the first occurrence of
events that occur in consecutive segments is maintained. (5) A statistical fea-
ture selection technique, based on the distance of the fault events with the target
event is applied, to filter out fault events, which are far from the target event.
Finally, to deal with the imbalance of the labels (given that the target event is
rare) and as several events appear shortly before the occurrence of the target
event, but only a small subset of them is related to the target event, the authors
use Multiple Instance Learning (MIL) bagging the events. A single bag contains
fault events of a single day. Using MIL, the data closer to the target event (a
threshold is specified), are over-sampled.
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aspect LPPdM [10] FSPdM [14]

event aggregation period between targeted
failures

fixed period

ML technique random forests random forests, XGBoost

features event type occurrence event type frequencies, statistics, rel-
evant event combinations and simi-
larities to failure patterns

feature selection implicit or explicit
through Wiebull distribu-
tion fitting

explicit through ReliefF/InfoGain

rare event pruning explicit implicit through pattern mining

risk quantification sigmoid function binary

Table 1. Main differences between the techniques in [10] and [14]

3.3 Event-driven machine learning focusing on feature selection

The PdM approach proposed in [14], although it is evaluated over a use case
of automated teller machines (ATMs), is general enough to be applied on any
industrial scenario, where error and failure logs are available. It follows a similar
rationale as [10], but implicitly assumes that the log types recorded are more
commonly related to the targeted failure (e.g., generated from software excep-
tions) and puts more emphasis on feature generation and selection. We will refer
to this approach as FSPdM . Its main drawback is that it cannot scale in the
number of event types that are present in the logs.

The authors propose a configurable approach for the creation of the training
and testing datasets and the formation of a binary classification problem. More
specifically, the dataset is divided into partitions (named Observation Windows
(OW)) and each OW is further divided into daily segments. Every OW, is fol-
lowed by a Prediction Window (PW) (i.e. partition with daily segments), in
which a fault is predicted to take place. The range from the beginning of each
OW up to the end of the related PW defines a training or testing instance. The
labelling of an instance (i.e. classes: likely to fail, or not to fail) depends on the
existence of a ticket report inside the PW (i.e. if there is a ticket in the PW, the
instance is considered positive (i.e. likely to fail)).

Each created instance is comprised by five feature categories. (1) Basic Fea-
tures: A frequency vector for each error type inside an OW . (2) Advanced Statis-
tical Features: A vector of statistics like, minimum, maximum and mean distance
of an error type inside the OW , from the beginning of the corresponding PW
and mean and standard deviation of the distance between instances of the same
error type inside the OW , for each error type. (3) Pattern-based Features: A
binary vector of error type patterns, which is created based on a confidence
threshold on the relative frequency of each pattern in all the OWs. The initial
set of patterns is created based on the power set (excluding the null set) of the
error types inside each OW . (4) Failure Similarity Features: The Jaccard simi-
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larity of two consecutive failures (tickets) of the same type, computed based on
the error types of each corresponding OW . (5) Profile-based Features: Consider
equipment specific features, like the model and the installation date of a ATM
machine.

The research work examines the predictive effectiveness of the five feature
types and their combinations, four feature ranking algorithms (i.e. InfoGain,
GainRatio, ReliefF, SymmetricalUncert) and four prediction algorithms (i.e.
XGBoost, Random Forests, Ada Boost M1 and LibSVM). Based on the eval-
uation, the usage of all the statistical features, the ReliefF and InfoGain feature
ranking algorithms and the XGBoost and Random Forest prediction algorithms
produced the higher performance. Table 1 summarizes the main differences be-
tween the two methodologies.

4 Event Dataset Generation

To enable a fair, repeatable, extensible and realistic experimentation of event-
based PdM approaches, we develop a configurable generator, in line with the
environments in works such as [10,14]. An outline of the generator is presented
in Algorithm 2. The generator is publicly available 7. The parameters are sum-
marized in Table 2.

Algorithm 2 Events Dataset Generator

1: procedure EventsGeneration
2: ft← number of fault event types
3: dataset size← str + ste (str, ste ← training/testing set size)
4: day events map← ∅
5: p← number of points to generate (can be set to a large integer)
6: for each event from 1 to ft do
7: Ŵdist ← Random Weibull Dist(p)
8: day ← 0
9: for each p of Ŵdist do

10: day ← day + p
11: day events map[day]← day events map[day]

⋃
[event]

12: if day ≥ dataset size then
13: break
14: day events map← add pattern(day events map)
15: day events map← remove target events(day events map)
16: return day events map

17:
18: procedure Random Weibull Dist(p)
19: s← random(0, 20)
20: mdbe← max distance between events
21: Wdist ←Weibull(shape = s, points = p)
22: Ŵdist ← normalize(Wdist, [0,mdbe])
23: return ˆWdist

7 http://interlab.csd.auth.gr/anaskos/ebp_icdm.git

109

http://interlab.csd.auth.gr/anaskos/ebp_icdm.git


24:
25: procedure Add Pattern(day events map)
26: pl← pattern length
27: mint,maxt ← min/max distance of the pattern from the target event
28: minp,maxp ← min/max distance between pattern events
29: minf ,maxf ← min/max forms of each pattern event
30: s← shuffle the order of the events of the pattern
31: pattern events← get pattern events(ft, pl)
32: pforms ← generate pattern forms(pattern events,minf ,maxf )
33: for each day of day events map do
34: if target event ∈ day then
35: ptdist ← random(mint,maxt)
36: pforms ← shuffle(pforms, s)
37: if 0 ≤ day ≤ str then
38: pforms ← partial pattern(pforms)

39: for each pe of pforms do
40: pedist ← random(minp,maxp)
41: pday ← day − ptdist − (peindex ∗ pedist), 0 ≤ peindex ≤ pl
42: day events map[pday]← day events map[pday]

⋃
[pe]

43: return day events map

44: procedure Partial Pattern(pforms)
45: pc← pattern clarity
46: pps← partial pattern size (percentage of the original pattern size)
47: pforms ← mapping of each pattern event to more event types
48: if random.uniform() < (1− pc) then
49: return pforms ∗ pps
50: else
51: return pforms

52:
53: procedure Remove Target Events(day events map)
54: for each day of day events map do
55: if target event ∈ day ∧ ¬partial pattern then
56: if random.uniform() < (1− pc) then
57: day events map[pday]← day events map[pday]− [target event]

58: return day events map

The dataset produced by the generator is an array of sets of event log identi-
fiers; the identifiers range from 1 to ft, where ft is the size of the event dictionary,
and are going to be referred as events for the rest of the paper. An event might
indicate a specific maintenance process that has taken place or a specific fault.
The array size is str+ste, where str and ste are the number of the daily segments
of the training and test sets, respectively.

In lines 6-13, for each event type, a random normalized Weibull distribution is
produced (lines 7,18-23). Then, we choose random points from this distribution.
Each point is used to compute, the daily segment where the event of the specific
type is going to be placed. This is the main extensibility point of our generator;
although the Weibull distribution is widely used to map early-life, random or
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Parameter Description

ft number of different event/fault types

str size of training dataset (in days)

ste size of testing dataset (in days)

pl pattern length

mint/maxt min./max. distance (in days) of the last pattern event from the target event

minp/maxp min./max. distance (in days) between pattern events

minf/maxf min./max. pattern event forms

pc pattern clarity

pps the percentage of the missing events in the distorted patterns
Table 2. Main dataset generator parameters.

wear-out failures and produce life-usage statistics, someone can implement her
own event occurrence distribution function.

Then, to test the accuracy of the PdM techniques, specific patterns of events
of length pl from the ft dictionary that precede the target event are infused
(lines 14,25-43). The goal of the PdM techniques is to effectively discover and
learn such patterns, so that they can predict the target events. Furthermore, the
clarity of the pattern is distorted in order to emulate the real world cases, where
the preceding indications of a prominent failure are not always exactly the same
or clear (lines 38,44-51). More specifically, a clarity percentage (pc) is specified
along with a partial pattern size (pps), where the former defines the percentage
of partial patterns (i.e. pattern instances that are missing some of the events
of the original pattern), while the latter defines the percentage of the missing
events. For example, pc = 0.9 and pps = 0.5, means that 10% of the pattern
instances (i.e. 1−pc) are going to include only the half (i.e. 1−pps) of the events
of the original pattern. pc also defines the percentage of the full patterns (i.e.
patterns that include all the events) that are not followed by a target event (i.e.
the target events that follow these patterns are removed from the dataset). E.g.
pc = 0.9 specifies that 10% of the 90% of the target event instances are going to
be removed (lines 15,53-58).

To better map real world cases, the patterns are not deterministic, but each
of the pl elements is linked to minf −maxf specific events (lines 29,32). This
corresponds to the situation, where there are families of faults (event types)
that might precede the target event. In addition, the distances of the pattern
and the target event and between pattern events are also configurable (lines
27,32,35,41). All these are taken into account when generating the preceding
pattern through the generate pattern forms function. Finally, the order of the
events of the pattern can also be shuffled (line 36), to allow for higher flexibility
of the supported scenarios.
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Dataset ft shuffle pl minf maxf str ste mint maxt minp maxp pc pps

DS1
150 no

6 1 3
1094 730 1 5 1 2 90% 50%

DS2 4 3 4

DS3
1500

same as DS1
DS4
DS5

150 yes
same as DS2

DS6
Table 3. Dataset generator parameters. DS1 to DS5 contain approx. 50 target events,
whereas DS6 contains 25 target events.

5 Experiments

The experimental section comprises three parts: (i) dataset description, (ii) com-
parison of the approaches in Section 3, and (iii) sensitivity analysis. For the SPM
approach, we are experimenting with two different implementations: with and
without the pre-processing and over-sampling specified in Section 3.2.

5.1 Datasets

Table 3 presents the parametrization used for the generation of six synthetic
datasets that are used for the evaluation of the PdM approaches. All the datasets
are separated into training and testing sets of sizes 3 and 2 years, respectively.
The distance of the pattern from the target event ranges from 1 to 5 days, while
the distance between the events of the pattern ranges from 1 to 2 days. The
pattern clarity is set to 90%, while the partial patterns include only the half of
the events of the full pattern (i.e. pps = 50%). The number of target events is
set to ≈ 50, as such, with the specified pc value, there are approximately 5 cases
of partial patterns and 5 cases of patterns that are not followed by target events
out of the 30 cases of target events that correspond to the training set.

There are two main datasets, namely, DS1 and DS2 and four datasets (DS3-
6) that are slightly altered versions of the former ones. More specifically, DS3 is
the same as DS1 and DS4 the same with DS2, with the difference that 10X more
event types are used (i.e. 1500 instead of 150). DS5 is the same as DS2 with the
difference that the sequence of the events of the pattern is shuffled. Finally, DS6
is the same as DS5 with the difference that there are fewer target events (i.e.
≈ 25 instead of ≈ 50), making the training process more challenging.

In the experiments, ten instances of each dataset are produced. The presented
results are the average values out of ten executions. For the reproduction of the
results, all the necessary code is provided 8. For the evaluation of the efficiency of
predictions, we have specified a range of days before the target event in which the
prediction should be made. Predictions that are inside this range are considered
as true positives and are counted once. Too early predictions occurring before

8 http://interlab.csd.auth.gr/anaskos/ebp_icdm.git
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PdM
DS1 DS3 DS2 DS4

P R F1 P R F1 P R F1 P R F1

LPPdM 0.54 0.99 0.70 0.77 0.93 0.83 0.55 0.69 0.60 0.68 0.25 0.31

FSPdM 0.83 0.85 0.84 0.78 0.88 0.82 0.63 0.88 0.73 0.70 0.74 0.71

SPM 0.51 1.00 0.66 0.55 0.87 0.66 0.36 0.88 0.50 0.22 0.46 0.29

SPMLPPdM 0.22 0.30 0.26 0.34 0.99 0.49 0.39 0.80 0.50 0.16 0.98 0.27
Table 4. PdM approaches comparison of the best achieved results for DS1-DS3 and
DS2-DS4 (P: precision, R: recall).

PdM
DS2 DS5 DS6

P R F1 P R F1 P R F1

LPPdM 0.55 0.69 0.60 0.56 0.65 0.59 0.28 0.75 0.40

FSPdM 0.63 0.88 0.73 0.66 0.69 0.68 0.48 0.30 0.35

SPM 0.36 0.88 0.50 0.00 0.00 0.00 0.43 0.40 0.37

SPMLPPdM 0.39 0.80 0.50 0.40 0.66 0.49 0.18 0.86 0.29
Table 5. PdM approaches comparison of the best achieved results for DS2-DS5-DS6
(P: precision, R: recall).

the range trigger unnecessary maintenance actions, which result in time and
monetary loses and are counted as false positives. If no prediction is made before
a target event or the prediction is delayed, the case is considered a false negative.
For DS1,3 the range is set to [1,30] and for DS2,4,5,6 to [1,22]. It is straight-
forward to adapt the techniques and experiments for ranges not starting from
1 day, which correspond to a buffer window between the prediction and the
predicted fault (details are omitted due to lack of space).

5.2 Comparison

Here, we present only the best achieved result of each approach after exper-
imenting with different parameterizations using DS1 and DS2; we re-use the
best performing parameters in DS3-5. Extra parameters were tested for DS6.
The sensitivity analysis is deferred to the next subsection. The best performing
results in terms of the F1-score are summarized in Tables 4 and 5.

Regarding the first dataset, the FSPdM approach achieved the best F1-score
(i.e. 0.84), followed by the LPPdM and SPM approaches (i.e. 0.7 and 0.66,
respectively). Interestingly, combining the preprocessing of LPPdM with SPM
degraded the performance, since less rules were generated. The increase in the
number of fault types from 150 to 1500 in DS3, not only did not cause any
negative effects in the results, but in some cases there were increases in the
F1-score as in the LPPdM (0.83 best score) and SPMLPPdM

(0.49) approaches.
This is due to the fact that LPPdM inherently targets sparse sets, where most of
the event types are non-related to the target event. In DS2, where the pattern
length is lower (i.e. 4) and there are more alternative event types for each pattern
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element, FSPdM is still the best performing technique but with lower F1-scores.
The increase of the number of the event types in DS4 had negative impact on all
the approaches, which is largely attributed to the sensitivity of the LPPdM -based
techniques to their parameters.

In the next set of experiments, summarized in Table 5, we examine the effect
of the shuffling of the order of the events of the pattern and the combination
of the shuffling with the reduction in the target event instances. Table 5 also
contains the DS2 scores for comparison. Regarding DS5, FSPdM achieved the
best F1-score (i.e. 0.68), followed by the LPPdM approach (i.e. 0.59). SPM
was not able to produce any rule that lead to the target event. However, the
application of the MIL oversampling helped SPMLPPdM

approach to achieve a
good F1-score (i.e. 0.49). In DS6, the parametrization of the approaches was re-
evaluated. FSPdM and SPMLPPdM

approaches achieved higher recall, while the
LPPdM and SPM achieved higher precision. This led to very similar F1-scores,
with LPPdM achieving the best one (i.e. 0.4).

The key observation is that, in general, the FSPdM approach, which employs
more statistical features coupled with feature selection, pays off in practice.
Overall, FSPdM and LPPdM approaches achieved the best score in all the cases
compared to the SPM implementations. FSPdM seems to be more robust than
the LPPdM approach, as it achieved better or almost the same score in all the
cases, where the parametrization kept the same (i.e. DS1-DS3 and DS2-DS4,5).
The preprocessing and the MIL process applied on the SPMLPPdM

help the
latter to achieve better results in some cases than the SPM approach, however
in all the cases the results from both the implementations were inferior to the
other two more advanced approaches.

5.3 Sensitivity Analysis

This section focuses on the sensitivity analysis of the LPPdM and FSPdM ap-
proaches using DS2. The number of possible combinations is apparently exhaus-
tive, thus we focus on the most important parameters.

Regarding the LPPdM approach, a key issue is to understand the impact
of the parameters of the underlying sigmoid function, as defined in Figure 1(a).
Adjusting the shift (or midpoint) parameter m, the steepness s and the threshold
leads to different trade-offs between precision and recall.

The first experiment, presented in Figure 1(b), considers the shift of the
sigmoid function, which in our case is defined as the distance of the middle
point of the sigmoid function from the target event. As shown, higher shift values
increase the recall of the approach lowering its precision, while lower values have
the opposite effect.

The next experiment, presented in Figure 1(c), examines the effect of the
steepness parameter for three different parameter values (i.e. 0.5 (green square,
0.7 (red circle) and 0.9 (blue triangle))). As it is depicted in the figure, setting
the lower of the three value (i.e. 0.5), the recall of the approach is negatively
affected as more events obtain closer values from the sigmoid function. The two
higher values achieve similar results.
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Fig. 1. Sensitivity analysis of the LPPdM PdM approach.

For the threshold impact on the prediction efficiency (Figure 1(d)), we have
examined three parameters (0.6 , 0.7, and 0.8) keeping the steepness high. The
threshold parameter, as shown in the figure, highly affects the recall of the ap-
proach (i.e. lower values increase the recall score) and more slightly the precision
(i.e. higher threshold values lead to higher precision).

In the last experiment regarding LPPdM , we examine the effect of the appli-
cation of the preprocessing and the MIL process on the approach efficiency (Fig-
ure 1(e)). Four cases are depicted: (i) preprocessing and MIL enabled setting the
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Fig. 2. Impact of OW slide in FSPdM

threshold parameter to 0.4 (green square P&M thr 0.4 ), (ii) preprocessing and
MIL enabled setting the threshold parameter to 0.7 (red circle P&M thr 0.7 ),
(iii) disabled preprocessing and MIL with threshold parameter equal to 0.4 (blue
triangle thr 0.4 ) and (iv) disabled preprocessing and MIL with threshold equal
to 0.7 (yellow diamond thr 0.7 ). There are two cases, one with preprocessing
and MIL enabled and one with both disabled, which both achieved similarly
high F1-scores (i.e. P&M thr 0.7 (F1=0.6), thr 0.4 (F1=0.62)). This might be
erroneously interpreted as that there is no point in applying the expensive tasks
of preprocessing and MIL; however, if we consider the other two cases, we ob-
serve that applying the preprocessing and MIL process provides more robust
behavior, as for the same change in the threshold, the F1-score is drastically
reduced in the case without preprocessing and MIL.

FSSPM is more robust to its parameters. We have experimented with dif-
ferent segmentation and OW size values, but these parameters seemed to play a
small role. An important parameter is the slide of the window, which defines the
OW movement. Setting the slide lower than the OW size causes over-sampling.
As it is shown in Figure 2, the lowest possible value of the slide (i.e. 1 (green
square)) has negative impact on the precision of the approach. Setting the slide
size equal to the half of the OW size (red circle) achieves better results than
setting it to the size to the OW (blue triangle).

6 Conclusion

In this work, we targeted event-based predictive maintenance. We presented
the main state-of-the-art approaches to date, we developed a publicly available,
extensible comparison framework and we conducted repeatable experiments. The
main lessons learnt are twofold: first, employing statistical features on the logged
events coupled with feature selection is the best performing technique in our
experiments, and second, when using regression, parameter tuning is a key issue
in achieving configurable trade-offs between precision and recall.

Our work can be extended in several ways. Combining feature expansion,
feature selection and log preprocessing is a promising avenue. Also, more thor-
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ough experiments need to be conducted. However, we believe that an important
issue is to transfer the event-based techniques to a setting where the input data
is raw time series signals from Industry 4.0 sensors.
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(funded by European Unions Horizon 2020 research and innovation program
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Abstract. Sliding windows have been crucial in mining time series.
Many existing studies focus on reconstruction of the underlying structure
(e.g., suffix tree) for each new window. However, when the window size is
large or when the window slides frequently, reconstruction may perform
poorly. In this paper, we propose a solution that dynamically updates the
structure (rather than reconstruction for each modification or sliding).
Moreover, many existing studies rely on the weight of maximum weighted
item in the database to avoid testing unnecessary patterns when mining
weighted periodic patterns from time series, but it may still require lots
of weight checking to determine whether a pattern is a candidate. In this
paper, we also propose an additional solution to address this problem by
discarding unimportant patterns beforehand so as to speed up the candi-
date generation process. Evaluation results on real-life datasets show the
effectiveness of our two solutions in handling sliding window and pruning
redundant candidate patterns.

Keywords: Time series · Weighted periodic pattern mining · Dynamic
database · Sliding window · Pruning.

1 Introduction

Discovering an efficient approach for mining frequent patterns has always been an
important issue in knowledge discovery [5, 10, 12, 13, 16]. The idea of generating
patterns has evolved over time and flooded a huge set of new domains. Sequential
pattern mining [9, 14, 17, 19] is one of the popular areas in the field of pattern
mining, and time series pattern mining [6, 7] is a very renowned and widely
discussed topic in sequential pattern mining. The core input of time series pattern
mining is data stream (e.g., a stream of sequence of events or items found with
respect to time interval). A popular structure to represent time series is a suffix
tree [18], from which frequent patterns can be mined on different thresholds
and conditions. Data streams are continuous, unbounded, and not necessarily
uniformly distributed [3, 11]. This creates the challenge of dynamicity, which is



also the core of sliding window problem [1] in numerous real-life applications (e.g.,
weather forecast, natural disasters prediction, etc.) [21]. To solve this sliding
window problem, many existing studies rely on reconstructing the data structure
to represent a modified window. However, this approach can be very expensive,
especially in case of large window size or frequent sliding of windows. In this
paper, we propose a dynamic tree based solution to handle sliding window in time
series (DTSW), which focuses on (i) updating the data structure dynamically,
(ii) maintaining (rather than reconstructing) a dynamic tree for each modified
window, and (iii) keeping the tree suitable for various kinds of pattern mining.

In addition to DTSW, our second contribution centers around mining weighted
periodical patterns [6] from time series. The introduction of weight to patterns
helps in mining more interesting patterns when compared with its unweighted
counterpart [1]. Weighted periodical patterns in time series are weighted se-
quences that periodically occur at least a certain amount of times along with a
weight satisfying the user-specified threshold. Weighted pattern mining can be
very useful in time series to discover interesting features. For example, if ana-
lyzing the transactions of a sports kit shop, the sold products may vary with
many parameters (e.g., time, event, etc.). Selling rate of football jersey increases
after every four years when the World Cup hits. A main challenge in weighted
pattern mining is how to avoid testing undesired candidates so as to speed up the
candidate generation process. Note that the downward closure property (DCP)
cannot be applied directly in weighted versions of pattern mining. To speed up
candidate generation, many existing works use the Max Weight concept, but
they need to test a large number of unnecessary patterns for candidacy which in
turn degrades performance. Hence, our second contribution in this paper is an
efficient pruning solution—called maximum possible weighted support (MPWS)
pruning—to significantly reduce the number of patterns to be tested for candi-
dacy. To recap, our key contributions of this paper is our following two solutions:

– DTSW, a dynamic tree based solution to handle sliding window in time
series (Section 3).

– MPWS pruning, an efficient solution to speed up the candidate generation
process in weighted periodic pattern mining (Section 4).

The remainder of this paper is organized as follows. The next section gives
background and related works. Sections 3 and 4 present our two proposed so-
lutions. Section 5 shows evaluation results. Finally, conclusions are drawn in
Section 6.

2 Background and Related Works

2.1 Sliding Window Problem

Discretization is a technique to represent a group of data with a single symbol.
As time series is basically information gathered with respect to time interval,
it can be represented as a string or sequence of characters from a given set by
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for string “abcabababc”.

discretizing the values. For example “abcabababc$” is a discretized time series
sequence.

As the suffix tree has been shown [18] to be an efficient data structure to
represent time series and for frequent periodical pattern mining, we use it as
our data structure. We use Ukkonen’s algorithm [20], which a fast linear-time
algorithm to construct suffix tree. To elaborate, a suffix tree represents all the
suffixes of a string. If all the suffixes can be found by traversing from root to leaf
nodes, then the suffix tree is in its explicit form. On the other hand, if all the
suffixes do not end in leaves but rather embedded in the paths, then the tree is
in its implicit form. Fig. 1 shows an explicit suffix tree of string “abcabababc$”,
and Fig. 2 shows an implicit suffix tree of string “abcabababc”. An important
concept in the Ukkonen’s algorithm for constructing a suffix tree is suffix link,
which helps to traverse the tree efficiently. According to Ukkonen’s proposal,
each and every internal node of the tree points to another internal node (or the
root) as its suffix link. Suffix link of a node A with path “αβ” from root where
(i) ‘α’ is exactly one symbol and (ii) ‘β’ can contain zero or more symbols will
point to another (internal or root) node B as its suffix link if and only if node
B has the path ‘β’ from the root. For example, in Fig. 1, Node 1 points to Node
8 as its suffix link. Each pass of Ukkonen’s algorithm for adding symbol starts
from an active point, which represent the position of largest implicit suffix in
the tree at the current moment. The active point consists of (i) an active node
representing the node position from which new pass will start), (ii) an active
edge providing the information about the edge from active node where suffixes
overlapping is being occurred, and (iii) an active length representing the number
of symbols been overlapped in the direction of active edge from active node.
Ukkonen proposed rule extensions in his algorithm. For instance, to add a new
symbol to the end of all the existing suffixes in the tree, one does not have to
traverse all the leaves. One can use a global reference. The extensions ensure
maximization of suffixes overlapping in the tree. Moreover, Ukkonen also used
edge label compression in the algorithm by not saving the exact symbols for edge
labels. Instead, it stores only pointers to the starting and ending position of the
input sequence. Each pass inserts a new symbol to the tree. Before each pass,
every existing node must have a suffix link to some other node, and active point
must be maintained accordingly.

However, many existing works in time series do not give solution for handling
the data structure in a dynamic environment. To handle sliding window problem
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Fig. 3: Sliding window

in time series, many existing works build the structure from scratch for each new
window. Let us illustrate the sliding window problem by Fig. 3, in which the
window size is considered to be 9 (symbols). Window 1 contains the sequence
“abcababab”. After the arrival of new discretized input symbol ‘c’, the window
slides and we get new modified window with (i) symbol ‘a’ is deleted from the
beginning of the old window and (ii) symbol ‘c’ is inserted at the end. When the
time series is represented by a suffix tree, if we have a sequence S and a suffix
tree T for S, we need to be able to efficiently update T in case of (i) insertions
of new symbols at the end of S or (ii) deletion of symbols from the beginning
of S.

As a preview, to alleviate this problem, we propose DTSW, which is a frame-
work for handling both insertion and deletion of events in a single framework. The
basis of our solution is to keep the tree consistent so that, any time insertion or
deletion of events is possible. The idea of making a data structure consistent for
batch events was inspired by Leung and Khan’s work on the DSTree [11], which
aims to keep the tree consistent for future updates and makes only necessary
modifications to reflect the current data under consideration.

2.2 Pruning for Weighted Periodical Pattern Mining

Introduction of weight has been an important concept in pattern mining because
it helps to find patterns with more important features [1, 2] and is popular in time
series. Many existing studies [7, 18] mine (unweighted) periodic patterns from
time series by using the downward closure property to speed up the candidate
generation process. Related works [6] for mining weighted periodic patterns from
time series use the weight of maximum weighted character/item in the time
series to reduce the number of unnecessary patterns tested, and thus to speed
up the candidate generation.

As a preview, we propose the MPWS pruning solution. It provides a much
tighter bound so as to reduce the number of candidates to be tested by using a
heuristic value for the patterns.

3 Our Dynamic Tree Based Solution to Handle Sliding
Window in Time Series (DTSW)

Our dynamic tree based solution to handle sliding window in time series (DTSW)
consists of two modules: (i) A module for handling deletion events, which updates
suffix tree if we delete some symbols from the starting of the sequence; and (ii) a
module for handling insertion events, which updates our tree if we insert new
symbols to the end of the sequence.
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3.1 Handling Deletion Events

Deleting a symbol from the starting of a sequence means deletion of the largest
suffix from the sequence. For example, if we have sequence “abcabababc”, then
removing the first symbol ‘a’ from the sequence means deleting the largest suffix
“abcabababc” from the sequence resulting in sequence “bcabababc”. So, the
problem centers around how we can delete a suffix from the suffix tree. Hence,
we define our Condition 1.

Condition 1. Before deleting any suffix from the suffix tree, the tree must be
in its explicit form. Main reasoning behind this is, if the tree is in explicit form,
then it is always enough to remove a leaf node from the tree to delete a suffix.
For example, if we want to remove suffix “abcabababc$” from the explicit tree
of Fig. 1, it is sufficient to remove Node 3 from the tree. Moreover, by definition,
deletion of suffixes from a sequence goes from larger to smaller suffixes. Let us
discuss some possible scenarios resulted from the deletions nodes and the ways
to tackle them. We will state them as propositions.

Proposition 1 (Conversion from internal to leaf node). If the parent
of a node V (say, U) loses all of its child nodes after removing V from an explicit
suffix tree, then if U is not root, we will (i) convert U to a leaf node from
an internal node and (ii) if any node W was pointing to U as its suffix link,
then the suffix link of W will be redirected to root node. Reasoning behind this
redirection lies in definition of suffix links that point from an internal node to
another internal node. Path symbols from the root to any node X is unique
because of the tree structure. So, suffix link of W must be redirected to the root.

Proposition 2 (Merging a splitted path). Suppose we remove node V
for deletion from an explicit suffix tree. After the deletion, if (i) parent of V
(say, U) becomes a node having a single child node W and (ii) U is not the root
and has a parent node X, then we will (i) delete node U , (ii) merge the split
path between X to U and U to W , and (iii) redirect the suffix link to root if any
internal node Y was pointing to U as its suffix link. For example, from Fig. 1,
after removing Node 3, Node 2 will only have a single child Node 4. Then, we
will remove Node 2, and merge the path between Node 1 to Node 2 and the path
between Node 2 to Node 4. Here, no node was pointing to Node 2 as its suffix
link. Otherwise, we would have redirected to the root because path symbols
“abc” (from the root to Node 2) would not have repeated elsewhere in the tree
(from the root). This proposition is essential to maintain our Condition 1 and
insertion module.

3.2 Handling Insertion Events

Our proposed solution DTSW is a complete framework for maintaining a dy-
namic suffix tree to handle sliding window, where our algorithm considers both
insertion and deletion as two independent modules. Our solution is capable to
(i) update the suffix tree for multiple insertion or deletion events and (ii) keep
the structure consistent for future updates.
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To convert an implicit suffix tree to an explicit suffix tree, a unique symbol
is added to the tree. A symbol that does not exist in the sequence (upon which
suffix tree is built) is considered as a unique symbol. This addition creates many
nodes, splits many paths, and converts every implicit suffix explicit. Fig. 1 is the
explicit suffix tree of string “abcabababc$”, where main string is “abcabababc”
and ‘$’ is the unique symbol; implicit suffix tree of “abcabababc” is shown in
Fig. 2. Although both figures represent the same suffixes, Fig. 1 has an advantage
of ending all suffixes in leaves and ignoring the last symbol from each suffix we
can extract the main suffixes to work with.

The main goal of our insertion module is to convert the tree to such an
extent that the Ukkonen’s algorithm can be used to insert symbols to the tree.
Key steps include:

1. Conversion from explicit to implicit: We will revert back the tree from explicit
to implicit form, which means we will remove the unique symbol and erase
all the effects created due to it.

2. Finding new active point: Each pass of the Ukkonen’s algorithm starts from
the largest implicit suffix of the tree. After Step 1, some explicit suffixes will
become implicit, then we need to find the largest implicit suffix’s position
and update the active point for the new pass.

There exists many reasons behind Step 1: (i) As unique symbol is not part of the
input, this symbol has to be removed from the tree before any new addition. If
we keep unique symbol, then adding new input and extracting the main suffixes
will be costly. (ii) Addition of unique symbol creates some extra nodes and
split paths in the tree. If we do not revert back the effect before new insertion,
maximization of overlapping suffixes will not be ensured. The compact nature of
the tree will be violated. Consider ‘$’ as our unique symbol. Let us discuss cases
which can occur due to addition of ‘$’ and we have to revert back those effects:

1. Child node V created from an existing node for ‘$’. In this case, we have to
remove the child node V . Because of deletion, if parent of V (say, U) loses all
its children and U is not the root, then we have to convert U to a leaf node
following Proposition 1 and if U remains with only one single child node,
then we have to delete U and merge the path following Proposition 2.

2. Child node V created by splitting an existing path for ‘$’. This case can be
explained from Figs. 2 and 1. Due to addition of ‘$’ path between Node 1 and
Node 3 gets split. New node 2 is inserted in between them, and then Node
4 is created for ‘$’. To revert back this case, we will first delete node V and
then merge the split path by following Proposition 2. Here, in our example,
we will first delete Node 4, then delete Node 2 and merge the path between
Nodes 1 to 2 and Nodes 2 to 3. We would also have redirected the suffix link
if any suffix link was pointing to Node 2 to the root.

Step 2 is find active point for the new pass. The whole process and reasoning
can be provided as follows:
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– In Step 1, we convert explicit suffixes to its implicit form. So, we can actually
count the number of suffixes that have been converted. This number denotes
the length of the largest implicit suffix at the moment after conversion. Sup-
pose the number is l. So, all the suffixes present at most 1 distance from the
end of the sequence will be implicit now, because a suffix becomes implicit
along with all of its smaller sub suffixes. Moreover, suffix deletion is also
sequential, larger suffixes will be effected first before its smaller sub-suffixes.

– Then, we will revert back the effects in reverse order by which the nodes
were created or paths were split due to addition of ‘$’. So, while erasing the
effects, if we encounter a node which has been modified, we stop reverting
because all of the previous effects created due to addition of ‘$’ have been
compromised. So, we already found the largest implicit suffix of the tree.
Now, by traversing the tree, we can find its position and update active point
(aka active Node), active Edge and active Length. These information can also
be saved while erasing the effects. As an example, if we want to have the tree
of Fig. 2 from Fig. 1, we will revert back the effects of Nodes 18, 15, 9 and 2,
respectively. Removing child for ‘$’ from the root does not help determining
the largest implicit suffix because it is a dummy node.

Let us consider a simulation of our algorithm. Suppose we had a window of
string “abcabababc” (the explicit tree for this window is shown in Fig. 1) and
then we get a new symbol ‘b’ and our window slides. Fig. 4 shows the tree after
deletion of ‘a’, Fig. 5 shows the tree after conversion and from explicit to implicit
with the largest implicit suffix “bc”, and Fig. 6 shows the resultant explicit tree
after addition of ‘b’.

4 Our Maximum Possible Weighted Support (MPWS)
Pruning

Checking every pattern if they are weighted frequent (or weighted periodic)
pattern is impractical. In unweighted version of pattern mining, the downward
closure property (DCP) is used. As trivial DCP does not work in weighted pat-
tern mining, most used technique is to use the weight of the maximum weighted
character (MaxW) of the database to reduce the number of patterns tested.
Testing a pattern means evaluating if that pattern can be a candidate pattern.

In this section, we propose a maximum possible weighted support (MPWS)
pruning solution, which provides a tighter bound than the use of MaxW. In
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the remainder of this section, we will use 0.8, 0.1, 0.2 and 0 as the weights of
characters ‘a’, ‘b’, ‘c’ and ‘$’, respectively.

Definition 1. sumW (N) is defined as the sum of all the characters from the
root to node N .

Definition 2. weight(X) is defined as the average weight of the characters of
pattern X.

Definition 3. min sup is defined as a user-specified support threshold with a
real number between 0 and 100, and σ is defined as its corresponding normalized
threshold:

σ =
min sup× (MaxW × length of dataset)

100.0
(1)

With the maximum weight of a character in the dataset be MaxW, no pattern
can have weighted support greater than MaxW × length of dataset.

Definition 4. weightedSupport(X) is defined as a product of the average
weight of the character of pattern X and the actual periodicity support(X) of
the pattern X:

weightedSupport(X) = weight(X)× support(X) (2)

A pattern X is defined as weighed periodic if weightedSupport(X) ≥ σ.

Definition 5. cnt(A,B) is defined as the number of characters encountered
on the path from node A to node B.

Definition 6. maxW (A,B) is defined as the weight of the character having
the maximum weight among the characters on the path from node A to node B.

Definition 7. sizeV (N) is defined as the size of the occurrence of vector of
node N . In other words, it captures the number of occurrence of the pattern that
ends at node N .

Definition 8. subStr(A,B) is defined as the substring of the time series en-
countered on the path from node A to node B.

For example, in Fig. 1, sumW (Node 14) is the sum of weight of the char-
acters ‘b’, ‘a’, ‘b’ and ‘c’, which is 0.1 + 0.8 + 0.1 + 0 = 1.2. If X is “abac”,
then weight(X) = 0.8+0.1+0.8+0.2

4 = 0.475. In Fig. 1, cnt(8, 13) = 6, mean-
ing that 6 characters are encountered on the path from Node 8 to Node 13.
maxW (8, 13) = 0.8 means that the maximum weight among all 6 characters on
the path from Node 8 to Node 13 is 0.8. subStr(8, 13) is “ababc$”, which is the
substring of the time series encountered on the path from Node 8 to Node 13.

Definition 9. Let (i) node P be the parent of node N , (ii) E be the edge between
nodes N and P , and (iii) R be the root. Then, nodeW (N) is defined as the
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maximum possible weighted support of a pattern ending exactly above node N
(between nodes N and its parent P ):

nodeW (N) = max{A,B} × sizeV (N) (3)

where

A =
sumW (P ) +maxW (P,N)

cnt(R,P ) + 1
(4)

B =
sumW (P ) +maxW (P,N)× cnt(P,N)

cnt(R,P ) + cnt(P,N)
(5)

Definition 10. Let (i) node P be the parent of node N , (ii) E be the edge
between nodes N and P , and (iii) R be the root. Then, S is defined as a repre-
sentative of all the patterns that end between some node N and its parent P :

S ← S1 + S2 (6)

where

S1 ← subStr(root, P ) (7)

S2 ← any nonempty prefix of subStr(P,N) (8)

Lemma 1. nodeW (N) ≥ weightedSupport(S) always holds.

Proof. By Eq. (3), nodeW (N) = max{A,B} × sizeV (N) where values of A
and B can be computed by Eqs. (4) and (5), respectively. And, by Eq. (2),
weightedSupport(S) = weight(S)×support(S). Here, max(A,B) gives the max-
imum possible value of weights(S) under any circumstances. Consider the fol-
lowing three cases:

1. weight(S1) > maxW (P,N): In this case, even if all the characters in E
has the same weight as maxW (P,N), weight(S) cannot be greater than A.
Because Eq. (4) assumes that S3 has length 1. If we increase length of S3,
weight(S) will gradually decrease. So, A is the maximum possible value of
weight(S) in this case.

2. weight(S1) < maxW (E): We need an upper bound for weight(S). So, let
us assume all the characters in E has weight equal to maxW (P,N). Then,
weight(S) will gradually increase with the increasing length of S3. We get
the value of B (see Eq. (5)) by assuming S3 has maximum possible length.
So, B is the maximum possible value of weight(S) in this case.

3. weight(S) = maxW (P,N): In this case, the length of S3 does not matter.

So, max{A,B} ≥ weight(S), and sizeV (N) ≥ Support(S). Hence, nodeW (N)
= max{A,B} × sizeV (N), and thus nodeW (N) ≥ weightedSupport(S). ut

Definition 11. MPWS(N) is defined as the maximum value among nodeW ()
of all the nodes in the subtree of node N . Subtree of node N includes itself.
Let nodeW (N) be the maximum possible weighted support pattern S. Then,
MPWS(N) is the maximum of nodeW of all the nodes in the subtree, and it is
the maximum possible weighted support any pattern can achieve that has S1 as
a prefix.
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Fig. 7: Example of our MPWS pruning solution

Table 1: MPWS pruning necessary values calculated for Fig. 7

Node sizeV A B nodeW MPWS

1 1 0.48 0.68 0.68 0.68
2 1 0.37 0.67 0.67 0.67
3 1 0.50 0.73 0.73 0.73
4 4 0.80 0.80 3.20 3.20
5 1 0.52 0.62 0.62 0.62
6 4 0.10 0.10 0.40 1.13
7 1 0.45 0.60 0.60 0.60
8 2 0.57 0.62 1.25 1.25
9 1 0.40 0.37 0.40 0.40

Node sizeV A B nodeW MPWS

10 2 0.45 0.57 1.13 1.13
11 1 0.30 0.28 0.30 0.30
12 2 0.37 0.37 0.73 0.73
13 1 0.28 0.28 0.28 0.28
14 2 0.15 0.15 0.30 0.67
15 1 0.10 0.10 0.10 0.10
16 2 0.20 0.20 0.40 0.73
17 1 0.10 0.10 0.10 0.10
18 1 0.00 0.00 0.00 0.00

Candidate generation. Candidate patterns can be generated by a breadth
first search (BFS) in the suffix tree. Following Definition 10, when we reach
node N in the breadth first search, for every S, if weight(S) × sizeV (N) ≥ σ,
then we will consider S as a candidate pattern.

Pruning condition. In the suffix tree for a string of size L, the number of
nodes will be around N . However, the sum of the number of characters in the
edges can be close to L2. Thus, there can be around L2 possible patterns in the
dataset.

The candidate generation process mentioned above tests every pattern and
makes that a candidate if it passes the test. However, checking every pattern
is time consuming. So, we have to find a better pruning condition that reduces
the number of patterns checked. The most commonly used technique is to use
the weight of the maximum weighted character (MaxW) of the database. If
MaxW × support(P ) < σ, any super pattern of P cannot be weighed frequent.
So, those patterns cannot be periodic patterns either.

Lemma 2. For any child C of node N , if MPWS(C) < σ, then we can ignore
the whole subtree of C. This means that we do not need to visit any node in the
subtree during the candidate generation of BFS.

Proof. It can be easily proved because any node U in the subtree of C will not
have nodeW (U) ≥ σ according to the definition of MPWS(N). ut

All the candidate patterns are actually weighted frequent subsequence of the
current time series. To check if they are also periodic patterns, we can test the
occurrence vector of each candidate pattern with different period values using
known periodicity detection algorithms.
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An example of our MPWS pruning solution is shown in Fig. 7 and Table 1.
Here, the figure shows a suffix tree of string “abcabababc$” withmin sup = 10%.
Detailed calculation of MPWS and other associated values is shown in Table 1.
There are 3 types of nodes in Fig. 7:

1. Any pattern that has a blue node (e.g., Nodes 4, 6, 8 and 10) in its subtree is
tested. For example, only patterns “a”,“ab”,“aba”,“abab”,“b”,“ba”,“bab”
has a blue node in their subtree. So, only these patterns are tested for can-
didacy.

2. A green node N means that, starting from N , its whole subtree is unimpor-
tant and can be ignored during candidate generation BFS. Nodes 5, 7, 9, 11,
12, 14, 16 and 18 are green nodes.

3. All the nodes having a green node as an ancestor are red nodes (e.g., Nodes 1,
2, 3, 13, 15 and 17).

In this example, according to MPWS pruning, only seven patterns are tested
for candidacy. Five of them eventually become candidate patterns. There are
50 patterns in total that had to be tested if we did not use any pruning. If we
used the traditional MaxW pruning, we had to test 10 patterns.

Additional complexity for pruning. If we build a suffix tree for a string
of size L, there can be at most 2× L nodes in the suffix tree. During candidate
generation, we first determine the MPWS value for all the nodes, which can be
done by a depth first search (DFS) on the tree. We need the MaxW value for
each edge during that DFS. We have determined it using range minimum query
(RMQ) in static data. As the query complexity for each edge is O(1), the added
complexity by MPWS pruning becomes O(L).

5 Evaluation Results

We have used several data sets taken from UCI Machine Learning Repository [8]
to compare our solutions with existing approaches. As all of them show consistent
results, we will be showing the results of the following three datasets, which were
discretized into string of characters:

1. Individual household electric power consumption dataset, which consists of
50000 events discretized into 13 types;

2. Appliances energy prediction dataset, which consists of 19735 events dis-
cretized into 12 types; and

3. Diabetes dataset, which consists of 2400 events discretized into 37 types.

All the codes were written using the C++ programming language. We used a
machine having AMD Ryzen 5 machine with 1600 CPU (3.2 GHz) and 8 GB
RAM for evaluation.
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(c) Data stream with window size 10000
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(d) Data stream with window size 30000

Fig. 8: Sliding window with window sizes 100, 1000, 10000 and 30000

5.1 Evaluation on the DTSW Algorithm

Existing works on time series do not handle the sliding window based problem.
Hence, they build the data structure from scratch for every window sliding, which
can be inefficient. We show a comparison of the experimental result between
DTSW and reconstruction of the tree for every window. Building the tree again
for each new window performs poorly when the window size is large or the
number of windows is large. In these scenarios, DTSW is very useful.

In Fig. 8, we show four graphs for four different window sizes from the indi-
vidual household electric power consumption dataset. (As results for the other
three datasets are similar, we omit them.) In the figures, the x-axis shows the
number of windows passed and the y-axis shows the total time taken from the
beginning. With the increasing window size, the performance of reconstruction
gets worse, but DTSW runs very efficiently.
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Fig. 9: MPWS pruning vs. MaxW pruning on varying minimum weighted support
threshold

5.2 Evaluation on the MPWS Pruning

In the candidate generation process without any pruning, every pattern has to
be tested to check if it can be a candidate. However, this is not practical as there
can be many unnecessary patterns. Our main goal in the MPWS pruning is to
avoid testing patterns that will not become a candidate pattern eventually.

For all the datasets, we have discretized them and assigned each unique
character a weight that follows a normal distribution (µ=0.5 and σ=0.2). For
different weighted support thresholds, we have compared our MPWS pruning
with the traditional MaxW pruning on all the databases. Fig. 9 shows that our
MPWS pruning tests much fewer patterns when compared with the traditional
MaxW pruning. For example, in the individual household electric power con-
sumption dataset, when the minimum support threshold is 0.005%, if we try to
optimize the candidate generation process by using only MaxW in the database,
it checks 63, 490 patterns. In contrast, mining with our MPWS pruning checks
only 21, 592 patterns. With only 21, 408 actual candidate patterns, our MPWS
pruning significantly reduces the number of tested patterns to close to the num-
ber of actual candidate patterns. Moreover, our MPWS pruning is observed not
to test more patterns than the traditional MaxW pruning. In fact, our MPWS
pruning is guaranteed to test no more patterns than the traditional MaxW prun-
ing.

6 Conclusions

In this paper, we solved two important problems in time series pattern mining.
Our dynamic tree based solution to handle sliding window in time series (DTSW)
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is an algorithm for solving the sliding window problem. Our maximum possible
weighted support (MPWS) pruning is a technique that reduces the number of
patterns to be tested for candidacy. Both solutions are shown to be more efficient
than existing approaches. Note that both of these solutions are independent
of each other and can be used as two separate modules. Specifially, our first
contribution—namely, DTSW —is an algorithm to dynamically update suffix
tree. It is adaptable to run time dynamic window size, and is applicable for
both weighted and unweighted framework. It solves the challenge of dynamic
time series data. Our second contribution—namely, MPWS—can be used in
different kinds of weighted pattern mining (with necessary modifications) in
place of traditional MaxW because of its unique style for approximating an
upper bound. As ongoing and future work, we are extending our solutions using
dynamic weights in time series.
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Abstract. We present a method of finding clusters with the property of mutual 

symmetry of the data pattern structure in parallel coordinates. The description 

of the method and the implementing algorithm is given. Clear-cut examples of 

identifying the symmetry of the data structure are considered using the exam-

ples of “Balance Scale Data Set”, “Car Data Set”, and “Pollen Data Set” on the 

one hand, as well as the capabilities and specific aspects of the method for Vis-

ual Data Mining purposes on the other hand. The conclusion contains the main 

results obtained in the course of experimental verification with regard to the 

properties of the analyzed objects, reflected by the structure of their data. 

Keywords: Visual Data Mining; Pattern Analysis; Ordinal-Invariant Pattern 

Clustering; Cluster Analysis; Symmetry of Data Structure 

1 Pattern Analysis 

1.1 Introduction 

The need to analyze multi-factor objects in difficult to formulate areas as sociology, 

political science, economics, and others contributed to the active development of tools 

and individual areas of Visual Data Mining. One of these already proven directions is 

the method of parallel coordinates [5, 6]. Its main idea consists of having some set of 

objects under study: each object is characterized by a set of m parameters written in a 

vector form as pi = (pi1, pi2, …, pij, …, pim) where pij is the value of the j-th parameter 

of the i-th object. For the purpose of data analysis, a graphical representation of the 

object in parallel coordinates is used. This representation uses m parallel, usually 

vertical and uniformly distributed coordinate axes, each of which reflects one of the 

selected parameters. The object is depicted as polylines with vertices on the coordi-

nate axes. Such a graphical representation of the data allows to study and visually 

analyze polylines, and in particular, combining objects into separate groups (clusters), 

based on the monotony of polylines [6]. This method has successfully established 

itself in solving applied problems of macroeconomics, banking, political science [1-

3]. However, it should be noted that the type of polylines significantly depends on the 



order of the coordinate axes, which in some cases leads to ambiguity of the clustering 

results [7]. 

This paper focuses on the search for clusters with polylines of mutual symmetry, 

which should not be violated with a change in the order of the coordinate axes. There-

fore, further, the analysis relies on the clustering method that provides this property. 

The semantic content reflected in each individual case by the property of mutual 

symmetry represents separate interest. 

1.2 Ordinal-Invariant Pattern Clustering 

The main idea of ordinal-invariant pattern clustering is to search and merge objects 

that do not change their affiliation to the cluster (i.e., keep the polylines monotonous) 

for any change in the sequence of coordinate axes when the object is displayed in 

parallel coordinates [8, 9]. 

The clustering procedure, the result of which does not depend on the sequence of 

coordinate axes of the indicators of the objects under study, will be called “ordinal-

invariant pattern clustering”. The clusters obtained as a result of its use, respectively, 

are fairly ordinal-invariant pattern-clusters. The theorem presented below formulates 

an important property of ordinal-invariant pattern-clusters. 

Theorem. Ordinal-invariant pattern-clusters do not intersect. In other words, one 

data line cannot belong to two different ordinal-invariant pattern-clusters. The proof 

of the theorem is presented in [9]. 

The theorem actually determines the uniqueness of ordinal-invariant pattern clus-

tering, and therefore has an important application both for the construction of an algo-

rithm for its implementation and for the development of individual applications. 

2 Ordinal-Invariant Pattern-Clusters with Mutually Symmetric 

Structure 

The purpose of this section is to demonstrate (by the example of widely known, 

practically, “academic” data sets) the existence of clusters with a symmetrical struc-

ture of patterns, on the one hand, and certain aspects of the proposed method for Vis-

ual Data Mining purposes, on the other. For these purposes, the following data sets 

have been used: 

 "Balance Scale Data Set" [11, 14];

 “Car Data Set” [15]; and

 “Pollen Data Set” [16].

2.1 Balance Scale Data Set 

The Balance Scale Data Set was generated to simulate psychological experiments 

described by Robert Siegler [11]. The source data table contains 625 rows. Each line 
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reflects the values of five parameters (p0, p1, p2, p3, p4), which characterize the param-

eters and state of the balance scale apparatus (see Fig. 1). 

Fig. 1. The balance scale apparatus (adapted to text from [11]). 

The parameter р0 = {“B”, “L”, “R”} characterizes the state of the apparatus: bal-

ance (B); downward deviation of the left (L) or right (R). 

The remaining parameters p1, p2, p3 and p4 take integer values from one to five and 

characterize: 

 р1 = {1, 2, 3, 4, 5} – the number of weight units of the left side;

 р2 = {1, 2, 3, 4, 5} – the distance from the fulcrum to the left;

 р3 = {1, 2, 3, 4, 5} – the number of weight units of the right side;

 p4 = {1, 2, 3, 4, 5} – the distance from the fulcrum to the right.

The source data set contains 49 lines corresponding to the state “B” (balance); 288

- state "L" (deviation to the left); and 288 - the state of "R" (deviation to the right).

The purpose of the experiment: demonstrate the individual capabilities of the ordi-

nal-invariant pattern clustering for visual analysis of data when solving the Data Min-

ing problem and identify clusters that have the symmetry property of data patterns, 

using the “Balance Scale Data Set”. 

The result of the ordinal-invariant pattern clustering procedure was the division of 

the original “Balance Scale Data Set” into a plurality of ordinal-invariant pattern-

clusters with a number of visually distinctive features that allow them to be divided 

into three groups. 

First of all, the group of ordinal-invariant pattern-clusters is distinguished, for 

which the absolute symmetry of the right and left parts of the polylines is characteris-

tic (see Fig. 2). In total, this group combines 45 out of 49 lines corresponding to the 

state “B” (balance). 

Fig. 2. Examples of polylines of ordinal-invariant pattern-clusters corresponding to the state of 

"Balance" (B). They are characterized by a symmetrical shape of the right and left parts of 

polylines. 

135



The remaining set of clusters is visually subdivided into four groups with the fol-

lowing distinct feature: each cluster of one group can indicate its corresponding clus-

ters of the other three groups that have a mirror-symmetric form of polylines relative 

to vertical and horizontal axes (see Fig. 3). 

Fig. 3. Four ordinal-invariant pattern-clusters characterized by a mirror-symmetric form of 

polylines. 

It is important to note that almost all ordinal-invariant pattern-clusters contained 

objects of only one type: “B”, “L” or “R”. The exception was made only by four ob-

jects of group "B" (Balance). Unlike other objects of this group, they were ranked as 

clusters containing objects with a mirror-symmetric form of polylines (see Fig. 4). 

Fig. 4. Four objects of the group "B" are characterized in pairs mirror-symmetrical form of 

polylines (a) - (b) and (c) - (d). 
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Thus, the application of the procedure of the ordinal-invariant pattern clustering to 

the Balance Scale Data Set made it possible to divide the total amount of data into 

three groups corresponding to three different states of the original object (the balance 

scale apparatus): balance, deviation to the left, and deviation to the right. The appear-

ance of the polylines allows us to make an assumption about the presence of certain 

symmetric properties of the original object. 

2.2 Car Data Set 

This dataset contains the technical specifications of automobiles produced by vari-

ous companies in the USA, Europe, and Japan from 1970 to 1982. The dataset was 

created by Ernesto Ramos and David Donoho and first presented at the American 

Statistical Association Data Exposition in 1983. 

Description of the source dataset. The source data table contains 406 rows. Each 

line reflects the values of 9 parameters (p0, p1, p2, p3, p4, p5, p6, p7, p8), which charac-

terize the following vehicle parameters: 

Parameter p0 reflects the car model. The parameters p1, p2, p3, p4, p5 and p6 take 

numerical values and describe the technical characteristics of the car: 

 p1 – MPG (fuel consumption: miles per halon);

 p2 – number of cylinders;

 p3 – engine displacement: cubic feet;

 p4 – horsepower (power in hp);

 p5 – car weight (lbs);

 p6 – acceleration time from 0 to 60 miles per hour (sec.).

Parameters p7 and p8 characterize:

 p7 – model year of release;

 p8 – origin (USA, Europe or Japan).

Background experimental research. Visual analysis of large amounts of infor-

mation and the identification of individual groups with similar features in it is sub-

stantially harder due to the presence of clutter in the image when displaying a signifi-

cant amount of data. As an example, we present a graphical representation of the “Car 

Data Set” in parallel coordinates (Fig. 5). 

Fig. 5. Graphical representation of the normalized “Car Data Set” in parallel coordinates. 
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The article [10] is dedicated to image clutter reduction with the aim of facilitating 

visual analysis using the example of the “Car Data Set”. However, clutter reduction 

does not completely solve the problem, since the very presence of clutter is primarily 

due to the display and interposition of large amounts of different types of graphic 

data. 

The purpose of the experiment: demonstrate the capabilities of the considered 

method to reduce the clutters of data visualization and identify mutually symmetric 

structures, using "Car Data Set". 

The results of the experiment. Clustering was carried out according to the technical 

characteristics of cars p1, p2, p3, p4, p5 and p6, expressed in normalized values in the 

range [0-1]: 

𝑝𝑖𝑛 =
𝑝𝑖𝑗 − 𝑝𝑖 𝑚𝑖𝑛

𝑝𝑖 𝑚𝑎𝑥 − 𝑝𝑖 𝑚𝑖𝑛
, (1) 

where: pi min = minj(pij), pi max = maxj(pij) | i = 1, …, 6; j = 1, …, 406. 

The result was a partition of the original set into a number of clusters, examples of 

which are shown in the Fig. 6. 

Fig. 6. Visually distinct types of patterns: (a) polylines, convex upwards and their variations; 

(b) polylines, convex down and their variations; (c) “intermediate” types of polylines.
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These figures demonstrate a significant clutter reduction in image, which is a con-

sequence of two factors: 

 division of the initial set into a number of clusters containing structurally similar

data;

 relatively small (compared to the initial set) number of data in each cluster.

Assessing the possibility of using the results of ordinal-invariant pattern clustering 

for the purposes of Visual Data Mining, it should be noted that the following typical 

types of patterns are highlighted (see Fig. 6): 

 patterns of allocated clusters have the form of polylines, convex upwards. These

clusters are typical for the early 1970s USA cars. Modification of individual pa-

rameters of cars produced in subsequent years reflected in the variation of the pat-

tern, as shown in Fig. 6a;

 another type of visually distinguished pattern has the character directly opposite to

the previous one and is represented by a polyline, convex downwards. Allocated

clusters are typical for a number of car models produced in Europe, Japan, and the

USA since the second half of the 1970s. As in the previous case, the modification

of individual parameters of cars produced in subsequent years was reflected in the

variation of the pattern, as shown in Fig. 6b.

 the third type of pattern is “intermediate” between those considered above. It is

characterized both by clusters containing data of automobiles produced only in the

USA, and clusters in which automobiles of various countries are represented (Fig.

6c).

The observed symmetry of the data structure (polylines convex up and down) re-

flects various approaches in creating individual car models in the USA, Europe, and 

Japan of that time. In the USA, with high energy resources, powerful and heavy car 

models were actively produced, requiring the use of 8 (in some models, 6) cylinder 

engines, high fuel consumption, and low acceleration during gaining speed. Such 

models are characterized by polylines, convex upwards (Fig. 6a). In Europe and Ja-

pan, preference was given to lighter and more “nimble” car models, using 4 (in some 

models, even 3) cylinder engines that do not require such high fuel consumption. 

They are characterized by polylines, convex down (Fig. 6b). The development of the 

automotive industry led to the convergence of these various approaches, reflected in 

the form of patterns (Fig. 6c). 

2.3 Pollen Data Set 

Pollen Data Set is a synthetic data created by David Coleman at RCA Laboratories 

in Princeton, New Jersey. 

Description of the source dataset. The source data table contains 3,848 rows. Each 

line reflects the values of six parameters (p1, p2, p3, p4, p5, p6), the last of which, p6, is 

an additional parameter, reflecting the line number in the data set. According to the 

description of the variables p1 – p5, given by the author, “the variables were given 

139



entirely fictitious names” and they conditionally characterize the geometric dimen-

sions along the x, y, z axes, the mass and density of pollen grains: 

 p1 – ridge;

 p2 – nub;

 p3 – crack;

 p4 – weight;

 p5 – density;

 p6 – observation number (for convenience).

The purpose of the experiment: demonstrate the capabilities of the considered

method for large amounts of data, using Pollen Data Set. 

Background experimental research. The “Pollen Data Set” is synthetic, i.e. belongs 

to the class of artificially formed sets for which it is difficult to expect the presence of 

clusters with a mutually symmetric data structure. We also note the complexity of 

visual analysis in parallel coordinates, which is associated with a large volume and 

high density of data (see Fig. 7a). The use of grayscale intensities in the image pro-

posed in [13], allowed to partially solve this problem and improve the visual presenta-

tion (see Fig. 7b). 

Fig. 7. a) Visualization of Pollen data set; b) Visualization of the same data set, with the inten-

sity of the grey levels set proportionally to the superimposition of the polylines over a black 

background [13]. 

The method was further developed in [4], where the authors proposed interactive 

algorithms “Interactive Parallel Coordinates Frequency Plot” and “Interactive Parallel 

Coordinates Density Plot”, in which the gray intensity levels are determined by ana-

lyzing the frequency and density of image areas. An example of applying the Interac-

tive Parallel Coordinates Density Plot algorithm to the Pollen Data Set is shown in 

Fig. 8. 

A visual analysis of Fig. 7b and Fig. 8b allows us to assume that there are clusters 

with a symmetrical structure of patterns in the Pollen Data Set. 
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Fig. 8. a) Visualization of Pollen data using the IPC Density Plot with the intervals along the 

axes being selected by the user; b) Zoom of the selected records [4]. 

The results of the experiment confirmed the presence in the considered set of clus-

ters with a mutually symmetric structure of data patterns, which is reflected in Fig. 9. 

Fig. 9. Examples of mutual symmetry of the pattern structure of ordinal-invariant pattern-

clusters in Pollen Data Set. 

The presence of such structures with a sufficiently large number of elements is due 

to the method used to form the Pollen Data Set. According to the description, one of 

the stages was that after forming part of this set (part A), its second (part B) was ob-

tained by inverting the sign in three of the five variables of part A, which in fact 

meant mirroring this parameter relative to the zero point of the corresponding axis. 

2.4 Finding Patterns with a Mutually Symmetric of Data Structure 

Let us consider the selection of clusters with a mutually symmetric structure of pat-

terns for a given order of coordinate axes. The solution of the problem consists of two 
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stages. At the first stage, the ordinal-invariant pattern clustering of the initial data set 

is performed. Each cluster, in this case, contains data that is graphically represented in 

parallel coordinates by monotonous polylines. By virtue of the ordinal invariance of 

clusters, co-monotonicity is preserved for any sequence of coordinate axes. A detailed 

description of the ordinal-invariant pattern clustering algorithm, which is necessary 

for the implementation of the first stage, is given in [9]. 

At the second stage, the cluster is searched, having the property of mutual sym-

metry of the structure of their polylines. For a small number of formed clusters, the 

search can be performed visually. For large sets, it is advisable to use the automatic 

search. We take into account that each cluster formed at the first stage contains a set 

of data graphically represented in parallel coordinates in the form of co-monotone 

polylines. A general view of the polylines of each cluster can be described by a code 

sequence, where each parameter (“A”, “B” or “C”) characterizes slope category on a 

separate interval [7], see Fig. 10. 

Fig. 10. (a) Slope category A, B, and C of data sets in Parallel coordinates; (b) Polylines repre-

senting various patterns [7]. 

To search for a cluster containing an inverse (relative to the horizontal axis) form of a 

polyline, we should form the “inverse” code sequence of parameters that characterizes 

it, replacing the symbols “A” with “C”, and “C” with “A” (leaving the symbol “B” 

without change). 

We turn to the question of finding clusters that retain the mutual symmetry proper-

ty, regardless of the order of the coordinate axes. For this purpose, we choose an arbi-

trary object of the first ordinal-invariant pattern-cluster (Сluster 1), and arrange its 

parameters in a non-decreasing sequence. Let us set the given sequence for coordinate 

axes. In this case, the polylines of the objects will have the form of a non-decreasing 

graphic and is described by a code sequence containing only the parameters “B” and 

“C” (due to the co-monotonicity of the polylines, all other objects of this cluster are 

also described by this sequence). Constructing an “inverse” code sequence, as de-

scribed above (i.e., changing the “C” symbol to “A” and leaving the “B” symbol un-

changed), we obtain a code sequence describing Cluster 2 objects. The form of the 

graphs of these objects will have non-increasing polyline. We show that the inverse 

character of the code sequence will be preserved for any other sequence of coordinate 

axes. Indeed, consider two objects e1 = (a1, a2, a3, …, an) and e2 = (b1, b2, b3, …, bn) 

belonging to, respectively, Cluster 1 and Cluster 2. 
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According to the condition, the object's parameters are arranged in a non-

decreasing sequence: 

𝑎1 ≤ 𝑎2 ≤ 𝑎3 ≤ ⋯ ≤ 𝑎𝑛 ,

whence it follows that for any values of k, l, and m (𝑘, 𝑙, 𝑚 ∈ [1, 2, … , 𝑛]), the ine-

qualities hold: 

𝑎𝑘 ≤ 𝑎𝑚 𝑖𝑓 𝑘 < 𝑚;
𝑎𝑙 ≥ 𝑎𝑚  𝑖𝑓 𝑙 > 𝑚.

For the parameters of the object e2, the nature of inequalities is the opposite: 

𝑏1 ≥ 𝑏2 ≥ 𝑏3 ≥ ⋯ ≥ 𝑏𝑛,

whence it follows that: 

𝑏𝑘 ≤ 𝑏𝑚  𝑖𝑓 𝑘 < 𝑚;
𝑏𝑙 ≥ 𝑏𝑚  𝑖𝑓 𝑙 > 𝑚.

It can be seen that the nature of the inequalities described above is of an opposite 

nature for any values of k, l, and m (𝑘, 𝑙, 𝑚 ∈ [1, 2, … , 𝑛])which means the presence 

of this property for any arrangement of the coordinate axes. 

As an illustration, Fig.11a shows four two ordinal-invariant pattern-clusters with a 

mutually symmetric structure. Changing the order of the coordinate axes changes the 

shape of the graphs, but does not violate their symmetry, see Fig. 11b. 

Fig. 11. (a) Two ordinal-invariant pattern-clusters with a mutually symmetric structure; (b) 

Changing the order of the coordinate axes changes the appearance of the graphs, but does not 

change their symmetry. 

We note the following features of the method described above. 

1. Unambiguity. This property is ensured by the uniqueness of the results of the

ordinal-invariant pattern clustering, on the one hand, and the uniqueness of the proce-

dure for finding symmetric structures of data patterns, proved above, on the other. 
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2. The number of clusters (at the first stage of the algorithm) is not predetermined

in advance and is determined automatically during the operation of the clustering 

procedure. The number of clusters with a symmetric structure of data patterns (out-

lined in the second stage) is determined by the presence of such structures in the ini-

tial set, properties of the studied objects, reflected in the structure of the source data. 

3. The data should be presented in numerical form. If individual parameters are

specified in different metric units or ranges, it is advisable to present them in a nor-

malized form, defined by expression (1). 

3 Conclusion 

This work lies in the general course of work related to the study of the properties 

and applications of the ordinal-invariant pattern clustering [8, 9]. The article deals 

with the search and selection of clusters with the property of mutual symmetry of the 

structure of their patterns. The proposed algorithm allows you to select a mirror or 

visually symmetric structure in a large amount of data and high image clutter. At the 

same time, the symmetry of the patterns is preserved for any order of coordinate axes. 

The results of applying the described method are given using the examples of the 

Balance Scale Data Set, Car Data Set, and Pollen Data Set. It is noted that in each 

considered example, the symmetry of the patterns had a certain semantic content: 

 for Balance Scale Data Set, the mirror symmetry of the patterns reflected the sym-

metry of the object itself - the balance scale apparatus;

 for Car Data Set, symmetry of patterns reflected two different trends of the 70s

when creating cars: heavy and powerful prestigious cars with high fuel consump-

tion (USA), and less powerful, but lighter and “nimble” cars with relatively low

fuel consumption (Europe, Japan, USA). The data set reflected the presence of “in-

termediate” models, partially incorporating features of both trends;

 for Pollen Data Set, the presence of clusters with a symmetrical structure reflected

the features of the data set generation algorithm.

The considered examples demonstrate the potential for extracting additional infor-

mation about objects based on an analysis of the structure of the data generated by 

them. Note also that the visually distinguishing features are close to those with which 

a person operates. This feature allows you to consider the possibility of using the 

described method, for example, in systems modeling "human" choice. 
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Abstract. Machine learning and computational intelligence have facil-
itated the development of recommendation systems for a broad range
of domains. Such recommendations are based on contextual information
that is explicitly provided or pervasively collected. Recommendation sys-
tems often improve decision-making or increase the efficacy of a task.
Real-time strategy (RTS) games are one domain where computationally
determined recommendations for moves that a player should, and should
not, make can provide a competitive advantage. The goal of our research
is to develop an accurate predictive recommendation system for multi-
player strategic games that is based on frequent subgraph mining. Herein
we present that approach and validate it using the historical data of one
RTS game.

Keywords: Graph mining · Game mining · Recommendation system.

1 Introduction

The ever-increasing expansion of information and communications technology
has initiated a new era for the development of recommendation systems for a
wide variety of application domains (e.g., entertainment, E-commerce, E-Health,
etc.); see Fig. 1. Recommendations could be for products or services that a
customer might consider purchasing, treatments that a doctor might consider
prescribing for a patient, or a sequence of actions that a robot should perform
in a certain situation. Typically, the recommendations are based on an analysis
of historical data, often characterized as positive and negative examples for the
recommendation scenario. In order to be of value, recommendation systems must
have high predictive accuracy.

Another venue where recommendation systems can be valuable is strategic
games. Players have long been interested in studying previously played games to
try to discern which moves are advantageous to make and which moves should be



Recommender Systems 
Application 

Entertainment Content E-health E-commerce Services

Amazon, ebay, .. etc TripAdvisorGroupLens Patients like meRingo

Fig. 1: Recommender System Classification.

avoided. With the current widespread interest in online, real-time strategy (RTS)
games, which can involve a diverse and complex set of entities and functionality,
determining which moves to make (and which not to make) can be extremely
challenging. Fortunately, there are several databases of played games that can
be analyzed to glean some insight.

In this study, we develop a predictive recommendation system for strategic
multiplayer games that is based on graph mining. Using a database of played
games, we model each of those games as a directed graph, and use frequent sub-
graph mining to look for patterns of moves that occurred frequently in winning
games; these form the basis of our recommendations for moves that a player
should make. Similarly, we look for patterns of moves that occurred frequently
in losing games; those become the basis of our recommendations for moves that
a player should not make. We test the accuracy of our method by repeatedly
partitioning our database of played games into training and test datasets, and
testing for the occurrence of true positives, true negatives, false positives, and
false negatives. We also compare our method to an alternative approach, frequent
sequence mining.

The organization of this paper is as follows. Section 2 provides a brief dis-
cussion of the main topics in this paper: game data mining, frequent subgraph
mining, and frequent sequence mining. The particular algorithm that we used for
frequent subgraph mining is explained in more depth in Section 3. A description
of the RTS game data that we used for testing our method is provided in Section
4. Our experimental method and results are discussed in Section 5. A summary
of this research and consideration of future work is discussed in Section 6.

2 Background

In this section we briefly discuss some of the related work that has been done in
the fields of game data mining, frequent subgraph mining, and frequent sequence
mining.
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2.1 Game Data Mining

One objective of game data mining is to analyze a collection of played games and
find patterns of moves that were made in winning (and possibly losing) games.
Game data mining was the main focus of research in [1,2,3]. In [2] a method,
Playtracer, for game analysis and improvement was proposed. A multidimen-
sional scaling strategy was applied to cluster players and game states, and a
detailed visual representation of the paths taken by players during the game was
provided. Specifically, Classical Multidimensional Scaling (CMDS) [4] was used
in order to visualize the paths. The Playtracer method showed mutual ways that
players succeeded and failed, and enabled tracking a specific player’s progress
across multiple levels.

Two widely used data mining techniques, Classification and Regression Trees
(CART) and artificial neural networks, were utilized in [3] to analyze a collection
of game data (i.e., STEAM) for predictive purposes. CART is a decision tree
algorithm that aims to build a predictive model based on the values of several
inputs. Artificial neural networks also attempt to discover new patterns from
inputs by subjecting them to a repetitive learning process. The aim of this study
was to predict what should be followed as accurately as possible. Their method
relied on the analysis of the online reviews (e.g. number of screenshots, number
of reviews of a specific action) to achieve their objectives.

2.2 Frequent Subgraph Mining

Given a single (directed or undirected) graph, it can be useful to know which
subgraphs occur at least n times where n is a user-specified threshold for fre-
quency. Similarly, given a collection of graphs and a frequency threshold n, it
may be important to know which subgraphs occur in at least n of those graphs.
The process of answering this question is called frequent subgraph mining.

Several methods for frequent subgraph mining were presented in [5,6,7,8].
An algorithm that finds only maximal frequent subgraphs from a collection of
graphs was given in [5]. This method consists of two basic steps: (1) from a
collection of graphs, all frequent trees (i.e., undirected graphs in which any two
vertices are connected by exactly one path) are first found; (2) from the mined
trees, maximal subgraphs then are constructed. This strategy can significantly
reduce the size of the result set.

Another method was proposed in [6] to only find closed frequent graph pat-
terns instead of mining all subgraphs. The main idea behind this method was to
consider the graph g closed when it is not possible to find a proper supergraph
of g with the same support (i.e., frequency) as g.

An algorithm named Fast Frequent Subgraph Mining (FFSM) was developed
in [7]. The strategy in that work was to reduce the number of redundant can-
didate subgraphs that are examined by utilizing specialized operations (called
FFSMJoin and FFSM-Extension) to generate the candidate subgraphs.

A technique for finding frequent subgraphs in a large sparse graph was pro-
posed in [8]. In that work, two approaches for exploring the search space of
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subgraphs were examined. A breadth-first approach was employed in their first
algorithm, HSI-GRAM, examining the search space for frequent subgraphs in a
horizontal way. A depth-first approach was employed in their second algorithm,
VSIGRAM, to explore the search space in a vertical fashion when looking for
frequent subgraphs.

Amongst many of the frequent subgraph mining algorithms that have been
developed, computationally expensive extension/joining operations (to create
larger candidate subgraphs from smaller frequent subgraphs) and false positive
pruning (to reduce the search space) have been the biggest challenges that re-
searchers have tried to address. Unfortunately, most methods have been limited
to only working on a single graph or a collection of graphs, but not being appli-
cable to both settings.

Frequent subgraph mining is a reasonable approach to consider for game
mining. Each played game can be represented as a directed graph, wherein a
vertex represents a move made by a player in that game and an edge represents
two consecutive moves. It then could prove useful to identify subgraphs (i.e.,
sequences of moves) that frequently occur in the collection of graphs (i.e., played
games).

2.3 Frequent Sequence Mining

Frequent sequence mining is used to find a set of patterns amongst a collection of
instances that specify a sequence (e.g., a list) of items. This methodology can be
used for diverse types of data; in [9] it was used to look for patterns in sequences
of speech and bio-signals based on methods proposed in [10].

In [11], researchers proposed an algorithm called Sequential Pattern Discov-
ery using Equivalence classes (SPADE). It starts by computing the frequencies
of single-item sequences. In the next step, it counts the frequency of two-item
sequences using a bi-dimensional matrix to count the number of sequences for
each pair of items. Subsequent n-item sequences are processed by joining (n−1)-
item sequences using lists of ids representing other objects. The size of those ids
lists is the number of sequences in which an item appears.

A disadvantage to frequent sequence mining algorithms is that the results
(i.e., the most frequently occurring sequences) do not list the items in the same
order that they may have appeared in an instance’s sequence in the dataset;
the method does not care about the order in which an item appeared in an
instance’s sequence, it simply cares about whether or not the item occurred in
the instance’s sequence. Nonetheless this method can potentially provide some
predictive recommendations from a strategic game dataset where each game can
be viewed as sequences of moves by a winner and a loser.

3 Methodology: Frequent Subgraph Mining

The primary data mining technique that we used to develop a predictive recom-
mendation system for strategic games was frequent subgraph mining. As men-
tioned in the previous section, we modeled each played game as a graph where a
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vertex represented a move in the game and an edge represented two consecutive
moves. A game graph was not a strictly linear sequence of edges because some
moves in turn generated multiple moves (e.g., a move could create a monster
that would in turn propagate additional monsters, each of which would result in
a new vertex and edge). We then analyzed the collection of graphs (a dataset of
played games) to find frequent subgraphs: sequences of moves that were common
to several winners’ games and sequences of moves that were common to several
losers’ games.

In this section we start by briefly providing some basic graph terminology
that will facilitate discussion of the particular frequent subgraph algorithm that
we utilized for our study.

3.1 Preliminaries

Let G = {G1, G2, ..., Gn} be a set of linear directed graphs which represents
the historical data in our case. Each Gi represents a single game’s moves, such
that Gi = (Vi, Ei) where Vi represents a node labeled as an action code of a
player’s move, while an edge in Ei represents two consecutive moves. A graph
T = (VT , ET ) is a subgraph of Gi = (Vi, Ei) iff VT ⊆ VGi

, ET ⊆ EGi
.

Definition Let T = (VT , ET ) be a subgraph of a graph Gi = (Vi, Ei). A
subgraph isomorphism of T to Gi is an injective function f : VT → VGi satisfying
(f(u), f(v)) ∈ EGi for all edges (u, v) ∈ ET . Intuitively, a subgraph isomorphism
is a mapping from VT to VGi

such that each edge in EGi
is mapped to a single

edge in ET and vice versa.
Problem (1) Given a set of graphs G, the frequent subgraph isomorphism

mining problem is defined as finding all subgraphs T in G such that tG(T ) ≥ τ ,
where tG(T ) is the number of graphs in G that contain T and τ is the user-
specified threshold.

Problem (2) Given a set of graphs G such that each Gi is divided into
three phases Gi1, Gi2, Gi3 and a frequent subgraph T , the frequent phase mining
problem is defined as finding all subgraphs T in Gij such that tGij

(T ) ≥ τ , where
τ is the user-specified threshold.

In our case, problem (2) counts the actual frequency (i.e., occurrences) of
each subgraph provided that it is greater than or equal to τ . However, this may
not be useful in various cases [12,8], while others necessitate the exact number
of occurrences (like graph indexing in [13]).

3.2 GraMi Algorithm

For the purpose of generating candidate subgraphs, a variety of frequent sub-
graph mining and subgraph extension algorithms have been developed, as dis-
cussed in previous work [14,8,15]. In particular, GraMi [15] is one of the most
efficient methods and is the foundation for the work presented in this paper. The
key ideas behind GraMi are briefly outlined here.

Algorithm 1 is used to find a set of all frequent edges fEdges in the collection
of graphs = {Gi=1,...,n} . All of these frequent edges have support greater than or
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equal to the assigned threshold τ . Because of the anti-monotone property, only
frequent edges will be considered when finding the frequent subgraphs. Algorithm
2 is given each frequent edge to extend it to a new frequent subgraph. This is
done by incorporating that edge with another subgraph. All extensions created
in previous iterations are excluded by utilizing the DFScode canonical form that
was introduced for gSpan [14]. The set Candidate in Algorithm 2 will include all
the new subgraph extensions that had not been considered in prior iterations.
In subsequent steps, any new subgraph extension within the set Candidate that
does not meet the support threshold τ requirement will be discarded. If any of
those subgraphs had been extended, they would produce a new non-frequent
subgraph according to the anti-monotonic property.

Algorithm 1 Frequent Subgraph Mining - FSM

1: Input G = {Gi=1,...,n} and frequency threshold τ
2: Output All fSubgraphs S(Gi) with the support ≥ τ
3: fSubgraphs← ∅
4: Count = 0
5: for each edge eGi do
6: if eGi = eGi+1 then
7: Count+ +
8: end
9: if Count ≥ τ then

10: fEdges← fEdges ∪ eGi

11: end
12: end
13: for each e ∈ fEdges do
14: fSubgraphs← fSubgraphs ∪ SubE(e,G, τ, fEdges)
15: Remove e from G and fEdges
16: end
17: return fSubgraphs

3.3 Using Frequent Subgraphs to Make Recommendations

In this section we discuss the algorithms that we utilized in order to mine the
game dataset for frequent subgraphs and build a recommendation system. The
task of finding the number of occurrences for each subgraph was carried out
using Algorithm 3. The mechanism for node-finding was used for matching the
first node of a candidate subgraph with its occurrence in the original dataset.
The objective of this process was to determine the starting point for conducting
a depth-first search (DFSearch) to find all similar subgraphs in the winner (or
loser) graph collection. These results were stored temporarily in a temp set to
compute their replication in the subsequent steps, and then the final result was
placed within ExactFSG set.
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Algorithm 2 Subgraph Extension - SubE

1: Input fSubgraph S, fEdges, and threshold τ
2: Output All fSubnew with the support ≥ τ
3: fSubnew ← ∅
4: Candidate ← ∅
5: for each e ∈ fEdges and n ∈ fSubgraph do
6: if e fit to extend n then
7: Generate a new subgraph ExtS
8: if ExtS exist in G and not generated before then
9: Candidate← Candidate ∪ ExtS

10: else
11: remove ExtS
12: end
13: end
14: for each ExtS ∈ Candidate do
15: if ExtS count in G ≥ τ then
16: fSubnew ← fSubnew ∪ SubE(ExtS,G, τ, fEdges)
17: end
18: return fSubnew

It was decided that the recommendation system might be more useful if the
moves were analyzed for three phases of the game: the beginning of the game,
the middle of the game, and the end of the game. This is traditionally being done
for strategic games (i.g. chess) with the aim of analysis. Hence each game was
divided into the first third number of moves, the second third number of moves,
and the last third number of moves. Our work is not fixed to three phases; the
number of phases can be easily modified by making a small change in Algorithm 4
to handle k phases. The objective of Algorithm 4 was to determine the number of
occurrences of each individual subgraph considering in which phase of the game
the sequence of moves was made. Algorithm 4 takes the ExactFSG set that was
introduced by Algorithm 3 and facilitates the node-finding and DFSearch pro-
cess to determine the phase of each individual frequent subgraph in this set. The
node-finding mechanism was used a second time in subsequent steps, but only to
identify the first node identity, nodeID, of the candidate subgraph assigned to it
from the original dataset this time. It is worth mentioning that we consider the
majority of appearances to decide the phase of the frequent subgraph. It should
be noted that the subgraph nodes may straddle two consecutive phases. If so,
we report that subgraph as it appeared in two phases.

4 Data Description

Interloper is an online multiplayer real-time strategy (RTS) game [16]. The game
allows the creation and deployment of entities, and the destruction of an oppo-
nent’s entities. A player wins the game when the other player’s entities/assets
have been destroyed or the other player cannot create any more assets. A dataset
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Algorithm 3 Exact Subgraph Frequency

1: Input G = {Gi=1,...,n}, fSubgraphs, and τ
2: Output All the Exact Frequent Subgraph with their frequency
3: count = 0
4: for i = 1→ all graphs in (fSubgraphs) do
5: frq = 0
6: for j = 1→ all graphs in (G) do
7: if findnode(Gj , fSubgraphsi) 6= 0 do
8: temp← dfsearch(Gj , fSubgraphsi)
9: if temp ≥ size(fSubgraphsi) & isisomorphic(fSubgraphsi, Gj) do

10: frq + +
11: end
12: end
13: end
14: if frq ≥ τ do
15: count+ +
16: ExactFSG(count)← fSubgraphsi
17: end
18: end
19: return ExactFSG

of 19 played games involving 2 players was obtained for this study. Each player’s
move in the dataset was encoded with 15, 7, or 6 digits. The first two digits in a
code of length 15 or 7 represented the type of action (i.e., move); only the first
digit was used in a code of length 6 to represent the type of action. The last
four digits in all codes were used to represent a counter of each specific action.
The purpose of the counter was to produce a unique data item for each move in
the game. The middle eight digits in a code of length 15 was used to represent
the source and destination location when moving an entity. The player ID was
represented with the third digit in codes of lengths 15 and 7, and with the second
digit in codes of length 6.

For this study the dataset was separated into the winner’s moves and the
loser’s moves for each game. Because of the limited size of the dataset we obtained
(i.e., 19 games), a program was written to increase the number of games to 90
and 120 by randomly duplicating games. Our method was tested on both the
original dataset of size 19 and the larger datasets of sizes 90 and 120.

5 Experimental Evaluation

In this section we discuss the criteria by which we evaluated the performance
of our recommendation system. As noted above, we analyzed the game in terms
of three phases (i.e., beginning game, middle game, and end game) by dividing
each game into three equal parts; the total number of moves in a game (by both
the winner and the loser) ranged from 183 to 5,338. For each of the 3 phases
analyzed, 60% of the data were used for training and the remaining 40% were
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Algorithm 4 Majority of Subgraph Appearance

1: Input G = {Gi=1,...,n} and ExactFSG
2: Output Display each ExactFSG and the locate phase
3: count1 = 0, count2 = 0, count3 = 0
4: phase1 = 0, phase2 = 0, phase3 = 0, phase1&2 = 0, phase2&3 = 0
5: for i = 1→ all graphs in (ExactFSG) do
6: frq = 0
7: for j = 1→ all graphs in (G) do
8: phase = dsize(Gj)/3e
9: if findnode(Gj , ExactFSGi) 6= 0 do

10: temp← dfsearch(Gj , ExactFSGi)
11: if temp ≥ size(ExactFSG) & isisomorphic(fSubgraphsi, Gj) do
12: for k = 1→ size(ExactFSG) do
13: nodeID = findnode(Gj , ExactFSGi)
14: if nodeID ≤ phase do
15: count1 + +
16: elseif nodeID > phase & nodeID ≤ phase ∗ 2 do
17: count2 + +
18: else
19: count3 + +
20: end
21: end
22: end
23: end
24: if count1 6= 0 do
25: if count1 > count2 do
26: phase1 + +
27: elseif count1 < count2 do
28: phase2 + +
29: else do
30: phase1&2 + +
31: end
32: elseif count2 6= 0 do
33: if count2 > count3 do
34: phase2 + +
35: elseif count2 < count3 do
36: phase3 + +
37: else do
38: phase2&3 + +
39: end
40: else
41: phase3 + +
42: end
43: end
44: end
45: return phase result
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used for testing with k-fold cross-validation [17]. We measured precision and
recall, which are viewed as metrics of exactness and completeness of testing,
respectively. Equations 1 and 2 are the mathematical formulas for precision and
recall, respectively.

Precision =
True Positive

True Positive + False Positive
(1)

Recall =
True Positive

True Positive + False Negative
(2)

The trade-off between precision and recall was measured by using for an-
other metric named F-measure [17], which represents the harmonious mean
between precision and recall. The accuracy scale was applied to measure the
closeness of the measured value to the true value. Equations 3 and 4 are the
mathematical formulas of F-measure and accuracy, respectively.

F −measure = 2 ∗ Recall ∗ Precision
Recall + Precision

(3)

Accuracy =
True Positive + True Negative

True Positive + False Positive + False Negative + True Negative
(4)

5.1 Experiment and Results

In this section we present the results of analyzing the Interloper game dataset
using both frequent subgraph mining and frequent sequence mining. The algo-
rithms presented in Section 3 were (collectively) implemented in Matlab and
Java. SPADE (discussed in Section 2.3) was implemented in R. Our experiments
were executed on an Intel(R) Core(TM) i7-6700 CPU@3.40GHz computer with
32GB memory.

Tables 1 and 2 show some of the experimental results of frequent subgraph
mining using a threshold of 2 for the winner and loser datasets consisting of 19
games. The first and second columns show the actions in the frequent subgraphs
with their number of occurrences from the entire dataset, respectively. The tables
also list the phase of the game in which each frequent subgraph most often was
found. The fourth column in each table is a classification of the majority of
that subgraph’s actions; we classified that game’s actions as either offensive,
defensive, or movement (of an entity in the game space).
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Table 1: Winner Data
Winner Subgraph Frequency Majority of Appearance Classification

2810040 2810041 2810042 3 Second phase offensive

2810035 2810036 2810037 4 First phase offensive

2300171 2300172 2300173 2300174 3 Second and Third phase move

2300171 2300172 2300173 6 Second phase move

2810084 2810085 2810086 2810087 3 First and Second phase offensive

2810084 2810085 2810086 3 Third phase offensive

2500010 2500011 2500012 2 Third phase offensive

Table 2: Loser Data
Loser Subgraph Frequency Majority of Appearance Classification

2710003 2810015 2810017 3 First phase offensive

2810003 2810005 2710001 2 First phase offensive

2810024 2810026 2810028 6 First phase offensive

2810008 2810010 2810012 3 Third phase offensive

2510000 2510001 2510002 3 Third phase offensive

2310187 2310188 2310189 3 Second phase move

2310419 2310420 2310421 4 Third phase move

These results were obtained by performing 3-fold cross-validation, repeated
five times. Each time, for the 19-game dataset, 12 games were selected randomly
(without duplication) for training, and the remaining 7 games were used for
testing. The size of the resulting frequent subgraphs ranged from two nodes
with one edge to four nodes with three edges. All of the two-node subgraphs were
ignored because of the limited information they provide for the recommendation
objective (i.e., only two moves) compared to larger subgraphs.

Frequent subgraphs that were found in the winner graphs indicate actions
that are recommended for a player to do, whereas frequent subgraphs that were
found in the loser graphs indicate actions that are recommended that a player
should not do. The benefit of the counter attached to each action reflects the
relative number of times the player had made that type of move in that game.
Characterizing the actions, such as offensive or defensive, gives a general notion
of the strategy the player is employing in that sequence and would facilitate
mapping one game’s actions to another’s (e.g., mapping Interloper’s offensive
actions to StarCraft’s offensive actions).

Fig. 2 shows the precision, recall, and F-measure scores obtained for each
phase of the game that was analyzed. In order to ensure the fineness of the
results, three different sizes of datasets were tested: 19, 90, and 120 games. All of
these tests were subject to the same conditions of the 3-fold cross-validation with
five repetitions. Averages for these five repetitions were calculated to determine
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the final results of these metrics. Precision and recall can be affected when the
size of the input dataset increases. Despite this, our system did not experience
a significant difference in those results. Fig. 3 shows the comparison of average
accuracy for the different sized datasets.

Precision Recall F-museur

19 0.95455 0.91304 0.93333

90 0.99383 0.99613 0.99498

120 0.97321 0.98198 0.97758
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Fig. 2: Comparison of Average Precision, Recall and F-measure for Different
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We also utilized frequent sequence mining to analyze the Interloper game
data; specifically, we used an implementation of the SPADE algorithm discussed
in Section 2.3. The majority of the SPADE results (some of which are shown
in Table 3 for the 19-game dataset) were not consecutive sequences of actions
from games; they were simply lists of individual actions that had occurred in
some order in a majority of winners’ or losers’ games. While this was somewhat
informative, it was equivalent to if we had limited our frequent subgraph mining
to subgraphs of single vertices (no edges). Unfortunately, the highest support for
the results returned by SPADE was 0.5, meaning that only 50% of the games in
the tested dataset contained the reported list of actions. This was the case for
not only the 19-game dataset, but also the larger 90- and 120-game datasets.
Consequently, we did not feel that the predictive accuracy of the recommen-
dations we could make from these results would be high, and did not pursue
cross-validation testing.

Table 3: Portion of the SPADE Output for the 19-Games Dataset
Dataset Phase Support Subgraph

Winner 1 0.5
2300005 2300006
2300000 2300005 2300006
2300000 2300004 2300005 2300006

Winner 2 0.3 2700018

Winner 3 0 No result

Loser 1 0.4
2810003
2710007 2810003

Loser 2 0.2
2710017
2810064 2810066
2710017 2810064 2810066

Loser 3 0.2
600011
500010 600011
500010 600009 600011

6 Conclusion and Future Work

The use of recommendation systems has become widespread in our society. In
general, they examine historical data and try to predict what should be done
in the future. Herein we have applied a graph data mining technique, frequent
subgraph mining, to a strategy game dataset to develop a system that can pro-
vide recommendations about moves that a player should and should not make
in order to improve his/her chances of winning the game. As proof of concept,
we tested our system on a real-time strategy (RTS) game dataset, and achieved
very accurate results when we tested our recommendations. We also attempted
to apply another technique, frequent sequence mining, but did not find that it
provided as useful or accurate recommendations.
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In the future we plan on testing our approach on other RTS games such as
StarCraft, and will try to develop a generalized mapping scheme for action types
that will be applicable for the broader genre of RTS games. We then hope to
apply this approach to other problem domains that can map their entities and
actions to those of a strategic game in a broad semantic sense, where resources
are effectively created and destroyed, and where it would be beneficial to have
recommendations for optimal management of those resources.
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Abstract. This paper presents an empirical comparison of common ma-
chine learning and statistical methods applied to univariate time series
with the purpose of detecting anomalies. Based on the assumption that
anomalies are infrequently observed and non predictable states, we use
regression algorithms to identify these points. In particular we applied
random forests, support vector machines, k-nearest neighbour regression,
artificial neural networks, Gaussian Processes, Twitter’s anomaly detec-
tion method AdVec and an ARIMA model. Each algorithm is trained on
the complete dataset to learn normal behaviour where the default hyper-
parameters are used. To dismantle the unpredictable states the gener-
alized extreme studentized test is applied on the residuals. We compare
this method on publicly available data sets with labeled anomalies cov-
ering a total of 419 time series. Even though the training process of the
anomaly detection systems is unsupervised, the labels are available in the
datasets, so that well-established measures of classification accuracy are
applicable for evaluating the performance of the applied algorithms. The
results demonstrate that all algorithms show comparable performance
with a slight favor for Gaussian processes and support vector machines.
The simple method used here delivered an F1 score higher or equal to
0.8 in 36% of the time series data sets.

Keywords: Anomaly detection · univariate time series · machine learn-
ing

1 Introduction

Anomaly detection has received increasing attention with the progress of dig-
itization in private life and Industry 4.0. There are multiple application areas
ranging from detecting unusual user behaviour in social media or network intru-
sion detection to industrial applications, e.g. in production process control. These



diverse fields offer different definitions of anomalous data. What is common for
many of them is that anomalies are defined as observations which occur in-
frequently and are significantly different from other observations [13].
We differentiate between two groups of methods for finding anomalies:

1. Direct approaches like clustering, classification or distance/density based
methods: Anomalies are roughly considered to be either far away from clus-
ter centers, to form a very small class/cluster of its own, to be at far dis-
tance from their nearest neighbours [12], or to have a high probabilistic
distance [18].

2. Indirect or more precisely residual based approaches: The normal behavior is
learned and modeled. Based on these models, predictions are made and the
deviation between observed and predicted value is used to decide whether
an observation is anomalous.

Many direct anomaly detection methods are described in [13]. In addition, there
are some newer methods like hybrid isolation forests [21], which is a combination
of separating data points while simultaneously using the density of the data dis-
tribution. Another method is based on robust principal component analysis [23],
which is for example used for network intrusion detection. However, within this
paper we focus on residual based methods, where the creation of a prediction
model comes before the anomaly detection task. We use standard regression
methods and apply them on univariate time series where previously observed
points serve as input parameters [22]. The characteristics of a time series is that
it is ”a sequence of observation consecutive in time”, which leads to the formal
description of a time series [9] as a vector y = (yt1 , yt1 , ..., ytn) of n discrete ob-
servations at consecutive time points ti < ti+1 ∀i ∈ {1, ..., n}. In the following,
we will write yi instead of yti for simplicity of the notation. A popular method
for time series regression is based on auto regressive models and dates back to
the 1960s. These models use previous observed data points and assume a linear
relationship to the next instance. Autoregressive (integrated) moving average
(AR(I)MA) regression [9] is an extension for additional feature generation. As
an alternative, machine learning approaches can be applied to time series by
generating features for classification models [4] or using previous (transformed)
values as input variables [2,7].
There are a few other algorithms which are based on an residual approach and
are explicitly designed for anomaly detection in time series. Prominent examples
are Twitter’s AdVec algorithm [17] and Numenta’s anomaly detection method
based on hierarchical temporal memory [1]. We found that in industry the first
obstacle in anomaly detection is to label anomalous instances in existing data.
Therefore, the approach presented here is relevant for real world applications by
highlighting possible anomalies without extensive data pre-processing.
The remainder of this paper is structured as follows: The modeling algorithms
are introduced in section 2. Section 3 describes the data sets used for testing
and comparing algorithms. In section 4, the experimental results are presented
and discussed, and section 5 provides our conclusions and an outlook for future
research.
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2 Modelling Algorithms

In this paper, we follow the assumption that anomalies are unpredictable states
and therefore punctual and collective anomalies can be detected with a regres-
sion model. When learning a regression model based on a fixed small window w
of consecutive previous points with the goal to predict the next instance, each
regression method learns indirectly the small pattern of this window. A point
anomaly can be detected if the predicted value is significantly different from
the observed one. It is possible to detect collective anomalies if the small input
pattern has not been observed multiple times and therefore the prediction is
expected to deviate from the real observation. Because of the limitation of the
window size, deviations in pattern length which exceed the input window can
not be detected. Without analyzing and adapting to each time series this is a
compromise to make. In the simplistic approach used here we set w = 10, with
which the computations are still feasible. Given the time series y = (y1, ..., yn)
with window w = 10, we use {yi, ..., yi+w−1} as input to predict yi+w for all
i ∈ {1, ...., n− w}. This way we use all the data to fit a regression model in the
first step. Next, this model is used to predict the data it was fitted on. Each
method thereby fits the training data to its best of capabilities regarding its
default hyperparameter settings. Even though this is regarded as learning by
heart associated with overfitting, and normally cross-validation, separate test-
and training data set or leave-one-out approaches are common to prevent this
overfitting, we utilize this to detecting anomalies. We want the data to be learned
as much as possible by each algorithm and then thes the ability to detect unsu-
pervised anomalies without any pre-processing of the data set. After the model
is fit we obtain the predictions ŷw+1, ŷw+2, ..., ŷn. For flagging possible anomalies
we use the residuals ri = yi− ŷi (difference between observed value yi and model
prediction ŷi). We assume that the residual are approximately asymptotically
normal distributed. Given the set of residuals D = {ri}ni=w+1 = {yi − ŷi}ni=1,
the generalized extreme studentized deviate test (ESD) [25] is applied to detect
statistical outliers in D. The hypotheses of ESD are:

H0 : There are no anomalies in the data.

Ha : There are up to k percent of anomalies.

In ESD, only an upper bound is required for the suspected number of outliers and
not the exact number of outliers. The test is performed in an iterative manner:
in each step, the extreme value r∗ = arg maxri∈D |ri − r̄| with sample mean r̄ is
checked against the null hypothesis. The test statistic is:

R =
max {|ri − r̄| : ri ∈ D}

s
=
r∗

s
, (1)

where s is the sample standard deviation. At the significance level α, the test
statistic R is tested against the critical value:

λ =
(n− 1)tp,n−2

n
√

(n− 2 + t2p,n−2)
, p = 1− α

2n
, n = |D|, (2)
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with n denoting the size of the data set and tp,n−2 denoting the 100·p percentage
point of the t-distribution with n−2 degrees of freedom [25]. The null hypothesis
H0 is rejected when R > λ. Regardless of the decision on H0, the current extreme
value r∗ is removed from D and the same procedure is repeated on the remaining
n′ = n − 1 data points. The iteration stops when at most k percent of the
data points have been removed from the initial D. Outliers are the removed
data points on which the null hypothesis is rejected. The ESD procedure is
summarized in Alg. 1. In the following subsections, we will give a brief description
to the regression models used in our approach.

Algorithm 1 Generalized Extreme Studentized Deviate

1: procedure esd(k,D) . k: maximal percentage of anomalies; D: set of residuals
2: N ← dk|D|e, n← |D|
3: for i = 1, 2, . . . , N do
4: r̄ ← mean(D), s← std(D)
5: Ri ← max{|r − r̄| : r ∈ D}/s
6: Compute λi according to Eq. (2)
7: r∗i ← arg max{|rj − r̄| : rj ∈ D}
8: D ← D \ {r∗i }, n← n− 1
9: end for

10: Set q to the last index where Ri > λi is true
11: return {r∗1 , r∗2 , . . . , r∗q}
12: end procedure

2.1 Random Forest

Random Forest [10] is an ensemble of classification or regression trees [11], where
the tree is randomized to reduce the modeling variance as follows: 1) Each tree is
trained on bootstrap samples from the data and 2) only a random subset of input
features are chosen for the splitting procedure when growing each tree. As for
the overall prediction, the predictions from all trees are averaged for regression
tasks and a majority vote is taken for classification tasks.

2.2 Support Vector Machine

The support vector machine (SVM) [15] is originally proposed to perform a
binary classification task, where the optimal separating (hyper-)plane is obtained
by maximizing the distance between sharp linear boundaries of two classes. If
the problem is not linearly separable, the well-known kernel trick [8] is applied
to map the input into the high dimensional feature space (through the so-called
feature map), where the linearly separability is again attained.
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2.3 k-Nearest Neighbour Regression

k-Nearest Neighbour Regression (kNN regression) [3] is a proximity based algo-
rithm where the target value of a data point is estimated by the average value
of its k nearest neighbours. The proximity between data points is determined by
some distance metric, e.g., the Euclidean distance which is used in this paper.
In addition, a weighting scheme is commonly used in averaging target values of
the neighbours and the weight is scaled with respect to the proximity.

2.4 Artificial Neural Networks

Artificial Neural Networks (ANN) are structural machine learning algorithms
that are inspired by biological nervous systems [6]. The so-called feedforward
neural network model is adopted here. The feedforward neural network [26] con-
sists of multiple layers of artificial neurons which take inputs from the preceding
layer and feeds the output of some activation function to the next layer. A feed-
forward neural network (with more than two layers) is able to approximate any
continuous function, according to the Universal Approximation Theorem [16].

2.5 Gaussian Processes

The formal definition of Gaussian processes is that it is a ”collection of random
variables, any finite number of which have a joint Gaussian distribution” [24].
This Gaussian distribution is completely defined by its mean vector and its
covariance matrix, which are calculated based on the training data with applying
the kernel trick. However, the prediction is not solemnly based on this joint
Gaussian distribution results but also the minimization of the expected loss.
Through the covariance matrix this algorithm directly incorporates a uncertainty
measure for every prediction.

2.6 ARIMA

Auto Regressive Integrated Moving Average (ARIMA) [9] uses previously ob-
served data (AR) and the moving average (MA) of previous data points to model
not directly the output, but the d-th differenced output value (integrated). This
is done to derive a stationary time series, which is needed for being able to
extrapolate information gained on one section of the time series to the next.

2.7 AdVec

This algorithm developed by Twitter, also commonly referred to as AdVec
based on its R command AnomalyDetectionVector, decomposes the time series
using the seasonal-trend decomposition procedure based on LOESS regression
(STL) [14] and applies a form of the generalized ESD on the calculated residuals
on a time frame. Instead of taking the mean value the evaluation here uses the
median in the ESD test for a more robust estimation against outliers [17].
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Table 1. Summary of the Data sets

Data sets Number of Value range Number of
Observations Anomalies

Yahoo
A1 (67) min 741 0 0

max 1,461 7,845,760 12
A2 (100) min 1,421 -2,204 1

max 1,421 128,420 3
A3 (100) min 1,680 -7,988 1

max 1,680 7,006 16
A4 (100) min 1,680 -6,171 1

max 1,680 6,324 16
Numenta
Artificial w. Anomaly (6) min 4,032 -22 1

max 4,032 165 1
realAdExchange (6) min 1,538 0 1

max 1,643 16 4
realAWSCloudwatch (16) min 4,032 0 0

max 4,730 863,964,000 3
realKnownCause (7) min 1,882 0 2

max 22,695 39,197 5
realTraffic (5) min 1,127 0 1

max 2,500 5,578 4
realTweets (10) min 15,831 0 2

max 15,902 13,479 5

2.8 Ensemble Method

To use all aforementioned algorithm as an ensemble, the simple majority vote
method is taken, which predicts an anomaly if at least three of the methods
introduced in subsections 2.1-2.7 do so.

3 Data Sets

We use two publicly available anomaly detection data sets as benchmark, namely
the Yahoo S5 data set [19] and the Numenta data set [20]. These two main data
sets are divided into different classes, where each class contains multiple not
necessary related time series, which vary in length, value range and anomalies
contained as summarized in Table 1. They are briefly described in the following
sections.

3.1 Yahoo S5 Data Set

This data set is divided into four classes, named A1, A2, A3 and A4. While A1
consists of 67 real time series from computational services, the other three data
sets include each 100 artificially created time series with inserted anomalies and
of increasing difficulty. The value range and frequency is not comparable within
a class, so that each time series in a class is considered a separate data set. The
number of anomalies in each time series is between 0 and 16.

3.2 Numenta Data Set

The Numenta time series benchmark consists of 58 labeled data sets from differ-
ent domains with multiple anomalies. The domains range from social media chat-
ter to network utilization and also artificially generated data sets. The anomalies
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are labeled as such and an anomaly window is defined around them. We did not
include the artificial time series where no anomalies were present, and excluded
one of the network utilization data sets where the labeling was not clear. It is
also important to mention that either the root cause for the anomalies in the
Numenta benchmark is known, or anomalies were labeled according to “a result
of the well-defined NAB labeling procedure” [20]. As in the Yahoo S5 data set
each time series in a domain is considered a separate data set with number of
anomalies ranging from 0 to 5.

4 Experimental Results

We used standard R packages for all algorithms and the default parameter set-
tings where possible4.

4.1 Pre-processing Techniques

There are several different approaches for the setup of time series prediction
(e.g., see [7]). One approach is to decompose the time series into pattern and
features [4]. Therefore some kind of window size needs to be set. This parameter
can be optimized based on the precision of a model. But since the goal in this
paper is to find unsupervised anomalies and not to create a good prediction
model we did not apply these approaches. However, since time series are often
incorporated with seasonality, we used the partial auto correlation [9] to auto-
matically determine a window size. We chose a value for the window size which
was slightly higher than the highest correlated value at least 11 points away.
Because especially in the artificial Yahoo data set some periods lasted longer
than 200 points we chose equidistantly 10 points in such a period for the input
values of our regression model. However the F1 scores were a lot worse than
the ones presented in Table 2. Next to data operations like scaling, detrending,
log-transformation and normalization [2,5,29] we conducted another experiment
where we computed the first order differences of the time series and used these
as inputs. However, this did not improve the F1 scores so no pre-processing was
applied for our final results in Chapter 4.

To analyze the sensitivity of the approach based on w, we tested the window
sizes w ∈ {5, 10, 15, 20} and found that the results are insensitive to a choice
from those four values. However, to provide a consistent learning window, we
use w = 10 in the following.

4 More precisely: “ranger” for Random Forests with mtry set to 5, “e1071” for
SVM, “FNN” for k-nearest neighbours with k equals 10, “nnet” for the neural net-
work with 20 nodes, “kernlab” for Gaussian Processes, “forecast” for ARIMA and
github("twitter/AnomalyDetection") for AdVec with periodicity of 40, which was
found most useful in [27].
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4.2 Performance Metrics and Tests

After the regression models were trained and again used to predict the time
series, we calculated the residuals ri = yi − ŷi ∀i = 1, ..., n and applied the ESD
test on them. The ESD test here uses a significance level of α = 0.05 to find
at most 0.5% of the data set as anomalous. This small ratio of anomalies is the
same for all data sets and algorithms. In the AdVec algorithm a modified version
of ESD is already encoded, so that it is not reapplied.
In case of the Numenta data set not only punctual anomalies are given, but also
an anomaly window. This has an impact on the evaluation: The exact anomaly
does not necessarily have to be found; instead an anomaly is considered to be de-
tected if at least one observation in the anomaly window is labeled as an anomaly.
Furthermore, multiple points labeled as an anomaly in the same anomaly win-
dow do not affect the performance measure, whereas each point which is labeled
as an anomaly but is not within the window is considered as a false positive.

The following performance measures are used in our study:

1. True positives (TP): The number of anomalies correctly detected as such.
2. False positives (FP): The number of data points labeled by the underlying

algorithm as anomalies even though they are normal instances.
3. False negatives (FN): The number of anomalies that are not detected.
4. Precision: The ratio of correctly labeled anomalies over all anomalies which

are detected, i.e.: precision = TP
TP + FP .

5. Recall: The ratio of all correctly labeled anomalies over all actual anomalies,
i.e.: recall = TP

TP + FN .
6. F1 score: The harmonic mean between precision and recall, i.e. F1 = 2 ·

precision·recall
precision+recall . This is the most reliable score since maximizing precision and
recall are often conflicting goals.

4.3 Results

The results are summarized in Table 2 where the average values of precision,
recall and F1 score are shown for all data sets divided into their sub-classes.

For the Numenta benchmark the results are quite satisfactory in terms of the
recall measure, implying that almost all anomalies are found. In contrast, the
precision values are in general very low and never exceed 0.4, which indicates
high rates of false alarms. Consequently, the F1 score is rather low for the Nu-
menta data set. One reason for this observation is posed by the anomaly labels
provided by the data set. In Figure 1 a time series from the Numenta data set is
shown which has only two labeled anomalies. No algorithm we tested was able
to detect those anomalies, but instead false positive detection of peak values can
be observed. In case of univariate time series one would assume that anomalies
should be understandable. However, without additional information on the na-
ture of the time series it is currently unclear why these anomalies are actually
labeled as such, whereas all the clearly visible spikes and peaks are not labeled as
anomalies. Therefore, the observed behaviour is actually more or less expected
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Table 2. Average performance on the data set groups using the lagged method with
window size w = 10.

Algorithm
Data set Measure RF GP SVM kNN ARIMA AdVec ANN Ens
Yahoo
A1 (67) P 0.4 0.48 0.46 0.44 0.41 0.44 0.43 0.48

R 0.77 0.72 0.76 0.76 0.75 0.48 0.55 0.79
F1 0.52 0.58 0.58 0.56 0.53 0.46 0.49 0.6

A2 (100) P 0.48 0.67 0.82 0.48 0.4 1 0.84 0.62
R 0.98 0.98 0.98 0.98 0.97 0.29 0.54 0.98
F1 0.65 0.79 0.9 0.65 0.57 0.45 0.66 0.76

A3 (100) P 0.84 0.86 0.83 0.87 0.66 1 0.9 0.89
R 0.69 0.69 0.64 0.68 0.54 0.02 0.21 0.67
F1 0.75 0.77 0.72 0.76 0.6 0.03 0.34 0.76

A4 (100) P 0.69 0.71 0.71 0.68 0.57 0.28 0.81 0.77
R 0.61 0.6 0.61 0.59 0.49 0.06 0.2 0.6
F1 0.65 0.65 0.66 0.63 0.53 0.1 0.32 0.67

Numenta
Artificial w. P 0.04 0.06 0.06 0.06 0.04 0.05 0.07 0.05
Anomaly (6) R 0.83 0.83 1 1 0.67 0.67 1 1

F1 0.08 0.11 0.11 0.11 0.07 0.09 0.12 0.1
realAd P 0.26 0.27 0.28 0.26 0.29 0.38 0.24 0.26
Exchange (6) R 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71

F1 0.38 0.39 0.4 0.38 0.42 0.5 0.36 0.38
realAWS P 0.11 0.11 0.1 0.12 0.12 0.09 0.12 0.11
Cloudwatch R 0.93 0.82 0.93 0.93 0.89 0.79 0.93 0.93
(16) F1 0.19 0.19 0.19 0.21 0.21 0.17 0.21 0.2
realKnown P 0.06 0.07 0.07 0.05 0.11 0.06 0.15 0.07
Cause (7) R 0.63 0.58 0.63 0.58 0.58 0.42 0.37 0.58

F1 0.11 0.12 0.13 0.1 0.19 0.11 0.21 0.13
realTraffic P 0.22 0.28 0.24 0.28 0.3 0.21 0.21 0.23
(5) R 0.79 0.79 0.79 0.79 0.93 0.64 0.71 0.79

F1 0.34 0.41 0.37 0.41 0.45 0.32 0.33 0.35
realTweets P 0.05 0.06 0.05 0.05 0.06 0.06 0.06 0.05
(10) R 1 0.97 0.94 0.97 0.97 0.91 0.97 0.97

F1 0.1 0.11 0.1 0.1 0.1 0.11 0.11 0.1

from unsupervised anomaly detection algorithms. With additional information,
the number of false positives could be reduced if, for example, all peak values
above 0.2 should not be considered abnormal.

Concerning the Yahoo data sets, we frequently observe a better balance be-
tween precision and recall than for the Numenta data sets and, consequently, a
much higher value of the F1 score.

We illustrate an exemplary time series from the Yahoo benchmark in Figure 2
with the corresponding anomalies marked in red but without anomaly windows.
This artificially created time series reveals a general problem of our unsupervised
anomaly detection method. The anomaly detection algorithms learn the overall
statistics of a complete dataset, and anomalies are detected by inspecting the
difference between prediction and actually observed value. Therefore, a change
in the average statistics and of the overall scale of the time-series is not well-
captured by the detection method and the anomalies in the first third of the
dataset are masked by the last part, where the amplitude increased. As a result,
no method used here can capture the anomalies within the initial low amplitude
signal. Such cases would benefit strongly from employing an online algorithm
where, for example sliding analysis windows or forgetting factors are used to
adjust to qualitative changes of the time series.
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Fig. 1. A Numenta time series with two anomaly windows marked in grey, where the
two red dots indicate the actual anomalies. None of the algorithms tested has been
able to identify the true anomalies, but all marked the high peak values as anomalies.
Indeed, it seems difficult to derive the characteristics of the two labeled anomalies from
the underlying time series.

Fig. 2. Yahoo time series A4: 8, with 13 labeled true anomalies (red dots). None of
the algorithms tested can correctly identify the first five anomalies, while the next 8
are correctly identified by gaussian processes, and 7 by four other methods. AdVec
generates seven false positives.
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Fig. 3. F1 scores represented as boxplots for the corresponding algorithm and divided
by data set affiliation. The thick horizontal line indicates the median and the box
corresponds to the 25% and 75% quantile. The number on the x-axis corresponds to
the number of time series where the F1 score was successfully calculated. Unsuccessful
calculations are those where the algorithm could not calculate the F1 score because of
a division by 0, i.e. if no true positives were found.

Fig. 4. Distribution of algorithms with the highest F1 score for scores larger than
0.8. The number under each algorithm’s name is the number of time series where this
algorithm could reach the maximal F1 score. Because multiple algorithms can have the
same maximal F1 score for one time series the cumulative numbers exceed the number
of time series.
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Table 3. Mean correlation based on block wise sampled test data.

Algorithm
Data set RF GP SVM kNN ARIMA AdVec ANN
Yahoo
A1 (67) 0.75 0.60 0.70 0.74 0.82 0.80 0.40
A2 (100) 0.98 0.98 0.98 0.98 0.98 0.98 0.56
A3 (100) 0.97 0.97 0.97 0.97 0.97 0.95 0.71
A4 (100) 0.97 0.96 0.97 0.96 0.96 0.94 0.75
Numenta
Artificial w. Anomaly (6) 0.82 0.76 0.67 0.80 0.90 0.78 0.81
realAdExchange (6) 0.64 0.60 0.28 0.26 0.29 0.38 0.24
realAWSCloudwatch (16) 0.11 0.11 0.1 0.12 0.12 0.09 0.12
realKnownCause (7) 0.06 0.07 0.07 0.05 0.11 0.06 0.15
realTraffic (5) 0.22 0.28 0.24 0.28 0.3 0.21 0.21
realTweets (10) 0.05 0.06 0.05 0.05 0.06 0.06 0.06

Figure 3 shows the statistics of the F1 scores for each algorithm over each
time series. Generally, there is a substantial variation in the F1 scores for all
methods and data set. As already observed, the performance on the Yahoo data
set is generally acceptable where the majority results are located in the upper
half of performance scores, i.e. between 0.5 and 1. For AdVec the bulk of the
results is distributed over the complete score scale and an anomaly label could
only be calculated for about one third of time series due to no anomaly detections
at all. The minimum (i.e. worst) F1 score generated by all algorithms is between
0 and 0.2, but at the same time all methods reach once or multiple times a score
very close to 1. While for the Numenta data set the minimal and maximal F1
score are comparable, the general performance is much worse where the median
values are found around an F1 score of about 0.2. This indicates that many
anomalies labeled in time series of the Numenta data set are much more difficult
to find.

Even though the prediction accuracy is not the main interest here, we ana-
lyzed how well the algorithms perform on the given data sets. In order to divide
the time series in training and test set, we choose a block-wise sampling where
in total 20% of the data was sampled in 10 equidistantly distributed blocks to
function as the test data. (We decided against using 80% of the first part of
the data for training and the remaining last 20 % to test, since the time series
contain trends, concept drifts, different seasonality pattern and anomalies at the
end of the observation period. We also did not use random sampling, since for
time series data this leads to no reliable prediction accuracy because of the nat-
ural link between two consecutive points is lost.) Because of the strong variation
in the range of values (cf. Table 1), the averaged correlation was used instead of
the average mean squared error. In Table 3 we observe, that the prediction capa-
bility of models trained on the Yahoo S5 data set are better than for those in the
Numenta data set. Interestingly, a good prediction capacity does not necessarily
be connected with the best anomaly score, compare Numentas realAdExchange,
where random forests provided the highest correlation but AdVec the best F1
score.

From the above presented results we can conclude that none of the studied
anomaly detection methods significantly outperforms any other approach. All
algorithms performed similarly, except for AdVec where the F1 score was of-
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ten not calculable (due to zero detected anomalies) and showed more variation
if calculable. The reason for this is very likely found in the target application
scenario for which AdVec was designed and the implicit assumptions about the
data made there. Presumable, with fine tuning the periodicity hyperparameter
according to each time series AdVec would perform better. The simple ensemble
method we applied is a bit more robust against the variation of an individual
algorithm and thus can achieve good overall performance. Analyzing the fre-
quencies with which the algorithms achieve F1 scores equal or higher than 0.8 in
Figure 4, we find that Gaussian processes and support vector machine provide
the most high F1 scores.

5 Conclusions and Future Work

A total of seven machine learning algorithms and one simple ensemble method
were compared on a large number of univariate time series data sets commonly
used in anomaly detection. The evaluation criteria used here were precision, re-
call and F1 score. A central finding of this work is that all methods perform
comparably, with a slight favor for gaussian processes, support vector machine
and the ensemble method. On the Numenta data sets, all methods show reason-
ably good recall performance while they all perform poorly with respect to the
precision and consequently also the F1 measure, which is due to a high rate of
false detections. For the Yahoo data set the precision and recall measures are
much more balanced and therefore the F1 scores are usually much larger. Our
results show a tendency that an ensemble method will yield a more constant per-
formance than an individual algorithm. This is intuitive as it reflects the usual
insight that it is beneficial to combine many weak learners into a strong learner.
Put differently, individual algorithms failing on some time series will not affect
the average ensemble performance much as long as there is no systematic reason
for many algorithms to fail simultaneously. In the current approach, we did not
do any hyperparameter tuning and also did not use any a priori information
about the types and characteristics of the data sets. This was done to achieve an
unbiased comparison of the algorithms for situations where not much knowledge
about the data is available and uniformed analysis of real-world data is targeted.
However, it can be expected, that the performance will improve when a priori
information about the data is utilized. There are many routes to improving the
performance of the anomaly detection approach presented in this paper. One
such improvement could be realized by utilizing an online approach so that the
algorithms are not trained globally on all available data. Instead, the algorithm
could adjust constantly to the recently observed data by, for example, using a
sliding window approach or introducing a forgetting factor. With this, the al-
gorithms would be able to adapt to seasonality, concept drift or other global
changes in the time series. Additionally, more advanced data pre-processing and
feature detection could be employed. Especially the development of automated
data pre-processing techniques should further be investigated. The approach pre-
sented here can be applied without intensive data processing to get anomalies
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flagged in an industrial use case where many different time series are present
and no labeling information exists. As in [28], these anomaly suggestions are to
be verified by the process expert and pre-studies performed on a network use
case nurture the hope that this investigation method contributes to an increased
process understanding. These options are left for further research studies.
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Abstract. Real-Time Strategy (RTS) video games are not only a popular 
entertainment medium, they also are an abstraction of many real-world applications 
where the aim is to increase your resources and decrease those of your opponent. An 
obvious application is a military battle; yet another example is a person’s physical 
health where it is advantageous to increase the number of healthy cells in the body 
and destroy cancerous cells (wherein cancer is your opponent). Using predictive 
analytics, which examines past examples of success and failure, we can learn how to 
predict positive outcomes for such scenarios. Herein we show how discriminative 
subgraph mining can be employed to analyze a collection of played RTS games, and 
make recommendations about sequences of actions that should, as well as should not, 
be made to increase the chances of winning future games. As proof of concept, we 
present the results of an experiment that utilizes our strategy for one particular RTS 
game. 

Keywords: Graph mining, Game Mining, Predictive Analytics. 

1 Introduction 

Real-Time Strategy (RTS) games are a subgenre of strategy video games wherein the 
participants position and maneuver units (e.g., troops, robots, and drones) and structures 
under their control to secure areas and destroy their opponent’s assets. In some games, the 
created entities can in turn create and destroy other entities. Hence the focal points of such 
games are: resource generation and destruction, and indirect control of units and structures 
(via other units and structures). RTS games typically have a diverse set of resources which 
the player can deploy, basically offensive or defensive in nature, and a large variety of 

mailto:chaman@mst.edu
mailto:chaman@mst.edu
mailto:leopoldj@mst.edu
mailto:leopoldj@mst.edu
mailto:nathane@nwmissouri.edu
mailto:nathane@nwmissouri.edu


environments/storylines from which to select, often with a military science fiction theme; a 
popular and sophisticated example is StarCraft. The games are usually multi-player, with the 
winner determined by some criterion such as the player with the most assets at the end of a 
certain time period or by the last player remaining after all other players’ assets have been 
depleted. Although the RTS game scenario is used for entertainment purposes, it can be 
abstracted as a model for real-world applications such as military battles, cyberinfrastructure 
networks that may need to be managed as they come under malicious attack, and even disease 
history/diagnosis systems which track a patient’s symptoms, treatments, and disease 
progression over time. 

Herein we test the hypothesis that predictive analytics can be employed to examine a 
collection of played games and make recommendations as to what a player should do and 
what a player should not do in order to increase the chances of winning the game the next 
time s/he plays. As proof of concept, this method will be tested for one particular RTS game; 
however, the method that we employ should be applicable to any multi-player RTS game 
and possibly could be generalized to sequences of categorically offensive versus defensive 
moves for any RTS game. Specifically, we will model the moves of each played game as 
directed graphs for the winner’s and loser’s moves, respectively, and apply discriminative 
subgraph mining to identify our game strategy recommendations.  

The organization of this paper is as follows. Section 2 provides a brief overview of game 
data mining, data mining techniques used in predictive analytics, and discriminative 
subgraph mining. Section 3 explains the discriminative subgraph mining algorithm that we 
utilized for our study. Section 4 outlines the experiment that we conducted to test our 
hypothesis and the results that we obtained. A summary and conclusions of our research are 
given in Section 5. Future work is discussed in Section 6.  

2 Related Work 

2.1 Game Data Mining 

For years there has been interest in analyzing games played by others in order to become a 
more competitive player. In its earliest form, people sought to identify the moves in the game 
that led to desirable, rather than undesirable, outcomes. For many games it is not only the 
quantity of assets, but particular features of the assets in the game that must be considered 
(e.g., an asset’s functionality and location). For example, in the game of chess, given the 
choice, it is usually better to have one bishop than three pawns; position of a piece on the 
game board is also important as a bishop that is blocked by other pieces may not be able to 
attack. A number of studies have been conducted wherein a database of played games is 
analyzed to determine the winning percentage under various scenarios such as games in 
which one player has two bishops and no knights and the other player has two knights and 
no bishops after some point in a chess game; see [1, 2] for examples of such studies. 
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Contemporary genres of games, such as RTS video games, have a much more sophisticated 
collection of assets (e.g., game pieces) than traditional games such as chess and the 
characteristics of the assets can be much more diverse. Accordingly, analysis of desirable 
asset acquisition and deployment throughout a game has become more complex and 
computationally expensive. 

Another branch of game data mining, also known as game telemetry, involves analysis of 
the people who play the game and/or the personas they may create. There are databases of 
this information for various online games and mining software to analyze data such as the 
players’ skill level and time spent having played the game; see [3] for an example of such 
software. Some analyses may try to relate features from a player’s profile to his/her winning 
percentage and odds of winning future games. This area of study is not the focus of the 
research pursued herein; we do not consider any data related to a player’s profile. 

As is discussed in [4], the intentions of game data mining should be made clear. 
Description describes patterns found in the game data; similarly, characterization is a 
summation of some general features associated with the data. These patterns could be 
independent of whether they occurred in the winners’ games or the losers’ games, or whether 
the patterns occurred in a majority or a minority of the games in the dataset. Description and 
characterization are the fundamental, general goals of most data mining efforts. 
Classification (and clustering) are used to compare and organize some features of the data 
into classes; with game data this usually isn’t necessary since we are most interested in 
classifications as winning and losing games, information which is already known. 
Discrimination seeks to identify the differences between groups of instances in the game data 
beyond just the classification of winning and losing. Prediction has the goal of providing a 
rule (or some form of guideline) that can be used as guidance for playing or forecasting the 
outcome of future games. The work presented in this study focuses on discrimination and 
prediction of game data. 

2.2 Data Mining Techniques Used in Predictive Analytics 

Utilizing mathematical modeling, the field of predictive analytics examines past examples 
of success and failure to determine the variables that lead to successful outcomes and can be 
used to make predictions about future events.  It has been used widely in the financial and 
insurance sectors. Here we briefly discuss some of the most common types of data mining 
methods used for predictive analytics. 

Regression analysis: Linear regression is one type of regression analysis commonly used 
for predictive analytics. This method analyzes the relationship between a dependent variable 
and a set of independent variables. The relationship is expressed as an equation that predicts 
the value of the dependent variable as a linear function of the independent variables. For 
game data the dependent variable is typically the outcome of the game (i.e., win or lose) and 
the independent variables can be the various possible moves. Given the number of possible 
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moves in an RTS game and the number of possible sequences of moves, this method could 
be computationally prohibitive.  

Rule induction: Rule induction methods such as association rule mining seek to find 
relationships between variables in the dataset. For example, it could be determined that when 
the player does actions A and B, s/he also does actions C and D. By applying association rule 
mining on only the winners’ games, we could identify some actions that winning players did. 
Similarly, by mining the losers’ games, we could find some actions common to losing 
players. However, we then would have to examine the differences between those rule sets to 
gain knowledge about what winners did that losers did not do, and vice-versa. It should be 
noted that rule mining typically generates a considerable number of rules because of its 
combinatorial approach; typically, only rules meeting a certain support threshold are 
retained.  

Decision trees: Decision trees are most often used for classification and can be thought of 
as a graphical depiction of a rule; each branch of a decision tree can be thought of as a 
separate rule consisting of a conjunction of the attribute predicates of nodes along that 
branch. One approach would be to construct decision trees from the winning games and 
losing games, respectively. Resultingly, the issues previously mentioned for association rule 
mining of the RTS game data would apply for decision tree methods as well. 

Clustering: Clustering is a way to categorize a collection of instances in order to look for 
patterns; groups are formed to maximize similarity between the instances within a group and 
to maximize dissimilarly between instances in different groups. Game data are already 
clustered into two groups: winners and losers. For the purpose of analyzing successful (and 
unsuccessful) actions, we would likely attempt to form clusters of action sequences. As with 
linear regression, given the number of possible moves in an RTS game and the number of 
possible sequences of moves, this method would be computationally prohibitive, and likely 
would result in an uninformative number of clusters, unless some type of feature reduction 
mapping method was employed (i.e., mapping specific actions and their time of occurrence 
in the game to more generalized representations). 

Neural networks: Neural networks are composed of a series of interconnected nodes that 
map a set of inputs into one or more outputs. The interconnections between inputs (which, 
for the game data, could be actions in the game) are determined based on an analysis of the 
played games. As with clustering, this method likely would be computationally prohibitive, 
and would probably not yield useful results, for the RTS game data unless we employed 
some type of data reduction mapping, which subsequently could result in loss of useful, 
specific information. 

2.3 Discriminative Subgraph Mining 

Many problems can be modeled with graphs, wherein entities are represented as vertices and 
relationships between entities are represented as edges. When the relationship between two 
vertices has some semantic distinction of a predecessor and a successor, the edges are 
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directed and hence the graph is considered directed. A played RTS game can be modeled as 
a directed graph where each action (e.g., move) is represented by a vertex and an edge 
represents two consecutive actions that were made in the game. By necessity, each vertex 
also must be identified by which player performed that action. The moves for one player do 
not form a strictly linear sequence because an action can generate multiple actions; for 
example, the player may create a drone which in turn simultaneously spawns 5 more drones, 
each of which becomes a new vertex, and 5 edges are created from the propagating drone 
vertex. 

Finding interesting patterns in graphs (both directed and undirected) has been well-
researched and is applicable to many problem domains in fields such as bioinformatics, 
cheminformatics, and communication networks. An ‘interesting’ pattern in a graph could be 
a subgraph that appears frequently over a collection of graphs or could be a subgraph that 
has a particular topography (e.g., a clique). Another type of interesting pattern is a 
discriminative subgraph. 

Discriminative subgraph mining seeks to find a subgraph that appears in one collection of 
graphs, but does not appear in another collection of graphs. This approach has been used to 
study several problems including identifying chemical functional groups that trigger side-
effects in drugs [5], classifying proteins by amino acid sequence [6], and identifying bugs in 
software [7, 8, 9]. Here we briefly discuss some of the strategies that have been employed 
for discriminative subgraph mining. 

In [10] the authors define global-state networks, a collection of graphs that represent a 
series of snapshots taken over a period of time and model some event. Each snapshot graph 
has the same topology, but the nodes and/or edges in each graph may have different values. 
The authors’ technique, MINDS, is specifically designed to find minimally discriminative 
subgraphs in large global-state networks. The network graph search space is organized as a 
set of decision trees to scrutinize the changes from one snapshot to the next in the collection. 
To reduce an exponential subgraph search space, they employ a Monte Carlo Markov 
sampling strategy. While the strategies employed in MINDS were found to work well for the 
global-state networks, they would not be appropriate for the RTS game dataset where each 
game, and hence each graph’s topology, can differ significantly from other games. 
Additionally, as will be discussed in Section 3, game data mining should not necessarily be 
limited to just finding minimally discriminative subgraphs. 

Discriminative subgraph mining was used in [11] to find subgraphs that would cover as 
many positive examples and as few negative examples as possible. The test dataset contained 
protein structures possessing a specific function and proteins not having that function. Each 
graph contained approximately 1,000 edges and was very dense (i.e., in terms of the number 
of edges relative to the number of vertices in the graph). Two heuristics were employed to 
reduce the computational complexity of the mining process. Together these heuristics were 
used to assign a score to each candidate discriminative subgraph; the score considered the 
number of positive graphs minus the number of negative graphs in which the subgraph was 
found. Only the smallest such subgraphs with high scores were returned in the results; any 
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(larger) subgraph that contained one of these (smaller) subgraphs was not further examined, 
thereby reducing the search space. This algorithm could have been adapted for the predictive 
game strategy study, but would have had to have been run for both the cases of the winning 
games being the positive examples and the losing games being the negative examples, and 
the winning games being the negative examples and the losing games being the positive 
examples in order to find recommendations for what should and should not be done to win 
the game.  

Another strategy for dealing with the large search space normally incurred with 
discriminative subgraph mining was presented in [12]. As discussed above, a scoring scheme 
was used to evaluate the discrimination potential of candidate subgraphs. However, The 
Learning To Search (LTS) algorithm of [12] differed from the work of [11] by combining 
the scoring scheme with a sampling strategy to select candidate subgraphs. Candidates 
deemed promising (in terms of their score) were added to a list and further extended with 
edges for additional consideration; non-promising candidates were discarded, thereby 
implementing a branch-and-bound search. This method was tested on protein datasets with 
good prediction accuracy and a faster runtime than some other discriminative mining 
methods. As with the algorithm in [12], this approach possibly could be used to analyze a 
strategy game dataset.  

Discriminative subgraph mining also has been used to find bugs in software in [7, 8, 9]. 
For this application, a program is modeled as a graph based on its control flow graph. In 
brief, a control flow graph is a directed graph made up of nodes representing basic blocks. 
Each basic block contains one or more statements from the program. There is an edge from 
basic block Bi to basic block Bj if program execution can flow from Bi to Bj. Traces through 
the control flow graph for inputs that produce correct results forms one collection of graphs 
and traces for inputs that produce incorrect results forms a second collection of graphs. The 
idea is to look for a discriminative subgraph between the two collections of graphs; this 
represents the lines of code that are, or are not, being executed when the bug occurs. The 
algorithm presented in [7] utilizes the LEAP algorithm [13] as a branch-and-bound heuristic 
on the search space of graphs that it examines; it is based on the observation that subgraphs 
with higher frequency are more likely to be discriminative. This algorithm was modified 
slightly to specifically scrutinize certain programming constructs and subsequently was 
tested in [8, 9]. This general approach to discriminative subgraph mining is applicable to the 
RTS game dataset and is discussed in more detail in the next section.  

3 Methodology: Discriminative Subgraph Mining 

The algorithm we employed for discriminative subgraph mining is similar to the approach 
taken in [8, 9], but does not employ any heuristics specific to game data. Although we ran 
it sequentially, it easily lends itself to parallel or distributed processing. 
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Let C+ and C- represent two sets of (undirected or directed) graphs for which we want to 
find a discriminative subgraph; that is, we want to find a subgraph that appears in the graphs 
in C- and does not appear in the graphs in C+, or vice-versa. We shall refer to C+ as the 
positive graphs and C- as the negative graphs although this naming convention has no direct 
semantic correlation to the classification of the graphs in those respective sets (e.g., ‘winner’ 
does not necessarily mean positive). The function FindDiscriminativeGraph (Fig. 1) first 
removes non-discriminative edges from the graphs in both sets; since such edges appear in 
the graphs in both sets, they cannot be used to differentiate the graphs in the those sets. 
FindDiscriminativeGraph then calls CreateDiscriminativeGraph (Fig. 2) to try to find a 
subgraph that is common to all graphs in C-, but not common to all the graphs in C+. If we 
are unable to find such a graph, then the function RelaxedCreate-DiscriminativeGraph (Fig. 
3) is called, which relaxes the requirement that the subgraph we seek not be present in all
of the C+ graphs; instead the subgraph only has to not be present in α * |C+| of the C+ graphs,
where α is a user-specified parameter (our default is α = 0.5).

FindDiscriminativeGraph and CreateDiscriminativeGraph use a function called 
Augment; this function takes a subgraph G and adds to it an edge (and possibly a node) such 
that the source vertex exists in G, and the edge (and destination node) exists in all graphs in 
subgraph collection S1. In this way, a subgraph with an additional edge that exists in all 
elements of S1 is created and considered by the algorithm. 

If we still fail to find a discriminative subgraph, then the difference likely does not 
involve edges that are in all graphs in C- and not in graphs in C+, but rather involves edges 
in the C+ graphs that are not in the C- graphs. Thus, we again call 
CreateDiscriminativeGraph, but reverse the order of the parameters (C+ and C-) from our 
previous call. If we still fail to find a discriminative subgraph, we again call Relaxed-
CreateDiscriminativeGraph and look for a subgraph that only has to not be present in β * 
|C-| of the C- graphs, where β is a user-specified parameter (our default is β = 0.5). 

It is possible that the resulting discriminative graph will be disconnected. Additionally, 
it could be the case that multiple subgraphs could qualify as a discriminative subgraph. The 
algorithm addresses both of these cases by returning the maximal discriminative subgraph; 
this result may be disconnected and will include all possible discriminative edges. It should 
be noted that it also is possible that our algorithm will not find any subgraph that meets the 
discriminative conditions. This could occur if the requirement that at least α (β) of the 
graphs in C- (C+) must have at least one edge in common has not been satisfied.  

The computational complexity of the process is dependent upon the number of graphs in 
each collection and the number of edges in each graph. As specified in line 1 of 
CreateDiscriminativeGraph, we begin by examining each single edge from each graph in 
one of the graph collections. However, in lines 7-9 of that algorithm, we potentially build 
larger subgraphs that must be searched for; this is the subgraph isomorphism problem, 
which is NP-complete. 
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Algorithm: FindDiscriminativeGraph(C+, C-, α, β) 
C+: set of positive graphs  
C-: set of negative graphs  
α: percentage of graphs that discriminative subgraph need not be present in C+ when 
relaxing conditions 
β: percentage of graphs that discriminative subgraph need not be present in C- when 
relaxing conditions 
1. remove non-discriminative edges from graphs in C+ and C-;
2. G = CreateDiscriminativeGraph(C-, C+);
3. if G is empty then
4. G = RelaxedCreateDiscriminativeGraph(C-, C+,

     |C+| * α); 
5. if G is empty then
6. G = CreateDiscriminativeGraph(C+, C-);
7. if G is empty then
8. G = RelaxedCreateDiscriminativeGraph(C+, C-,

   |C-| * β); 
9. end-if;
10. end-if;
11. end-if;
12. return G

Fig. 1. Algorithm for FindDiscriminativeGraph 

Algorithm: CreateDiscriminativeGraph(S1, S2) 
S1: set of graphs 
S2: set of graphs 
1. FreqSG = queue of 1-edge subgraphs in S1;
2. while FreqSG is not empty do
3. G = FreqSG.dequeue();
4. if G is not in any graph in S2 then
5. return(G);
6. end-if;
7. NewGraphs = Augment(G);
8. for each graph G’ in NewGraphs do
9. FreqSG.enqueue(G’);
10. end-for;
11. end-while;
12. return(empty graph)

Fig. 2. Algorithm for CreateDiscriminativeGraph 
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Algorithm: RelaxedCreateDiscriminativeGraph(S1, S2, γ) 
S1: set of graphs 
S2: set of graphs 
γ: threshold for number of graphs discriminative subgraph must be present in 
1. FreqSG = queue of 1-edge subgraphs in S1;
2. while FregSG is not empty do
3. G = FreqSG.dequeue();
4. if G is in < γ graphs in S2 then
5. return(G);
6. end-if;
7. NewGraphs = Augment(G);
8. for each graph G’ in NewGraphs do
9. FreqSG.enqueue(G’);
10. end-for;
11. end-while;
12. return(empty graph)

Fig. 3. Algorithm for RelaxedCreateDiscriminativeGraph 

4 Experiment and Results 

In this section we discuss the details of an experiment we conducted to test the hypothesis 
that predictive analytics, specifically discriminative subgraph mining, can be employed to 
examine a collection of played strategy games and make recommendations as to what a 
player should do, and should not do, in order to increase the chances of winning the game 
in the future.  

4.1 Experimental Setup 

The game that we selected is an online, multi-player RTS game called Interloper [14]. 
Interloper was chosen over more sophisticated RTS games like StarCraft because of its 
relatively limited set of action types which include: creating territory tiles, spawning drones, 
spawning blockades, creating units (e.g., sentinels, drones, defenders, destroyers, markers, 
bombs, blockades, and snipers), building structures, destroying targets, moving and 
positioning characters, removing characters, hitting characters, and exploding characters. 
We obtained a database of 19 played Interloper games from the game’s developer. Each of 
these games contained the sequence of actions performed by each of two players, with a 
designation of which player won the game. Each action type in the data file had a 
documented integer encoding. The total number of moves (for both players) in a game in 
the dataset ranged from 183 to 5,338.  

For each game in the dataset we created two individual files: one for the winner’s moves 
and one for the loser’s moves. The format for each of the data files that we created was 
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modeled as a directed graph, one edge per line, where each vertex was an action, and an 
edge represented a consecutive sequence of (two) actions made in that game. As with games 
such as chess, we thought it would be interesting to analyze (and make recommendations 
for) the game in three phases: the beginning game, the middle game, and the end game. In 
chess there is no clear definition of when the middle game begins and ends, or when the 
end game begins. Similarly, we had no such guidelines for Interloper. Therefore, we simply 
divided each game file into the first third number of moves, the middle third number of 
moves, and the last third number of moves, and referred to these as phases 1, 2, and 3 of the 
games, respectively. Each phase was analyzed separately. 

As described in the previous section, our discriminative subgraph mining algorithm 
would not find a discriminative subgraph unless a certain percentage of the graphs in each 
(C- or C+) “collection” had at least a certain percentage of edges in common. Therefore, we 
had to test small groups of games at a time. To make sure that we did not miss any possible 
common edges, we tested every combination of two winning and two losing graphs; that is, 
a pair of winning graphs played the role of C+ in FindDiscriminativeGraph and a pair of 
losing graphs played the role of C-. We then reversed the roles (i.e., a pair of losing graphs 
played the role of C+ and a pair of winning graphs played the role of C-). Depending on 
whether the discriminative subgraph was found in C+ or C- for the particular assignment to 
those parameters told us whether the moves should be recommended as something that 
should be done in order to increase the chance of winning (because it was a difference found 
in the winning graphs) or something that should not be done (because it was a difference 
found in the losing graphs). 

To test the predictive accuracy of our method, we performed cross validation on the 
dataset of 19 played games. For phase 1, we used 5-fold cross validation. Five partitions 
were created, 4 of which contained 4 games and 1 of which contained 3 games; by ‘game’ 
we mean both the winner and loser for that game. A random number generator 
(www.random.org/lists/) was used to determine which games were assigned to each 
partition (with no duplication). For each of the 5 iterations of the 5-fold cross validation, 
the “training” dataset was formed from 4 of the partitions and the “test” dataset was the 
remaining partition; the roles of the partitions were rotated through each iteration of the 5-
fold cross validation. Discriminative subgraphs were determined from all possible pairs of 
winning and losing games in the “training” dataset (i.e., 4 of the 5 partitions). This resulted 
in a set of subgraphs that formed the recommendations for actions that should be done and 
a set of subgraphs which formed the recommendations for actions that should not be done 
in order to win the game.  

The error rate was calculated as follows. If a recommendation for what should be done 
(subgraph) was found in one of the winning graphs in the test partition, it was counted as a 
true positive (TP); if instead that recommendation (subgraph) was found in one of the losing 
graphs in the test partition, it was counted as a false positive (FP). If a recommendation for 
what should not be done (subgraph) was found in one of the losing graphs in the test 
partition, it was counted as a true negative (TN); if instead that recommendation (subgraph) 
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was found in one of the winning graphs in the test partition, it was counted as a false 
negative. The error rate was calculated as 1 – ((TP + TN) / (TP + TN + FP + FN)), and was 
averaged over the five iterations of the 5-fold cross validation. 

For phases 2 and 3 of the game, significantly fewer discriminative subgraphs were found 
than for phase 1; this will be discussed in the next section. Therefore, instead of creating 5 
partitions for cross-validation, we only created 3 partitions: 2 partitions contained 6 games 
and 1 partition contained 7 games. Consequently, only 3 iterations were run in those cross 
validations instead of 5. As was done for phase 1, games still were randomly chosen for 
each partition for each test. All cross-validation tests (for all phases) were repeated 5 times. 

It should be noted that the discriminative subgraph mining algorithm was implemented 
in Python 3.7. A combination of Python programs and bash scripts were created for data 
file conversions and batch program executions. All programs were executed on a Dell Intel 
i7-7700 3.60 GHz 64 GB RAM Windows 10 PC. 

4.2 Experimental Results 

Each of the three phases of the game was analyzed separately using cross-validation, with 
each cross-validation test repeated 5 times with randomized data (game) assignment for 
training and test data from the 19-game dataset. Table 1 shows the average error rate for 
each of the cross-validation tests for each phase, as well as the average error rate over each 
phase’s 5 tests.  The resulting predictive accuracy was good, considering that, in general, 
discriminative subgraphs can have very low frequencies. The collective recommendations 
(for moves that should be made and moves that should not be made) were accurate 
approximately 86.5%, 92.4%, and 98.7% of the time for phases 1, 2, and 3 of the game, 
respectively. It should be noted that the accuracy for phases 2 and 3 were likely much higher 
than for phase 1 in part because 3-fold (rather than 5-fold) cross validation testing was used 
for those phases and because there were significantly fewer discriminative subgraphs to test 
in those phases. 

Table 1. Cross-Validation Test Results 

Test 
No. 

Phase 1 Avg. 
Error Rate 

Phase 2 Avg. 
Error Rate 

Phase 3 Avg. 
Error Rate 

1 14.40% 10.60% 1.00% 

2 13.40% 0.08% 1.60% 

3 13.00% 9.10% 0.70% 

4 13.50% 9.80% 2.00% 

5 13.30% 8.50% 1.40% 

Avg. 13.52% 7.62% 1.34% 
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For phase 1 of the game, when testing all pairs of 2 winning and 2 losing graphs, 2,333 
discriminative subgraphs were found that constituted “should do” recommendations and 
2,270 discriminative subgraphs were found that represented “should not do” 
recommendations. The average size of the “should do” recommendation subgraphs was 28 
edges; the smallest had 1 edge and the largest had 170 edges. The average size of the “should 
not do” recommendation subgraphs was 22 edges; the smallest had 1 edge and the largest 
had 168 edges. 

Of the ten most frequently recommended “should do” subgraphs, 3 contained 3 edges 
(i.e., 4 moves) and 4 contained 4-5 edges (i.e., 5-6 moves). In contrast, 5 of the 10 most 
frequently recommended “should not do” subgraphs contained only 1 edge (i.e., 2 moves) 
and 5 contained 2-3 edges (i.e., 3-4 moves). Thus, for this phase of the game, we are not 
able to provide quite as much information about what a player should not do as we can say 
about what a player should do. 

The types of actions in the phase 1 discriminative subgraphs were predominantly only 
two types: creation of territory tiles and (fast) moves of a game character. In the Interloper 
game, creation of territory files can be considered an offensive action against one’s 
opponent. Movement of a game character could be either an offensive or defensive action; 
the player’s intent (e.g., moving away from danger versus moving to a more strategic 
position in the game space) cannot be deduced from the game data. Another observation 
that can be made from these particular discriminative subgraphs is a counter that is 
associated with both of these types of moves. For each game, the counter for each type of 
action begins at 1 and is incremented by 1 each time that type of action occurs. The phase 
1 discriminative subgraphs differed not only in sequences of territory tile creation and 
character movement, but also in how relatively early (or late) those actions occurred and in 
what succession. For example, an edge (2800029, 2800030) represents two tile creations 
with counters 29 and 30, indicating that these were tile creations that occurred well after the 
game had started (i.e., they were the 29th and 30th tile creations that this player made). Their 
occurrence in a discriminative subgraph would indicate that it either is or is not advisable 
to create so many tiles (back to back) in the first phase of the game. 

For phase 2 of the game, when testing all pairs of 2 winning and 2 losing graphs, 250 
discriminative subgraphs were found that represented “should do” recommendations and 
213 discriminative subgraphs were found that characterized “should not do” 
recommendations. These were about 90% less than the respective numbers of subgraphs 
found in phase 1. This is not surprising as the number (and order) of different moves that a 
player could (and likely did) make increased at this point in the game, thereby reducing the 
number of graphs that had edges in common and could meet the criteria of 
FindDiscriminativeGraph. The average size of the “should do” recommendation subgraphs 
was 25 edges; the smallest had 1 edge and the largest had 274 edges. The average size of 
the “should not do” recommendation subgraphs was 14 edges; the smallest had 1 edge and 
the largest had 155 edges.  
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The most frequently recommended “should not do” subgraphs in phase 2 only contained 
a single edge (i.e., 2 moves); thus, there was a further decrease in the amount of information 
we could provide a player in terms of what not to do in order to win the game. In contrast, 
3 of the top 6 most frequently recommended “should do” subgraphs contained at least 11 
edges (i.e., 12 moves). Overall, compared to phase 1, this can be seen as the ability to 
provide much more information about what a player should do in order to win the game 
during this phase. Unfortunately, again the types of actions that occurred in the 
discriminative subgraphs were limited, mostly moving a game character (although now at 
a slower speed than in phase 1); we had anticipated seeing more offensive actions during 
this phase of the game. 

For the final phase of the game, 68 discriminative subgraphs were found that 
characterized “should do” recommendations; this was a 97% decrease from the number 
found in phase 1 and a 72% decrease from the number found in phase 2. In this phase, 36 
discriminative subgraphs were found that represented “should not do” recommendations; 
this was a 98.4% decrease from the number of such subgraphs found in phase 1 and an 83% 
decrease from the number found in phase 2. As mentioned previously, the moves in this 
phase of the game likely varied more from game to game, and, as such, it became more 
difficult to meet the criteria stipulated in FindDiscriminativeGraph. The average size of the 
“should do” recommendation subgraphs was 22 edges, which was only slightly smaller than 
what had been seen in the other two phases; the smallest had 1 edge and the largest had 115 
edges, which was by far the smallest of the three phases. The average size of the “should 
not do” recommendation subgraphs was 18 edges, which is the average size between what 
was seen for phases 1 and 2; the smallest had 1 edge and the largest had 145 edges, which 
was slightly smaller than in phase 2. There were 92% fewer discriminative subgraphs found 
in phase 3 than had been found in phase 1. 

For phase 3, we finally saw some of the most frequently recommended “should not do” 
subgraphs have multiple edges (i.e., more than 2 moves); of the top 7 such subgraphs, 3 
contained more than 4 edges, and 2 of those contained 9-10 edges. Amongst the top 7 most 
frequently recommended “should do” subgraphs, only 1 had a single edge; the average 
number of edges for the others in this list was 7 edges (i.e., 8 moves). Although we could 
provide more recommendations about what ‘not to do’ in phase 3 than for phases 1 and 2, 
we still could provide much more information about what ‘to do’ during this phase of the 
game.  

The majority of the actions in the “should do” subgraphs still involved (slow) movement 
of a game character whereas the actions in the “should not do” subgraphs predominantly 
involved territory tile creation, removal of a game character, and/or positioning of a game 
character. Territory tile creation and removal of a game character can be considered 
offensive actions in Interloper; as mentioned previously, positioning of a game character 
could be for offensive or defensive purposes, which cannot be determined from the game 
data. We were surprised that none of the discriminative subgraphs (for any of the phases) 
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included any defensive actions (e.g., spawning a blockade); however, there are by far more 
offensive types of actions in the game than defensive actions. 

Of all the pairs of 2 winner and 2 loser graphs tested, only a few failed to produce a 
discriminative subgraph. There were no contradictory results; that is, it was never the case 
that a sequence of actions in essence would be both recommended and not recommended. 
Some test pairs produced the same results as other pairs; duplicates were not included in the 
counts of discriminative subgraphs reported for each phase. Some test pairs produced 
discriminative subgraphs that were subgraphs of other reported discriminative subgraphs; 
this was not unexpected since some test (game) pairs had edges in common. 

5 Summary and Conclusions 

Herein we tested the hypothesis that a form of predictive analytics, namely discriminative 
subgraph mining, can be used to examine a set of played strategy games and generate a set 
of recommendations that could be used to predict the chances of winning the game in the 
future. Using a dataset of played games of a multi-player, Real-Time Strategy (RTS) video 
game, Interloper, we modeled each game as a graph and found a collection of subgraphs 
that specified sequences of actions that players should, and should not, make in each of 
three phases of the game. Although the dataset only contained 19 games, the experimental 
results showed that the accuracy of our recommendations was high. Overall, our 
recommendations for our test game, Interloper, were more informative in terms of what a 
player should do at each of three phases of the game in order to win; however, we also were 
able to provide some information about what the player should not do. Most importantly, 
this study has served as a proof of concept that this approach may be a promising strategy 
for not only game predictive analytics, but also for other problem domains that involve 
direct and indirect resource generation and destruction. 

6 Future Work 

We plan to test our discriminative subgraph mining approach on other types of RTS games. 
If we have the success that we had with Interloper, we hope to establish a mapping between 
action types and assets in this genre of games so that a more generalized recommendation 
system can be developed. We also hope to explore ways to make the algorithms more 
efficient, perhaps applying some heuristics to reduce the search space that are inherent to 
the nature of game data. Ultimately, we intend to abstract this strategy to other problem 
domains such as a health care disease tracking and prediction systems using the same 
foundation of analyzing examples of success and failure in order to make recommendations 
for future positive outcomes. 
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Abstract. Power state logs from smart TVs are collected in order to
construct a time-series representation of their usage. Time-series that be-
long to a TV exhibiting instability problems are classified accordingly. To
do so, an automated feature extraction approach is used, together with
linear classification methods in order to realize interpretable classification
decisions. A normalized true positive rate of 0.84 ± 0.10 is obtained for
the classification. The normalized true negative rate equals 0.80 ± 0.03.
The final model returns a regularity statistic called the Approximate
Entropy as its most important feature.

Keywords: user profiling · smart TV · time-series · feature extraction
· TSFRESH · logistic regression · approximate entropy

1 Introduction

Gartner has predicted that over 25 billion ”things” will be connected by 2020.
In today’s smart home, there are already a variety of connected devices that
we interact with on a daily basis, including thermostats, home lighting, security
systems, music speakers and smart TVs [4].

This rise of the Internet of Things (IoT) and Big Data enables companies
to make better-informed business decisions by collecting and properly exploiting
massive sets of data from every aspect of their organization.

By exchanging information over the network, collected by (virtual) sensors
attached to these IoT devices, the devices become more context-aware as they
aggregate knowledge on their surroundings [5]. Applying machine learning on
the collected data may lead to the optimization of operational processes, or a
better understanding of a company’s customer base. In this paper, we focus on
the analysis of smart TV usage. When a customer experiences problems with his
TV, he may file a claim describing the problem and bring the device in for repair.
We focus on a particular subclass of anomalous behavior called ”instability”
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Fig. 1: Simplified power state transition diagram of a smart TV. Circles are
possible states of the TV, and the black arrows indicate how the different states
can be reached. Colored arrows define the concept of a ”standby cycle”. If a TV
enters a state through a transition indicated by a green arrow, this marks the
beginning of the cycle. The red arrows indicate its termination.

problems. In Section 3 we will explain in more detail what this umbrella term
entails.

Overall, TPVision collects the smart TV data to detect stability issues in
TVs at the customers’ home. This way, we want to identify which features are
linked to instability and hence need to be avoided in software or, when seen
in test, which need to be fixed with highest priority. As part of this overall
investigation, smart TV power cycle data are collected. These records specify
when individual TVs are switching between different power collection states
(see Figure 1). Obviously among devices and even among power cycles on each
unique device, variations in timing of these parameters are observed, making it
difficult to detect anomalies in this behavior.

We proceed in the rest of the paper as follows: Section 2 describes how
we construct time-series representing the usage of a TV based on its power
state logs. Section 3 describes the classification methodology applied to detect
unstable devices. In Section 4, we describe the results and discuss them. Section
5 concludes this paper.

2 Constructing Time-series of Smart TV Usage

The power state logs were collected in the summer of 2017. In Figure 1, a sim-
plified diagram is given of the logged power states of the smart TVs:

– On state: TV screen is on;
– Off state: the TV is completely inactive;
– Standby state: low power state where the screen is off and CPU is inactive;
– Semi-standby state: low power state where the screen is off but CPU is still

active.
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Fig. 2: Example of smart TV usage per hour on one day.
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Fig. 3: Smart TV usage per hour for each day of the week. Averages for two
countries are shown (N = 1000 for each country).
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Different cycles can be defined on the smart TV power state transition dia-
gram. For example, a ”boot cycle” starts with a transition from the Off state to
the On state, and ends with a transition to the Off state from any other state.

For this paper, the ”standby cycle” is of interest to us because it leads to a
representation of the usage of the TV. The corresponding transitions are indi-
cated on the figure; green arrows indicate the start of the cycle, and red arrows
indicate its termination. As an extra constraint, we may require that the On state
must be reached during the standby cycle. This way, we limit the standby cycles
to ”user sessions” where the TV is actually being used by a human. Standby
cycles that are not user sessions are, for example, power cycles where updates
are being pushed to the operating system of the smart TV. For these cases, the
device is never in the On state during the standby cycle.

The logging system of the TVs keeps a timestamp of every transition in
the power cycle diagram. This way, the initiation and termination of every user
session is known. The intermediate time interval then represents the device being
used. Using the logs and timestamps, time-series showing the usage history of a
device can be constructed. For example, in Figure 2 we visualize for how many
minutes a smart TV has been used per hour throughout the day.

In Figure 3, the average usage profile per day of the week is shown for the
Netherlands and Spain (N = 1000 each). As can be seen, these two countries’
profiles differ clearly. One can see that there is much more activity in the early
afternoon in Spain than in the Netherlands. This is just one example, more ad-
ditional insights can be discovered from the data other than the identification of
instability issues. Note that many other data representations could be considered
starting from the smart TV log files as, for example, system states other than
those describing TV power cycles are also logged. For this paper, the choice of
constructing the TV usage history was made since this particular view on the
data is very straightforward to interpret. We will discuss in the following sections
how the time-series are used to detect unstable behavior.

3 Instability Detection

The following list describes a range of problems that may occur for a smart TV:

– (Re)boot issues;
– Operating system locks out / crashes / hangs;
– Picture disappearing.

All of these issues are called ”instability” problems. Consequently, devices, brought
in for repair under these claims, are labeled as being unstable.

We will now formulate the detection of instabilities in a TV as a predictive
modeling problem. A schematic overview of our instability detection approach is
given in Figure 4. We start by constructing a pair (x, y) per smart TV with x =
(x1, x2, ..., xn) the time-series associated with the usage of the TV as described
above in Section 2 and y a binary target vector describing whether the device
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was brought in for repair for instability problems during the workweek right
after x (stable = 0, unstable = 1).

We always consider a period of two week starting on a Monday. Since we look
at the TV usage binned per hour of the day, we always have n = 24× 14 = 336.
We call X the set of all time-series x.

We train a classifier to predict the target label y from its associated x. Our
total dataset consists of 91 unstable and 1000 stable devices. The set consists of
German and Dutch devices combined in order to get enough unstable examples.
We hold out 30% of this set as a test set, and train (and cross-validate) on the
remaining samples.

After constructing the time-series X, we apply an automated feature extrac-
tion algorithm called TSFRESH [3]. TSFRESH stands for ”Time-Series Feature
extraction based on Scalable Hypothesis tests”. Its development was motivated
by industrial big data applications as predictive maintenance or production line
optimization, but its use also applies to our classification goal.

TSFRESH characterizes time-series by first calculating a large number of
well-established feature mappings (e.g. mean, kurtosis, Fourier coefficients, ...).
In total, 788 features are calculated. A feature selection step follows. Each feature
vector is evaluated with respect to its dependence on the target label. If the
feature is deemed significant for predicting the target, it is kept as input for
the ensuing prediction algorithm. The significance of a feature is addressed by
statistical hypothesis testing.

In our case the target label is binary, and the calculated features non-binary.
The following hypothesis is tested by a Kolmogorov-Smirnov test:

Hφ
0 = {fxφ|y=0 = fxφ|y=1}, (1)

Hφ
1 = {fxφ|y=0 6= fxφ|y=1}. (2)

Here xφ stands for a calculated feature based on x. fxφ|y denotes the conditional
density function of xφ given y. Further details on the independence tests may be
found in [3].

Features that pass the previous feature selection step are Z-normalized before
the next step.

Two different supervised learning methods are used for classifying the ex-
tracted features. Logistic regression is a binary linear classifier where a logistic
sigmoid is applied to a linear function of the feature vector xφ confining the
output between 0 and 1. Logistic regression is based on the following probability
model:

p(y = 1 | xφ) = σ(wTxφ) =
1

1 + exp(−wTxφ)
(3)

where w is the weight vector that needs to be learned. Computing the clas-
sification model of linear support vector machine (SVM) classifier amounts to
minimizing an expression of the form[ 1

n

n∑
i=1

max(0, 1− yi(wTxφ,i))
]

+ C||w||2, (4)
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where C indicates the importance assigned to maximizing the classification
boundary margin between the two classes versus classifying the classes correctly,
which makes it a regularization parameter [1]. We also use L1 and L2 regulariza-
tion in order to improve the generalization performance of the logistic regression
model. On all classifiers 3-fold stratified cross validation is performed on the
training set as a hyperparameter optimization step for the regularization term.
We are dealing with imbalanced classes, so the Area Under the Receiver Op-
erating Characteristic (AUROC) curve is chosen as the validation metric. This
metric is insensitive to disparities in the class proportions.

Next we apply another feature selection step. In order to further reduce the
number of features, recursive feature elimination is used. First the linear estima-
tors are trained on the original set of features and the weights of each feature
are ranked according to their value. Then the least important weights are ex-
cluded from the current set of features. This process is recursively repeated on
the pruned set until the optimal number of features to select is reached. Each re-
cursive step is performed within a cross validation loop, again with the AUROC
score as the validation metric. In short, we call this recursive feature elimination
with cross validation (RFECV). For the evaluation of the final classification, we
look at the normalized true positive and true negative rate.

We also apply a nonlinear classification method (SVM with Radial Basis
function (RBF) kernel) on the full feature set. These SVMs are able to represent
a wide range of nonlinear decision boundary classes by setting the appropri-
ate hyperparameters [1]. We set these parameters by using the same validation
procedure as mentioned above, and compare the result with the linear classifiers.

The feature selection method used in this work is only directly applicable to
linear models. We note that different feature selection methods exist other than
the one used in this work [2]. For example, note that for a SVM with a RBF
kernel the weights w can not be explicitly computed, so they are not directly
available for ranking. Hence another approach is required.

The class distribution of the dataset is unbalanced, so the class weights for
all classifiers are balanced.

For the final classification model we focus on linear models only, since these
offer the most straightforward interpretation of the relation between the feature
values and their corresponding classification outputs.

4 Results

After the calculation of the 788 features by TSFRESH, only 217 features are
deemed relevant by the algorithm. The normalized true positive rate (unstable
class) and normalized true negative rate (stable class) of the trained classifica-
tion models after applying RFECV on these remaining features are shown in
Table 1. The averages and standard deviations for both classes are shown for
ten runs with a different train-test set splitting seed. Before the application of
RFECV, the linear classifiers perform better on the positive class and worse
on the negative class than the SVM with a RBF kernel. After the application

196



CONFIDENTIAL – INTERNAL USE6

power state 
logs

TV usage
time-series

TSFRESH
feature

extraction

instability
prediction

Logistic 
regression/

SVM

RFECV

Fig. 4: Schematic representation of instability detection approach

Table 1: Test set result of the trained classification models. The normalized true
positive rate (unstable class) and normalized true negative rate are shown (stable
class). Ten runs with a different train-test split seed where performed.

(a) Before RFECV

L1 LR L2 LR SVM LIN SVM RBF

unstable 0.72 ± 0.1 0.74 ± 0.06 0.66 ± 0.08 0.60 ± 0.09

stable 0.79 ± 0.02 0.73 ± 0.02 0.79 ± 0.02 0.83 ± 0.02

(b) After RFECV

L1 LR L2 LR SVM LIN

unstable 0.84 ± 0.10 0.83 ± 0.07 0.79 ± 0.08

stable 0.80 ± 0.03 0.80 ± 0.02 0.80 ± 0.03
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weight TSFRESH feature name

3.48 approximate entropy m 2 r 0.1

1.92 change quantiles f agg ”var” isabs False

-0.84 fft coefficient coeff 70 attr ”real”

-0.79 fft coefficient coeff 28 attr ”real”

0.79 fft coefficient coeff 24 attr ”abs”

0.58 fft coefficient coeff 61 attr ”abs”

0.57 fft coefficient coeff 74 attr ”abs”

0.53 fft coefficient coeff 29 attr ”abs”

0.53 agg linear trend f agg ”mean” chunk len 5

0.49 sum of reoccuring data points
(a) For L1 logistic regression

weight TSFRESH feature name

0.70 approximate entropy m 2 r 0.1

-0.51 value count value 0

0.44 fft coefficient coeff 24 attr ”abs”

-0.44 fft coefficient coeff 28 attr ”real”

0.43 fft coefficient coeff 54 attr ”abs”

0.40 fft coefficient coeff 38 attr ”abs”

-0.39 number cwt peaks n 1

0.39 range count max 1 min -1

0.38 sum of reoccuring data points

0.37 agg linear trend f agg ”max” chunk len 50
(b) For L2 logistic regression

weight TSFRESH feature name

0.38 approximate entropy m 2 r 0.1

-0.23 fft coefficient coeff 28 attr ”real”

0.21 fft coefficient coeff 52 attr ”abs”

0.20 sum of reoccuring data points

0.19 fft coefficient coeff 54 attr ”abs”

-0.18 fft coefficient coeff 70 attr ”real”

-0.18 mean second derivative central

0.17 fft coefficient coeff 24 attr ”abs”

0.16 fft coefficient coeff 38 attr ”abs”

-0.16 agg autocorrelation f agg ”var”
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(c) For SVM with linear kernel

Fig. 5: Features with top ten largest weights of the linear classification models.
The ranked feature importances are also plotted for all features remaining after
applying RFECV.
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of RFECV, the linear classifiers perform very similar to each other. The feature
selection procedure also improves the performance of each classifier considerably.

In Figure 5, we show the top ten most important features for both regu-
larization schemes. Feature names from the TSFRESH package are used (a full
description of all extracted features can be found in the documentation of the
package). A positive weight here means that a higher value for the corresponding
feature indicates that the device belongs to the stable class. A negative weight
means the opposite. The value of the learned weights is also plotted for all fea-
tures that remain in the classification model. For L1 logistic regression, only 22
features are retained in the final model. For L2 regularization, 71 features remain.
For the SVM, 65 features remain. As can be seen from the logistic regression
models, a L1 regularization term typically leads to a solution that is more sparse
in the number of features [1]. As a result this enhances the interpretability of
the final model. We remark that it also gives the best classification performance.

We now focus on two interesting observations concerning the shown features.
For all models, the so called Approximate Entropy is the most important feature.
This statistic has been developed in order to quantify the amount of regularity
and unpredictability in time-series data. It has an important use in the analysis
of physiological time-series. Its exact mathematical description can be found in
[6]. In this classification task, we try to predict instability in smart TV usage.
Hence, it is interesting to observe that a direct measure of unstable behavior
emerges as the most discriminative aspect of the time-series with this goal in
mind. Another interesting feature to note is the real part of the 28th Fourier
coefficient, which appears in all models with a negative weight. Since the length
n of the time-series is equal to 336, this corresponds to periodicity on the scale
of 12 hours. So if the TV usage pattern shows strong periodicity on the scale of
12 hours, this indicates a higher probability of the device being stable.

5 Conclusion

We have presented an approach to construct a time-series representation of the
usage of a smart TV based on its power state logs, visualizing for how many
minutes a smart TV has been used per hour throughout the day.

Instability issues in the TVs can be detected using an automated feature
extraction procedure of the time-series called TSFRESH. Applying linear clas-
sification models using those features leads to predictive models that can be
interpreted based on the weights assigned to their features. A feature called
the Approximate Entropy is shown to be the most important feature, as it has
the highest weight for all classification models. The best classification result is
obtained by using L1 logistic regression. It enables the detection of TVs with
instability issues with a normalized true positive rate of 0.84 ± 0.10. The nor-
malized true negative rate equals 0.80± 0.03.
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Abstract. Considering edge weights during frequent subgraph mining
can help us discover more interesting and useful subgraph patterns when
compared to its unweighted counterparts. Although some recent works
have proposed weight adaptation in frequent subgraph mining from trans-
actional graph databases, the consideration of edge-weights in mining
subgraph patterns from single large graphs is mostly unexplored. How-
ever, such graph structures appear frequently, with instances being found
in social networks, citation and collaboration graphs, chemical and bio-
logical networks, etc. In this paper, we propose WeFreS, an efficient al-
gorithm for mining weighted frequent subgraphs in edge-weighted single
large graphs. WeFreS takes into consideration the weight, or significance
of the interactions between different types of entities, and only outputs
subgraphs whose weighted support is greater than a given user-defined
threshold. The resulting subgraph patterns are both frequent and signif-
icant from the application perspective. Moreover, for efficiency, WeFreS
is also equipped with various pruning techniques and optimizations.

Keywords: Single large graph · Weighted single large graph · Graph
mining · Weighted frequent subgraph mining.

1 Introduction

Identifying frequently appearing patterns in large databases is an important
domain of data mining [16]. In the modern world, graphs are being increasingly
used to model data obtained from various real-life applications [2, 4, 8, 12, 14, 15,
18]. Weighted graphs have even more representational power than unweighted
ones, and allow users to specify the relative significance of various edge-relations
in the graph. Mining frequent subgraph patterns from weighted graph data can
thus enable us to gain useful insights about the features and the nature of the
data around us.

Graph mining approaches have traditionally focused on two different setups:
(i) transactional graph database (which is viewed as a collection of small graphs)



and (ii) single large graph framework (which represents the entire dataset in a
single graph). Although several approaches have been proposed for weighted fre-
quent subgraph mining from transactional graph databases [9, 10], there exists
a scarcity of efficient approaches addressing the same problem in the context of
single large graphs. However, the single large graph representation is inevitable
for many fields such as analyzing molecular fragments, image processing, soft-
ware bug detection, text classification and social network analysis [6, 11]. Thus,
considering edge weights during frequent subgraph mining in single large graphs
can help us mine important subgraph patterns, which can be used in a variety
of different applications [1, 12].

Consider the case of mining patterns of spam dispersion in a social network
[7], in which the number of spammers is relatively low. Unweighted graph mining
approaches will fail to mine patterns involving spammers and spam dispersion,
for not being able to prioritize edge relations that include spammers. A weighted
frequent subgraph mining approach, however, would do so if heavier weights were
assigned to edges involving spammers. Such an approach could thus lead us to
finding frequent patterns of spam dispersion across a community.

Recent literature involving single large graphs use minimum image-based in-
dex (MNI) [3] as the frequency support of a subgraph in a given large graph.
Using the MNI measure, weighted support of a subgraph is defined as the prod-
uct of the average of its edge weights and its MNI value.

In the current paper, we propose an algorithm that takes an edge-weighted
single large graph as input and outputs all subgraphs whose weighted support
satisfies a given user-defined threshold. Here, we consider graphs, where edge-
weights are defined as a function of the labels of the nodes adjacent to an edge.
This is a non-trivial task due to the absence of the Apriori property in weighted
frequent subgraph mining. Traditional weighted pattern mining approaches [20]
avoid extending a pattern if its support multiplied by MaxW (highest weight
value among all items) is less than the given threshold. Theoretically, extending
the current subgraph with infinite edges can make the average weight at most
MaxW. However, this is generally a rather high over-estimation, which leads to
unacceptably high runtimes—especially when working on graphs having highly
varying edge-weights.

Further challenges are caused by the computational difficulty of determin-
ing the exact value of the MNI. To avoid this costly operation, a constraint
satisfaction problem (CSP) model has been applied to determine if the MNI
of a subgraph is at least a given threshold (instead of determining its exact
value) [5, 17]. During the mining process, the user defines a weighted support
threshold value (instead of explicitly defining the required MNI). Our proposed
algorithm, Weighted Frequent Subgraph Miner (WeFreS ), efficiently overcomes
these challenges by introducing the MaxPosW measure, which is a tight upper
bound of the highest weight value a subgraph can attain after being extended
by one or more remaining edges from the given large graph. We also introduce
a redesigned CSP model for the frequency evaluation of a subgraph in an edge-
weighted framework. Key contributions of this paper include the following:
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– Introduction of an efficient method to counter the absence of the Apriori
property during weighted frequent subgraph mining.

– Proposal of an efficient technique for determining MaxPosW (i.e., maximum
possible weight a subgraph can attain after being extended by one or more
edges from the large graph).

– Reformulation of the CSP model so that it can fit in a weighted framework.
– Development of WeFreS, a weighted frequent subgraph mining algorithm

that works on edge-weighted single large graphs.
– Demonstration of the efficiency of WeFreS in comparison with existing ap-

proaches and baseline algorithms using results obtained from experiments
on several real-world datasets.

The remainder of this paper is organized as follows. The next section gives
the formal problem definition and an overview of some related works. Section 3
presents our proposed method and relevant proofs. Evaluation results and con-
clusions are given in Sections 4 and 5, respectively.

2 Preliminary Concepts and Related Works

Definition 1. For a weighted single large graph described by a five tuple
(V,E, L, l, w), (i) V and E are sets of vertices and edges, respectively, such that
all e ≡ (u, v) ∈ E where u, v ∈ V and e connects nodes u and v; (ii) L is a set
of node labels; (iii) l:V → L is a function that maps each node to a certain label;
and (iv) the weight of each e ∈ E is defined by the function w:(LXL) → R as
w(l(u), l(v)).

Definition 2. For any subgraph S with vertex set VS, let f(v) denote the number
of distinct nodes in an input graph G with a node v ∈ VS that can be mapped to
in order to form at least one valid isomorphism. The minimum image-based
(MNI) index of a subgraph S is ∀v ∈ VS ,min(f(v)).

For example, subgraph S in Fig. 2 has two isomorphisms in graph G in Fig. 1:
(i) {1-2-3} and (ii) {4-2-5}. Here, nodes A and C in S can be mapped to two
distinct nodes each to form valid isomorphisms, but node B can be mapped only
to node 2 in G. Consequently, the MNI support of S in G is min(2, 1, 2) = 1.

203



While alternative metrics exist for determining the frequency support of a
subgraph in a single large graph, we use the MNI index as the support metric
due to (i) the relative computational ease of determining its value and (ii) the
mined subgraphs are supersets of those mined by other metrics. MNI is used as
the support metric in several recent literature as well [5, 17].

Definition 3. The weight W (S) of a subgraph S is the average of the
weights of the edges in it. The weighted support WS(S) of S is the product of
W (S) and its MNI support MNI (S), i.e., WS (S) = W (S)×MNI (S).

For example, in Fig. 2, if the weights of edges connecting labels (A-B), (B-C)
and (C-A) in S are 5, 10 and 15 respectively, then W (S) = 5+10+15

3 = 10 and
WS (S) = W (S) × MNI (S) = 10 × 1 = 10. Weighted support is suitable for
finding interesting patterns because it takes into account both the MNI support
and weight (instead of only the MNI value).

Definition 4. Given a weighted single large graph G and a threshold τ as input,
the weighted frequent subgraph mining problem is defined as finding all
subgraphs S such that WS (S) ≥ τ .

In the context of relevant literature, gSpan [19] mines frequent subgraphs
from transactional graph databases. Concepts introduced in gSpan regarding the
canonical ordering of edges and subgraphs have been adopted in previous single
large graph mining approaches [5, 17] and are used in WeFreS to avoid duplicate
subgraph generation. GraMi [5] is a state-of-the-art approach for mining frequent
subgraphs from single large graphs, with a CSP model to determine if the MNI
of a subgraph satisfies a given threshold. GraMi does not take edge-weights into
consideration, and thus risks mining subgraph patterns which are frequent but
ultimately insignificant. It also misses out on mining subgraph patterns that are
relatively less frequent, but nevertheless interesting due to higher weight values.

ReSuM [17] takes edge-weights into consideration and can mine weighted
frequent subgraphs when the weights are within the interval [0,1]. ReSuM uses
GraMi to identify all frequent subgraphs, and then filters out subgraphs from
the output whose weighted support do not satisfy the given threshold. Since the
weight of each subgraph is imposed to be within [0, 1], the weighted support
is bounded by the MNI support, thus ensuring a complete search. Experiments
in Section 4 show this approach to be inefficient compared to WeFreS. Further-
more, imposing weights to be within [0, 1] limits the representational power of
the graph. As exemplified by the case of spam dispersion in Section 1, many
applications require the weighted support of certain patterns to be scaled up
from their MNI support, and that is not possible if edge-weights are restricted
to being less than 1.

3 Our Proposed WeFreS Algorithm

Mining weighted single large graphs imposes several challenges. First, how do
we determine if there is a possibility of an extension of a given subgraph to be
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weighted frequent? Even though the MNI index of a subgraph maintains the
Apriori property, the weight of the extensions of a subgraph may exceed its own
weight. This paper introduces a novel approach for determining the Maximum
Possible Weight (i.e., MaxPosW -measure) whether a subgraph can attain after
being extended by one or more edges. Once the MaxPosW for a subgraph S is
determined, we define reqExt = dτ/MaxPosWe as the minimum MNI value that
S must have in order for an extension of S to be weighted frequent. Let (i) W (S)
the weight of the weighted frequent subgraph S, we define reqFreq = dτ/We as
the minimum required MNI value.

We begin extending subgraphs after deleting nodes and edges having ‘infer-
tile’ labels from the large graph. Thus, the steps that are needed to be defined
to fully express the mining process are as follows:

– Defining a method to determine MaxPosW for a subgraph S.
– Defining a method to determine if the MNI support of a subgraph S is at

least reqExt.
– Defining a method to determine if the MNI support of a subgraph S is at

least reqFreq.
– Defining a method to determine if a node or an edge is infertile.

Detailed descriptions of all these methods along with necessary mathematical
proofs and illustrations are provided in the remainder of this section.

3.1 Calculation of MaxPosW

WeFreS works by (i) initiating a subgraph for each undeleted edge in the input
graph and (ii) evaluating its weighted support to determine if it is weighted
frequent itself and if it is extendable. Each extendable graph is then recursively
extended by adding a single-edge to it, to form all canonical 1-edge extensions
of the current subgraph, whose weighted supports are subsequently evaluated.
Thus, the entire search space of WeFreS can be viewed as a collection of DFS
code trees, each node of which represents a subgraph whose weighted support
was evaluated. WeFreS functions by executing a depth first traversal of the tree.

During this traversal, each time we extend a subgraph with an edge, the
weight calculations are effected. If there are |G| edges in the entire graph and
|g| edges in the subgraph g, we can extend subgraph g by at most rem(g) =
|G| − |g| edges. The maximum possible weight an existing subgraph can attain
after being extended by exactly i -edges is equal to the weight attained after
being extended by the i -edges with the highest edge weights in rem(g) and can
be calculated as:

hi(g) =
cur sum(g) + sumi(g)

|g|+ i
(1)

where (i) cur sum gives the summation of edge weights of g and (ii) sumi returns
weight summation of remaining i highest weighted edges in rem(g). MaxPosW(g)
can be calculated by taking the maximum of all hi(g) measures:

MaxPosW (g) = max{hi(g) : 1 ≤ i ≤ rem(g)} (2)

205



0

A

0

B

0

C

0

D

1

E

1

F

1

G

0

H

1

I

1

J

0

K

Graph G 1 2 3 4 5 6 7 8 9 101112

12

14

distribution of hi(g1)

Fig. 3. A sample single large graph G, a subgraph g1 of G, and its hi distribution

We can conclude from the definition of MaxPosW that for any extension
of the current subgraph to be frequent, the product of MaxPosW and MNI
of the current subgraph must be at least the weighted support threshold τ , i.e.,
MaxPosW×MNI ≥ τ . So, for a subgraph g, the minimum required MNI for be-
ing frequent (i.e., reqFreq) and the minimum required MNI for being extendable
(i.e., reqExt) can be determined by the following:

reqFreq(g) = dτ/weight(g)e (3)

reqExt(g) = dτ/MaxPosW (g)e (4)

For example, in the single-large graph of Fig. 3, where edge-weights are de-
fined in the given table, weight of subgraph g1 is 15+5

2 = 10. It contains one edge
connecting the label pair (0, 0), and another connecting the label pair (1, 0).
Thus, the list of remaining edges contains two (1, 1)-edges of weight 20 each,
two 15-weighted (0, 0)-edges, five 10-weighted (0, 1)-edges, and four 5-weighted
(1, 0)-edges. As such, the maximum possible weight after extending by one edge,
h1(g1) = 15+5+20

2+1 = 13.33. The other values of hi(g1) are plotted in Fig. 3. Ob-
served from the bar chart, the maximum weight attainable by g1 after extension
is maxPosW (g1) = 15. If the threshold is 30 and the weight of the subgraph
is 10, then the subgraph must have a MNI value of at least 3 to be weighted
frequent. Again, since MaxPosW=15, the subgraph will be extendable if it has
a MNI value of at least 2. Now, the valid isomorphisms of g1 are (C, D, G),
(A, B, I) and (C, B, I). Thus, each node of the subgraph can be mapped with
two distinct nodes of the main graph to form valid isomorphisms, and thus the
MNI of the subgraph is 2. Hence, although g1 is not weighted frequent, it is
extendable.

Theorem 1. Maximum possible weight a subgraph can attain after being ex-
tended by i edges, denoted as (hi), follows a unimodal distribution.

Proof. We first prove the following statement is sufficient for unimodality:

∀i ∈ 1 ≤ i ≤ rem, hi ≥ hi+1 =⇒ hi+1 ≥ hi+2 (5)
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Let i be the least value, for which hi ≥ hi+1. Thus, ∀1 ≤ j < i, hj < hj+1. This
indicates that the portion of the distribution before the decreasing part starts
shall be increasing. Now, we prove that, if the aforementioned statement is true,
the rest of the distribution shall stay non-increasing once the non-increasing part
appears.

Induction base: For k = i+ 1, as hi ≥ hi+1 =⇒ hi+1 ≥ hi+2 and hi ≥ hi+1

are true, hi+1 ≥ hi+2 is true by modus ponens. This implies that the non-
increasing part continues at least upto i+ 2.

Induction step: Suppose the non-increasing portion continues upto k, i.e.,
hi ≥ hi+1 =⇒ hi+1 ≥ hi+2 =⇒ . . . =⇒ hk−1 ≥ hk. Again, (hk−1 ≥ hk =⇒
hk ≥ hk+1) ∧ (hk−1 ≥ hk) =⇒ (hk ≥ hk+1). Thus, if the non-increasing part
extends upto k, it shall extend upto k+ 1 as well. By principle of mathematical
induction, we can conclude that, if the statement in Eq. (5) is proved, it stays
non-increasing once the non-increasing part of the distribution of hi starts. In
simple terms, if statement in Eq. (5) is true, we can say that upto a certain value
of i, hi increases and stays non-increasing afterwards.

Now, we prove the statement in Eq. (5), given that wi ≥ wi+1 ≥ wi+2, hi
can be calculated using Eq. (1). Here, wk denotes the weight of the k-th edge,
when the edges are sorted in decreasing order of edge weights. From Eq. (1), hi
= cur sum+sumi

k+i = (cur sum+sumi)(k+i+1)
(k+i)(k+i+1) = (cur sum+sumi)(k+i)+(cur sum+sumi)

(k+i)(k+i+1)

= cur sum+sumi

k+i+1 + cur sum+sumi

(k+i)(k+i+1) =
cur sum+sumi+

cur sum+sumi
k+i

k+i+1 .

∴ hi =
cur sum+ sumi + hi

k + i+ 1
(6)

Eq. (1) also implies that maximum possible weight after extending the sub-
graph in consideration by (i+ 1)-edges can at most be hi+1 = cur sum+sumi+1

k+(i+1) =
cur sum+sumi+wi+1

k+i+1 . As hi ≥ hi+1, using Eq. (6), we have cur sum+sumi+hi

k+i+1 ≥
cur sum+sumi+wi+1

k+i+1 =⇒ hi ≥ wi+1. Then, hi+1 = cur sum+sumi+wi+1

k+i+1 =
(cur sum+sumi)

k+i (k+i)+wi+1

k+i+1 = hi(k+i)+wi+1

k+i+1 . As hi ≥ wi+1, we have

hi+1 ≥ wi+1(k+i)+wi+1

k+i+1 = wi+1(k+i+1)
k+i+1 . Therefore, hi+1 ≥ wi+1. Again, from

Eq. (6) and using relations, hi+1 ≥ wi+1 and wi+1 ≥ wi+2, we get hi+1 =
cur sum+sumi+1+hi+1

k+(i+1)+1 ≥ cur sum+sumi+1+wi+1

k+i+2 . Thus, hi+1 ≥ cur sum+sumi+1+wi+2

k+i+2

because sumi+1+wi+2 = sumi+2, cur sum+sumi+1+wi+2

k+i+2 = cur sum+sumi+2

k+i+2 There-

fore, using Eq. (1), it immediately follows that cur sum+sumi+2

k+i+2 = hi+2 and
hi+1 ≥ hi+2, which completes proving Eq. (5). Thus, distribution of hi is uni-
modal. ut

We proved Theorem 1 that distribution of highest possible weight on re-
maining edges (hi) is unimodal. The classical technique of ternary search can
be used to find the maximum of a unimodal function in O(log2(rem))—instead
of naively applying a linear search that works in O(rem)—where rem is the
number of remaining edges for a current subgraph. Thus, we take advantage of
the unimodal property and efficiently calculate MaxPosW using ternary search.
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To calculate sumi in Eq. (1) efficiently, we need to maintain a sorted list of
remaining edges. While recursively searching for larger subgraphs, we add an
edge to the current subgraph and remove that edge from the sorted list and
do the opposite during backtracking. Thus, we need a data structure capable
of supporting fast insertion, deletion and answering queries regarding the sum
of the first i values in a list. Using a segment tree, all these operations can be
achieved in logarithmic time. To reduce the size of the segment tree, we group
edges with equal weights together, and keep count of how many edges map to
each distinct weight. Each node of the segment tree shall contain the sum of the
weights and the number of ‘unremoved’ edges present in the interval it represents.
Thus, the value of sumi in Eq. (1) can be determined in O(log2(D)) where D is
the number of distinct edge weights. Thus, MaxPosW calculation is achieved in
O(log2(rem)× log2(D)) time, making it feasible to calculate it in large graphs.

3.2 Our Proposed CSP Model

As described previously, for each subgraph in the search space, WeFreS deter-
mines if the MNI of the subgraph is at least equal to reqFreq and reqExt. Let
maxτ=max(reqFreq, reqExt) and minτ=min(reqFreq, reqExt). In effect, instead
of taking the time-consuming route of determining the exact MNI of a subgraph,
it suffices to determine if the MNI is at least equal to maxτ , and failing that, if
it satisfies minτ .

The problem of determining a lower bound of the MNI of a subgraph can
be modelled as a constraint satisfaction problem (CSP). The subgraph pattern
itself represents the constraint graph, with its nodes representing the variables
and its edges and labels symbolizing the constraints. The values in the domain
of each node in a subgraph are initially all nodes in the input graph having the
same labels as it. A valid solution to the CSP is a valid subgraph isomorphism
and must satisfy the following constraints.

1. No two different nodes in the subgraph can be assigned to the same node in
the large graph.

2. The label of each node in the subgraph must match the label of the node in
the large graph it is assigned to.

3. For each edge (u1, u2) in the subgraph, if v1 is the large graph node mapped
to u1 and v2 is mapped to u2, there must exist an edge (v1, v2) in the large
graph.

Initially, we seek to find if the MNI of the subgraph satisfies maxτ . Thus, we
iterate over each variable, and try to find maxτ values in its domain from which
a valid subgraph isomorphism can be found. If for any variable, such maxτ val-
ues do not exist, the searched MNI value is changed to minτ . Thus, for the
current variable, and every variable onwards, we seek to find minτ values lead-
ing to valid isomorphisms. Again, if we can ascertain that minτ values do not
exist for a certain variable, then neither maxτ nor minτ shall be satisfied. The
MNI LOWER BOUND procedure terminates immediately and returns 0. To
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keep track of the required MNI value to be satisfied, we propose using a sta-
tusFlag . Initially, the status flag is set to 2, indicating the value in question is
maxτ . When searching for minτ , the statusFlag is updated to 1. After iterat-
ing through all the variables for statusFlag values 2 and 1, maxτ and minτ are
returned respectively. The procedure is described in Algorithm 1.

Algorithm 1 MNI LOWER BOUND

Input Subgraph S, weighted graph G, min MNI req. minτ , & a max MNI req. maxτ
Output Lower bound of the MNI of S in G

1: statusFlag ← 2
2: if (min size of domain for nodes in S) <maxτ then
3: statusFlag ← 1

4: if (min size of domain for nodes in S) <minτ then
5: return 0
6: for each node v ∈ S do
7: satisfiedValues ← 0
8: for each value x ∈ domain(v) do
9: if a valid isomorphism is found by assigning x to v then

10: satisfiedValues ← satisfiedValues +1
11: else
12: if statusF lag=2 & (satisfiedValues+(#remaining values)) <maxτ then
13: statusF lag ← 1

14: if statusF lag=1 & (satisfiedValues+(#remaining values)) <minτ then
15: return 0
16: if statusFlag = 1 then
17: return minτ
18: return maxτ

If the number of nodes in the subgraph is VS , the number of nodes in the
large graph is VG, the probabilities of the MNI of a subgraph satisfying maxτ
and minτ are p1 and p2 respectively and the probability of an assignment of a
value to a variable leading to a valid subgraph isomorphism is p, the complexity
of Algorithm 1 (for the MNI lower bound) is O(VS · (p1(maxτp ) + (1− p1)minτp ) ·
V VS−1
G ). However, various pruning and optimization measures defined in existing

literature for unweighted single large graph mining are preserved here, making
the actual runtime much shorter in practice than what is suggested by the time
complexity. Use of the statusFlag allows for parallel checking for satisfaction of
reqFreq and reqExt, further increasing the efficiency of the model.

3.3 Subgraph Extension

As discussed earlier, WeFreS functions through a depth first traversal of some
DFS code trees. The traversal occurs according to the recursive procedure out-
lined in Algorithm 2 (for subgraph extension). Before starting the extension
process, WeFreS takes some pre-pruning measures to reduce the search space.
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WeFreS defines a node label or a label pair as ‘infertile’ when it is mathemat-
ically impossible for any subgraph with that node label or the label pair to be
weighted frequent and they are deleted from the node label and label pair list
before starting the extension process. The mechanism for detection of infertility
of a label pair is similar to determining if a subgraph containing a single edge
with that label pair should be extended or not. Node labels not belonging to any
‘fertile’ label pair are deleted. The remaining labels are then sorted in decreasing
order of the sum of the weights of the edges adjacent to nodes of each label, since
such labels are more likely to output a higher number of weighted frequent sub-
graphs. Also, edge relations containing these labels are hence removed earlier,
thus reducing the number of edges with high weight values earlier, and this in
turn helps reduce the maximum possible weight estimation for subsequent sub-
graphs. Afterwards, the recursive SUBGRAPH EXTENSION procedure shown
in Algorithm 2 is called after initiating a single-edge subgraph with each of
the remaining distinct edges. This function returns a list of weighted frequent
subgraphs derived after extending the subgraph S.

Algorithm 2 SUBGRAPH EXTENSION

Input A subgraph S, a weighted graph G, the minimum weighted threshold τ
Output All subgraphs of G extending from S w/ product of avg weight & MNI ≥ τ
1: if DFSCode(S) 6= min(DFSCode(S)) then
2: return
3: reqFreq ← dτ/current weight of subgraphe
4: reqExt ← dτ/maxPosW (S)e
5: minτ ← min(reqFreq, reqExt)
6: maxτ ← max(reqFreq, reqExt)
7: mniLowerBound ← MNI LOWER BOUND(S,G,minτ,maxτ)
8: result← ∅
9: if mniLowerBound ≥ reqFreq then

10: result ← S
11: if mniLowerBound ≥ reqExt then
12: for each edge e ∈ Edges and node u of S do
13: if e can be used to extend u then
14: Let ext be the extension of S with e
15: Decrement the count of e in SegmentTree
16: result ← result ∪ SUBGRAPH EXTENSION(ext, G, τ)
17: Increment the count of e in SegmentTree

18: return result

The procedure initially checks if the subgraph in question is lexicographically
minimal. The concepts of minimum DFS code and lexicographical ordering of
subgraphs are introduced in gSpan and are used here to counter duplicate sub-
graph generation. Afterwards, the values of reqFreq and reqExt are determined
from the current weight and maxPosW of S respectively. If reqFreq is satisfied,
S is added to the list of weighted frequent subgraphs. If reqExt is satisfied, S is
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Table 1. Datasets

Dataset #nodes #edges #labels Directed Distribution MinW MaxW Normalized
MiCo 100k 108,029 29 No negExp (λ=1.0) 25.75 70.0 No

Amazon 163k 296k 1,856 Yes normal (µ=10, σ=1) 0.00 1.0 Yes
negExp (λ=1)

FreeAssoc 10,617 72,176 10 Yes normal (µ=25, σ=1) 22.99 27.5 No

recursively extended, making necessary updates on the list of remaining edges,
which is maintained using a segment tree.

With the time complexity involved with the determination of maxPosW be-
ing negligible in comparison, the time complexity of WeFreS is proportional to
the product of the search space and the time complexity of determining the
lower bound of the MNI of each subgraph. With the search space being (2VG)2

in the worst case, the worst case complexity of the algorithm is bounded by
O((2VG)2 · VS · (p1( τ1p ) + (1− p1) τ2p ) · V VS−1

G ) where τ1 and τ2 are maximums of
all values of maxτ and minτ encountered, respectively, in the search space. How-
ever, the maxPosW pruning technique makes the search space much smaller for
reasonable thresholds, making WeFreS feasible for use in real life applications,
as demonstrated by experimental analysis presented in Section 4.

4 Evaluation Results

Experiments were conducted on the following three real-world graph datasets to
evaluate the performance of our proposed approach in comparison with other
existing approaches and baseline algorithms w.r.t. runtime and memory usage:

1. MiCo, a co-authorship and collaboration graph representing data from aca-
demic.research.microsoft.com;

2. Amazon [13], a co-purchase network consisting of electronic items found in
the Amazon website; and

3. FreeAssoc [14], a dataset representing a word association network based on
the English language.

Since none of these datasets had pre-specified edge-weights, we generated the
weights using normal and exponential distributions. To test the performance of
WeFreS in graphs containing high values of edge-weights, both the MiCo and
FreeAssoc datasets were assigned weights using exponential and normal distribu-
tions respectively. For comparison with ReSuM [17], which requires edge-weights
to be within the range [0, 1], the Amazon dataset was assigned normalized edge
weights using both statistical distributions. Finally, to show that WeFreS can
perform sufficiently well even in unweighted graphs, we compare WeFreS to
GraMi [5] by assigning weight equal to 1 in all edges of all three datasets. Ta-
ble 1 shows the quantitative specifications of each dataset.

All experiments were conducted on a device with 8GB RAM, an intel core
i5 7th gen processor, with 2500 MHz clock speed and an Ubuntu 17.10 oper-
ating system. All approaches were implemented in Java by modifying a public
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Fig. 4. Runtime comparisons with baseline algorithms

Table 2. Memory usage comparisons

Dataset Threshold Memory Usage (MaxW-FSM) (MB) Memory Usage (WeFreS) (MB)
850,000 914.97 899.54

Mico 650,000 1,111 907.36
300,000 – 998.80
89,000 200.73 118.23

FreeAssoc 88,500 5,231 118.23
15,650 – 2153

implementation of GraMi [5]. Since there is no existing approach for mining
weighted frequent subgraphs from single large graphs where edge-weights can
have any numeric value, we defined two baseline algorithms for comparison:
(i) MaxW-DoubleCSP (which applies the CSP model used in GraMi and issues
two successive calls to determine if the MNI of a given subgraph satisfies reqFreq
and reqExt) and (ii) MaxW-FSM (which applies the CSP model described in
Section 3.2 and thus issues a single CSP call only). Both approaches differ from
WeFreS in that, instead of using MaxPosW to determine the value of reqExt,
they use the MaxW measure (which is applied in traditional weighted pattern
mining approaches [20]). The value of MaxW is equal to the highest edge-weight
present in the input graph.

Being a much tighter upper bound than MaxW, the MaxPosW estimate helps
prune out many subgraphs and their extensions from the DFS code tree that
is traversed, which were otherwise visited by algorithms adopting the MaxW
measure. Thus, WeFreS has less search space than MaxW-FSM and MaxW-
DoubleCSP. Furthermore, the reduced pruning tendency of these baseline al-
gorithms mean that they traverse further down the DFS code tree, meaning
that they need to evaluate the MNI of subgraphs containing a higher number of
nodes, thus requiring longer runtime and more memory. Notably, the segment
tree used in WeFreS introduces very little memory overhead, which is compen-

212



225 230 235 240 245 250
1

2

3

4

5

6

Threshold

R
un

ti
m

e
(s

ec
on

ds
)

(a) Normal distribution: runtime vs. τ

ReSuM

MaxW-FSM

WeFreS

225 230 235 240 245 250
1

2

3

4

5

6

Threshold

R
un

ti
m

e
(s

ec
on

ds
)

(b) Neg. exp. distribution: runtime vs. τ

ReSuM

MaxW-FSM

WeFreS

Fig. 5. Runtime comparison with ReSuM in the Amazon dataset
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Fig. 6. Memory usage comparison with ReSuM in the Amazon dataset

sated by the benefits of reduced search space as shown in Fig. 4 and Table 2.
For low threshold values, the baseline algorithms failed to produce results even
after being run for hours, with such entries being marked X in Table 2.

Comparisons with ReSuM are done in the Amazon dataset, using both nor-
mal and exponential distributions for weight assignments. With MaxW = 1,
MaxW-DoubleCSP behaves identical to ReSuM (while mining for subgraphs
with high weighted support) in that it first finds frequent subgraphs and then
filters out the weighted infrequent ones. Figures 5 and 6 show that WeFreS
outperforms ReSuM in terms of runtime and memory.

Although designed for use in weighted graphs, Fig. 7 shows the runtimes
of WeFreS are similar to that of GraMi in unweighted graph datasets. The
additional pre-pruning measure of deleting node labels that are not part of any
fertile label pair causes WeFreS to be more memory efficient. See Fig. 8.

5 Conclusions

In this paper, we explored an innovative direction of considering edge-weights
in mining subgraph patterns from single large graphs. Our novel algorithm—
namely, weighted frequent subgraph miner (WeFreS)—considers both the weight
and significance of the interactions between different types of entities and only
outputs weighted frequent subgraphs. Experimental results show the feasibility
of using WeFreS in large graphs (where edge weights can have any real values)
and its excellent performance over an existing state-of-the-art approaches (which
require edge-weights to have values within the range of [0, 1]). Moreover, WeFreS
is also feasible for use in unweighted frameworks, making it a truly general solu-
tion to the problem of frequent subgraph mining from single large graphs. The
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subgraphs mined by WeFreS are both frequent and significant, and can be used
in a variety of applications. In addition, we also introduced novel approaches for
determining MaxPosW and proposed the constraint satisfaction problem (CSP)
model. As ongoing and future work, we are extending our WeFreS algorithm,
optimizing our determination of MaxPosW, and enhancing our CSP model.
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Abstract. Knowing if a user is a “buyer” vs “window shopper” solely based on 
clickstream data is of crucial importance for e-commerce platforms seeking to 
implement real-time accurate NBA (“next best action”) policies. However, due 
to the low frequency of conversion events and the noisiness of browsing data, 
classifying user sessions is very challenging. In this paper, we address the click-
stream classification problem in the eCommerce industry and present three major 
contributions to the burgeoning field of A.I.-for-retail: first, we collected, nor-
malized and prepared a novel dataset of live shopping sessions from a major Eu-
ropean e-commerce website; second, we use the dataset to test in a controlled 
environment strong baselines and SOTA models from the literature; finally, we 
propose a new discriminative neural model that outperforms neural architectures 
recently proposed by [1] at Rakuten labs. 

Keywords: Clickstream prediction, intent  detection, time-series classification, 
deep neural network. 

1 Introduction 

The extraordinary growth of online distribution channels [2] has had a significant im-
pact on the retail industry [3] [4]. However, a problem for digital retailers is that the 
vast majority of sessions are from users with weak buying intention (“window shop-
pers”). Being able to turn window shoppers into converting customers has thus become 
a key priority for clicks and mortar stores and solely digital players [5]. In turn, next-
best-action marketing and personalization have recently become increasingly popular 
in an effort to increase conversion rates [6].  

In this paper, we present the ongoing research that Tooso Labs is conducting on 
real-time intent detection, by marrying Artificial Intelligence and deep domain 
knowledge over proprietary eCommerce data. The paper is organized as follows: in 
Section 2 we define the intent detection problem; in Section 3 we detail our methodol-
ogy and describe all the models in our study. In Section 4 we present results and a 
preliminary analysis before concluding, in Section 5, with some final remarks.  



2 Problem Statement and Dataset 

2.1 Problem Statement 

The clickstream challenge is to predict if users on a website are likely/unlikely to buy 
within the session based solely on behavioral evidence (e.g. page view, search activity, 
etc.); as such it is usually framed as a classification problem, where the goal is to clas-
sify a session as BUY (“buy-session”) or NOBUY (“no-buy-session”).  To simplify the 
exploration of new methods and align with other literature baselines, we start with a 
version of the problem where the session is entirely available to the classifier, instead 
of data points being streamed in one at a time (mimicking real-time data streaming on 
browsing activities).  

Formally, a session s is a series of browsing events e1, e2, …en with timestamps t1, 
t2, …tn  by a user u, where the gap between any two times t is at most 30 minutes [7]; 
events belong to different categories, such that each e ∈ {C | “view”, “click”, “detail”, 
“add-to-cart”, “remove- from-cart”, “buy”}. A session s is classified as BUY (“buy-
session”) if and only if there is at least one event e in s such that Ce = “buy”,  NOBUY 
(“no-buy-session”) otherwise; to avoid trivializing the prediction problem, we cut ses-
sions with “buy” events at the timestamp before the event.  

2.2 The Tooso Retail Clickstream Dataset 

Our “Tooso retail clickstream dataset” (TRCD) contains data from real user sessions 
on an e-commerce website from a major (>1B year turnover) retail group in Europe. 
All events in the dataset are sampled from the period from 06/29/2018 to 07/18/2018. 

2.3 The symbolized clickstream dataset 

We “symbolize” user sessions, so that, for each e in s, the only information we 
retrieve is the event type. This simplifies the implementation of new algorithms, 
allows to readily make comparisons with SOTA models in the literature and 
make the findings imme-diately applicable to a wide range of use cases (in which 
detailed meta-data about events may be missing). After cleaning the raw 
datasets (excluding sessions shorter than 10 events and longer than 200 to avoid 
suspect sessions into the analysis), the final corpus consists of 7,176 BUY 
sessions and 123,396 NOBUY sessions.  

3 Methodology 

In what follows, we describe all the models and related implementation details. 

3.1 Literature comparisons  

3.1.1 Markov chains  
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We reproduce the methodology of the influential [8], which borrows from the long-
standing idea that browsing activities are properly modelled as Markov processes [9] 
[10]. In particular, two separate Markov chains are trained for BUY/NOBUY se-
quences. At prediction time, for any session s, we predict the class associated with the 
highest probability, i.e. s ∈ BUY iff P(BUY|s) > P(NOBUY|s), s ∈ NOBUY otherwise. 
We run several experiments to pick the best degree for the final chains and found that 
chains of order 5 provide the most reliable classification accuracy (in line with [1]).  

3.1.2 LSTM language model 

A recent paper [1] reported improvements over the MC approach in [8] using LSTMs 
[1]. While the authors frame the problem as a three-fold classification (purchase, aban-
don or browsing-only), they used the same idea of “mixture models” as in [8] just re-
placing MCs with probabilities from a neural network model (token probabilities are 
read off intermediate softmax layers in each LSTM model). We built two LSTMs 
(BUY, NOBUY) with as many input units as there are input classes and the same num-
ber of output units. We used Cross Entropy as our loss function and trained the network 
using Adam. In line with [1], we considered architectures with 1 hidden layer and 4 
different values for the number of hidden units (10, 20, 40, 80); we also explored dif-
ferent values for the learning rate (0.01, 0.001) and for the batch size (10, 20, 50). We 
trained each model with early stopping on the accuracy on the validation set, with a 
patience of 10 and a maximum number of epochs of 50. At prediction time, each se-
quence is passed through both LSTMs and the probability of every state in the sequence 
is retrieved from the softmax layer. Classification happens in the same way as in the 
MC model. 

3.2 Novel contributions 

3.2.1 Seq2Label 
We implemented a discriminative classifier as an alternative way to conceptualize the 
clickstream problem. This architecture consisted of one LSTM layer of dimensionality 
(input units x hidden units) and one fully connected layer with dimensionality (hidden 
units x 1), whose output was transformed using the sigmoid activation function before 
computing the loss. Two pooling strategies were explored, changing the information 
that is used to classify sequences: taking the output of the LSTM at the last time step 
(ignoring padding indices) and taking the average LSTM output over the entire se-
quence (again ignoring padding indices). The pooled output of the LSTM was then 
passed through the fully connected layer and transformed using the sigmoid activation 
function, which was then taken as the prediction given the sequence. Binary Cross En-
tropy Loss is used to quantify the error and back-propagate it (Adam was again the 
chosen optimizer). We tested the same hyper-parameter settings as in the LSTM lan-
guage model and trained each model with early stopping, considering accuracy on the 
validation set as the target variable with a patience of 10. 
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3.2.2 Visibility Graphs 
Leveraging the symbolic nature of the clickstream dataset, we explore a completely 
different prediction method by feeding k-grams to visibility graphs [11] [12]. The key 
intuition of this method is that you can induce a graph from a timeseries by linking 
events (as “nodes”) that can “see” each other in the series, as shown in the figure below 
(see [12] for a formal introduction): 

Fig. 1. Sample time series of 20 data and its associated horizontal visibility graph. 

After transforming each symbolized session into the corresponding visibility graph, 
graph patterns are run through PCA to avoid overfitting and the resulting features are 
fed into a standard SVM classifier.  

4 Results and Analysis 

After deciding on the best parameter choices for our models, we tested them on the test 
split of the corpus (since LSTMs depend on random initialization, we trained 10 differ-
ent instances of the same model). In the following table we report average accuracy 
scores on the test set and provide the standard deviation over 10 runs in parentheses 
when necessary. 

Table 1. Average accuracy scores 

Model Accuracy 
Markov Chain 0.882 

LSTM - Language 
Model 

0.909 (± 0.004) 

Visibility Graphs 0.868 (± 0.48) 
LSTM - S2L (‘avg’ 

pooling) 
0.927 (± 0.003) 

LSTM - S2L (‘last’) 0.932 (± 0.002) 
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5 Conclusion 

We presented preliminary but encouraging results in the clickstream prediction chal-
lenge for online retail. Using our novel dataset of live shopping sessions from a major 
European e-commerce website, we have proposed i) a new discriminative neural model 
that outperforms SOTA architectures proposed by [1]; ii) a physics-based approach, 
through visibility graphs, that can be thought as a very strong baseline for timeseries 
problems, being formally well understood, easy to implement and fast and cheap 
to compute even on large datasets. In the spirit of reproducibility, the authors plan to 
re-lease the full dataset and benchmarking code under a research-friendly license. 
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Abstract. To detect fast changes in customer behavior or to react in as focused a 
manner as possible, predictive modeling must be done in good quality to get ef-
fective predictions of customer behavior and it has to be done fast to be relevant 
under business aspects. Modeling speed is of great importance in industry as time 
is a crucial factor. This necessity requires a different technical set up for model 
development to fulfill both needs: quality and development speed. Today most 
companies like to develop their models individually with the help of specialists. 
But for a lot of companies, this way takes too long; even though the models are 
excellent, the time to develop them sometimes kills the advantages of a better 
prediction. This article describes the general structure and ideas how to imple-
ment industry-focused model production that will help to react quickly to chang-
ing behavior. We will discuss the key success factors and the pitfalls of this as-
sembly line model product. 

1 Marketing in the Web 2.0  

Customer profiles are really valuable if they contain more information than just cus-
tomers’ past behavior, but also include present reactions and give reliable predictions 
about their future conduct.  

A company's existing customer data may, for example, provide information about 
purchase and payment history, address, age, gender, etc.  For all customers that can be 
identified this data is stored and used for targeting purposes. Even if there is a technical 
solution enabling you to identify customers who are already known when they visit 
your website, you never know all the people visiting your site. But there are plenty of 
reasons to learn more about them and to target them as well and to do it in the same 
personalized way as you do with those you can identify. But the only information avail-
able is what you can filter out of the log file.  

So you know which and how many pages they have seen and for how long, where 
they came from and much more. 

To use this information each individually brings obvious advantages: With the 
knowledge of the typical click patterns of customers reacting similarly and the 
knowledge of the positioning and placement of advertising for a product which appeals 



to most customers you will create a big benefit. With information such as entry and exit 
page, or click behavior, the structuring of web sites can be continually improved and 
their representation can be optimized on the web. Knowledge of the origin, points to 
the channels, which should best be addressed by the specific target groups.  

All this information put together gives a multifaceted view of customers and target 
groups. To measure success, in order to recognize and to identify trends, changes and 
new needs of the target groups early, and seize enterprise opportunities, consider off- 
and online market study as well as on the analysis of the volume of data existing in the 
enterprise reporting, data mining and market observations. On-line measures of inter-
ested parties use the clicking advice or page impressions consulted as yardsticks [2].  

But nothing changed in the last years as rapidly as the use of the Internet. 10 years 
ago Web 1.0 offered static websites, Web 1.5 offered dynamic websites and since 2005 
more users expect interactive Websites (Web 2.0). The World Wide Web develops it-
self constantly in large steps and Web 3.0 will start soon.  

The Internet medium penetrates the market with its various application possibilities 
and offers world-wide access - across all society and ethnical layers. Currently 79.9% 
of the Germans are already on the Web. [8]  

Ever more humans use the Internet ever more extensively (for search, E-Mail, fo-
rums, Blogs, Podcasting, on-line one of plays…) - briefly: The Internet is a fast, global, 
highly competitive marketplace. Above all, the Web is used increasingly by many cus-
tomers and enterprises as a starting point for the search for services and products. 

The expenditure for on-line marketing today already takes more than 19,2% [13]  of 
the total expenditure for advertising. This will continue to rise in all industries, because 
this market place opens various marketing possibilities - and demands completely new 
marketing strategies. Medium-spreading, target-group-specific, relevantly - today must 
be tailored advertising best personally to each customer. For it is necessary to improve 
customer loyalty, facilitate the acquisition of new customers and improve the response 
or the conversion rate - all at very low cost advertising [3]. 

The current challenges facing new methodologies and technologies are, for example, 
the analysis of log files [14], information on the origin of the visitor, what browser he 
uses, which and how many pages he has viewed. The advantages are obvious: the per-
son who knows the typical click behavior of their customers can determine with this 
knowledge, the positioning and placement of advertising for a product that appeals to 
its customers the most. With information such as exit and entry side, the structuring of 
web sites can be continuously improved and the representation can be optimized on the 
web [4]. 

Of exceptional value for strategic planning are reliable predictions about future de-
velopments in the behavior and needs of customers. The development of predictive 
behavioral targeting ensures that such predictions are placed on a statistically validated 
foundation. 
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2 Predictive Behavioral Targeting 

For a company to receive exciting customer profiles, improve the relevance of its online 
offerings and optimize its long term online marketing ROI, it would not only need in-
formation about the historical and current habits of its customers, but also about their 
future conduct [5], [10], [11]. So it is important to discover patterns in customer behav-
ior, for this we need to identify a specific user. This makes the predictive behavioral 
targeting. 

Methods such as descriptive statistics, click-stream analysis [6], discriminant analy-
sis, regression methods [3], decision trees, neural networks, case-based reasoning 
(CBR) [12], cluster analysis [1] and time series analysis are used. 

Based on analysis of user profiles and user structures (such as age, lifestyle, peer 
group affiliations, browsing behavior) predictive models are created for future behavior 
[13]. For example, the decision on where to place banners which users should be shown, 
is based on the sites he visited or on the basis of what he's doing on these sites.  

Previously contextual advertising based on the content of a website, identified con-
tent which is best suited for a display. The predictive behavioral targeting based on the 
users actual and past behavior, the right person for a quote with the ability to identify 
user profiles, which opens the way for predictive behavioral targeting relevant adver-
tising. 

Predictive targeting makes a lot and that information gain immensely in value when 
they are in the right place as quickly as possible in the right form ready. Fully automatic 
Predictive Targeting and modelling real-time of on-line behavior create for it the con-
ditions. 

3 Fully automatic Predictive Targeting and modelling real-time  
on-line behavior 

Using the necessary algorithms for analysis in real time opens up the new fully auto-
mated predictive targeting, individual and lasting forms of communication and offers a 
head start by modeling the real-time online behavior. 

This means an evolution step comparably from the handicraft to the production - 
inclusive reductions at the complexity. The classical way to build complex forecast 
models by hand, is in the role of "Master Workshop". But even a large staff of analysts 
(craftsmen) can not cope with the huge amounts of data and the high number of models- 
this needs a fully automated "assembly line" for prediction models. 

3.1 Function 

The core of the fully automatic predictive targeting system is the construction of pre-
diction models. It includes all functionality to build with a team of analysts complex 
forecast models by hand ("Master Workshop") but also in a second module ("assembly 
line") it builds very fast fully automated simple, click-based predictive models, auto-
matically backs up its quality and makes it available for use.  
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In the "assembly line" all models are calculated, which is a relatively simple task in 
the field of predictions (predictive modeling), for example, only the models whose tar-
get variable is a dichotomous structure (click vs. not clicked, purchased vs. not. bought, 
visits vs. not visited, etc.)[9]. These prediction models cover, for example, a large por-
tion of the orders for banners and optimization behavior targeting. Special analysis such 
as cluster analysis, are performed by the analysis team in the "Master Workshop". 

It is decided by an administrative process whether a forecast model goes in the work-
shop or in the assembly line to be manufactured. Each model receives a clear ID and is 
archived. The substantial elements the assembly line contains are shown in Figure 1. 

Fig. 1.   The Elements of an Assembly Line 

3.2 Architecture 

The areas of "Master Workshop" (working range of the analysis team) and "assembly 
line" (automatic targeting) are in the existing architecture of a company included in a 
way that the environment and its benefits can be used as far as possible. This includes 
especially all tasks around data preparations. 

Modules of the Automatic Targeting System 

• Control
Administration 
Model Management 
Management of the Variables 

• Learning of the Model
Selection of the Target Variable =1 and Selection of the Target Variable=0 
Model specific random sampling to obtain a data set 
Supply of a Learning Data Set and aTest Data Set 
Learning the Model 
Evaluation of the Model 
Quality Assurance Monitor 
Release process 
Handing over process 

• Model examination
Model specific random sampling to obtain a data set 
Model examination 
Quality Assurance Monitor 
Confirmation process 

• Model Archive

• Variable processing and Supply
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In general: All the developed models will be passed as a code / script and archived 
in an archive, including its metadata and also about their use. The application of models 
based on the scripts is the final step of the calculation of variables at the end of a session 
or a slot. For each active model the prediction is calculated as relevant forecast value 
per unique client (UC) and is stored in a separate variable and made available to the 
Target Builder. 

In the Target Builder (an instrument for targeted delivery of content), these predic-
tive capabilities of profiles are used to provide target audiences for online campaigns 
and make them ready to be marked. So every user with fitting profile is addressed. 

Fig. 2. Automatic Predictive Targeting 

3.3 Data flows and database 

The bases for all analyses are the behavior data of the UC on the respective websites. 
Ideally the behavior data can be enriched by information from questioning or login data. 
One can differentiate between standard/general behavior and/or interest-conditioned 
information These profile and behavior data per UC are computed relative to different 
time windows. Both are formed from large numbers of variables. The variables should 
reflect different views on the UC. 

In the context of the modelling in the assembly line, only an examined subset of 
variables is used, in order to grant stability, robustness and performance essential for 
automation. That can be seen somehow as the standard dataset. The size and content of 
it is the outcome of experience and domain knowledge obtainable from the analyses 
team. Using the Pareto principle the dataset should contain roughly 20 % of all potential 
data to be the basis of 80% of all easy prediction problems. To ensure that data prepa-
ration fits the time constraints of the Assembly line, it is important to use optimization 
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techniques that help to deliver the data as fast as possible. After the structure of standard 
dataset is defined and adjusted, it will be created fully automatically by the systems.  

As in other industrial processes it is important to identify and separate different pro-
cess steps, such as data handling and calculations so that they can be standardized and 
optimized to deliver an outcome of reliable quality and with a more or less small stand-
ard error. About the data preparation including all necessary (automatically done) trans-
formations, it lead us to the fact we should choose robust methods that will help to 
generate data that fits most (modeling) situations but might not be the optimal one for 
every single case as you would get, when you do the analytics by hand through an 
expert in your company. Where you try to optimize the modeling result by doing a 
constant looping out of data preparation, analytics and measurement, especially under 
time constraints, this looping has to be at a minimum.  

An essential part of the daily profile building step is data preparation. It is 
needed both for the modeling / verification as well as for the application of ex-
isting scores. All of has to be done in a time-critical area. 

 So that modeling or deployment can take place in the current session, it is indispen-
sable that the session data can be accessed at any time in the session.  

To train and validate a model, very fast sampling is mandatory. Please keep in mind 
that the relation between those who act (target=1) and those who do not act (target=0) 
is very unbalanced. It is very likely that you have just 500 UC acting and 5 million UC 
not acting. As part of the modeling issue, it makes a big difference in calculation time 
whether you have to calculate slightly more than 5 million records or just a couple of 
hundred. So if you start to build an assembly line it is required to work out and test a 
sampling strategy that best suits your individual situation. 

3.4 Modelling Aspects 

Similar to the data preparation, the assembly line needs for its modeling engine a data 
mining algorithm that will deliver good and stable models without any interaction with 
an expert. The algorithm should be fast and the time needed for the deployment of 
models should be as small as possible, especially if it is planned to use the assembly 
line for nearly real time forecasting. If it is under business reason not so important to 
be real time, for example it is enough if you use the data of the last finished session as 
the newest one to be included in the forecasting, or as a base forecast that is shaped by 
the content click on or searched for, then the time for modeling and deployment might 
not be so time critical. Based on many tests simulating the situation like an assembly 
line, out of all the algorithms, the family of decision trees wins most, and delivers fast 
very good results.  

The fully automated quality control is the next step in the process to deal with; the 
task here is to define the small border between not “quite as good” and “good enough 
under business reason”. If your expectations for the modelling quality are too high you 
will end up with lots of models transferred back from assembly line to workshop to be 
redone by the experts, so you will lose time and it will cost you more money to produce 
the models. If your quality is too low you will lose business, e.g. lower click rates.  
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In quality control we are looking after new (freshly developed) models as well as 
after models that have been in duty for a while, so the chosen quality control process 
and it measurements must be able to do a constant quality control on all active models 
to notice in time when a model needs refreshment. 

3.5 Challenges and critical success factors 

The complexity of the process of fully automated predictive targeting and modeling of 
real-time online conduct presents some statistical challenges: During sampling the min-
imum reasonable number of events = 1 (e.g. clicks), stratification, sampling routines 
has to be fixed sensitively. Forecasting methods are judged in terms of prediction qual-
ity, stability, development, etc. Performance, durability, run-time behavior, parameter-
ization, and automation of error detection must be considered in the selection of quality 
assurance methods. 

Similarly, critical success factors should not be ignored: Are uncontrollable optimi-
zation steps / algorithms influencing the ad server that originally predicted massive 
click behavior? Are tags are missing in the banner? Are there so few clicks that it takes 
too long to get a critical mass for modeling? 

4 Results 

Fully automatic targeting and predictive modeling of real-time online behavior are at 
the very beginning of their development and are valuable tools provided critical success 
factors and requirements are carefully observed in the implementation and the environ-
ment. All being well we can obtain fully automated predictive targeting even based 
literally on the last click in real time, and these predictions can be flexible and up to 
date. This allows rapid response to changes and trends in the rapidly changing online 
marketplace. 
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Abstract. Machine learning algorithms work optimally when the training da-
taset is balanced, that is, when the number of samples per class is comparatively 
the same. However, real-life datasets are usually severely imbalanced. To re-
duce the skewness, under-sampling techniques are used. Unfortunately, they 
may delete majority samples that carry valuable information. To improve the 
approach above, we propose two novel cluster-based relative outlier under-
sampling techniques (CROUST and ICROUST), which selectively removes 
majority class samples to minimize the information loss while maximizing the 
model efficiency. An empirical comparison of results between CROUST, 
ICROUST and multiple well-known techniques on various real-world data 
prove that our proposed methods are an improvement of other state of the art 
results. 

Keywords: Data sampling; clustering; data skewness 

1 Introduction 

Advancement in science and technology has resulted in a surge of raw data which can 
be utilized for research in data analytics and data science. However, most real-world 
data are found to be imbalanced, that is, the majority class is much higher than the 
minority class. Medical diagnosis of rare diseases [1, 2], spam detection [3], electrici-
ty pilferage [4], software quality detection [5] and fraud detection [6] are few exam-
ples of imbalanced datasets. As traditional machine learning algorithms are designed 
to improve accuracy by reducing the error whereas ignoring the class distribution of 
the dataset, training on such datasets result in poor performance of classifiers and 
other supervised learning techniques.  

 Elkan [7], Zadrozny and Elkan [8], and Ling and Sheng [9] proposed eminent 
works focused on the effects of class sensitive learning on imbalanced datasets. Kubat 
and Matwin [10] presented a one-sided selection of majority samples to address the 
problems of imbalanced data. By classifying the majority class into noise, borderline, 
redundant and safe samples, they isolated the important majority class information by 
eradicating noise and borderline events. Nevertheless, these methods still suffered 



from the problem of removing noisy samples from minority class, although keeping 
the dataset balanced.  

 Re-sampling using under-sampling techniques have been known to perform 
more optimally than their over-sampling counterparts. Zhang and Mani [11] proposed 
four innovative under-sampling approaches based on the distance between the majori-
ty and minority samples of a dataset. “NearMiss-I” selected those majority samples 
whose average distance to three nearest minority samples was the least. Complimen-
tary to “NearMiss-I” “NearMiss-II” chose those majority samples whose average 
distance to three farthest minority samples was the least. Yen and Lee [12] suggested 
five cluster-based under-sampling approaches primarily based on Zhang and Mani’s 
“NearMiss” and “Most Distant” techniques. Individually, their under-sampling based 
clustering (SBC) approach is taken up in this paper as one of the state of the art tech-
niques. The Cluster-Based Undersampling (CBU) technique proposed by B. Das et al. 
[13] tries to solve the class imbalance problem by clustering the training dataset into k
clusters and then discarding majority instances in overlap regions.

 Outlier detection and outlier removal have remained a critical research area for 
improving clustering algorithms. Most statistical functions are highly sensitive to 
outliers. Escalante [14] compared six approaches of outlier detection while inserting 
artificial noise and bias on datasets. The paper concluded the kernel-based novelty 
detection method to be the best performer. Gan and Ng [15] incorporated an addition-
al cluster into the usual K-means algorithm which would hold all the outliers. R.A. 
Sowah et.al. [16] proposed the removal of repeated outliers and noisy instances using 
clustering during the process of undersampling (CUST) while Liu et al. [17] proposed 
a cluster with outlier removal (COR) algorithm based on the relationship between 
outliers and clusters.  

 To increase the performance of under-sampling while retaining relevant infor-
mation, we propose a technique based on outlier detection with K-means clustering 
and K-nearest neighbor. Our adaptive method removes those majority samples which 
are furthest away from the centroid of its cluster; and those majority samples which 
are in proximity to the closest M majority samples, while also being nearest to the 
closest minority centroid. Classifiers when trained on the two resultant datasets 
achieve better prediction accuracy than traditional state-of-the-art under-sampling 
techniques over various metric evaluation scores (Precision, Recall, ROC AUC, Mac-
ro F1-measure and G-mean). 

2 Method 

The Cluster based Relative Outlier Under-Sampling Technique (CROUST) proposes 
a unique way of removing majority samples via analysis of cluster outliers. This helps 
in improving under-sampling accuracy by minimizing the extent of information loss. 
In this section, we discuss two novel methods: CROUST and iterative CROUST (i.e., 
ICROUST). 
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2.1 The Vanilla CROUST Approach 

Let us assume that our imbalanced dataset consists of 𝑆𝑀𝐴 majority samples and 𝑆𝑀𝐼

minority samples, where 𝑆𝑀𝐴 ≫ 𝑆𝑀𝐼. The total number of majority data points that is
targeted to be deleted for balancing the dataset is given by the following equation:  

𝑀𝐴𝑟𝑒𝑚 = 𝑆𝑀𝐴 −  [
𝑚

1−𝑚
∗ 𝑆𝑀𝐼] (1) 

where 𝑚 lies between [50% 𝑡𝑜 100%)and depicts the percentage of majority class 
samples in the final, processed dataset.  
 To figure out which particular majority samples need to be picked and removed, 
we divide our entire dataset into 𝑘 clusters. If 𝑆𝑀𝐴

𝑖  depicts the total number of majori-
ty samples present in the 𝑖𝑡ℎ cluster, and 𝑆𝑀𝐴𝑗

𝑖  represents the 𝑗𝑡ℎ majority sample in
the 𝑖𝑡ℎ cluster, then the outlier detection analysis of 𝑆𝑀𝐴𝑗

𝑖  is given by the Euclidean 
distance between that point and the centroid of the 𝑖𝑡ℎ cluster, 𝐶𝑖.

Once the distances between every majority point 𝑆𝑀𝐴𝑗

𝑖 and 𝐶𝑖 is calculated, the
complete set of these distances is given by: 

𝐷𝑖 =  {𝑎 | 𝑎 = 𝑑𝑖𝑠𝑡(𝑋, 𝑌)   ∀  𝑋 ∈ 𝑆𝑀𝐴
𝑖 ,   𝑌 = 𝐶𝑖} (2) 

where 𝑑𝑖𝑠𝑡(𝑋, 𝑌) =  (∑ |𝑋𝑖 − 𝑌𝑖|
𝑝𝑑

𝑖=1 )1/𝑝 is the generic distance between any two 
points 𝑋 and 𝑌. In our experiments have used 𝑝 = 2 which is the Euclidean distance. 

After dividing the imbalanced dataset into 𝑘 clusters, CROUST determines the 𝐷𝑖

set for each such cluster. All the above sets are then concatenated to give rise to the 
following global set (equation 3): 

𝐷𝑔𝑙𝑜𝑏𝑎𝑙 =  {𝑎 | 𝑎 = 𝐷𝑖  ∀ 𝑖 ∈ 𝑘} (3) 

The 𝐷𝑔𝑙𝑜𝑏𝑎𝑙  set comprises of the distances of each majority class sample with the
centroid of its respective cluster. The values of 𝐷𝑔𝑙𝑜𝑏𝑎𝑙  set are then transferred to a list
where they are arranged in descending order. The first 𝑀𝐴𝑟𝑒𝑚 samples are deleted
from the list, retaining the remaining majority data points. The concept behind the 
basic CROUST model is that the majority points which are the furthest from the cen-
troid of a particular class are most likely to be outliers and redundant data. However, 
not all outliers can be considered to be irrelevant. To assimilate this concept into the 
algorithm, we chose the 𝑀𝐴𝑟𝑒𝑚 furthest points from the global list of all clusters
combined, and then eradicated the necessary number of samples. This action helped 
in information preservation whilst improving the accuracy of the dataset. 

2.2 The Iterative CROUST Approach (ICROUST) 

Our second proposed technique is an extensive modification of the K-nearest neigh-
bor (KNN) algorithm while also retaining the crux of the CROUST approach. Here, 
the method is iterative, thus giving it the name ICROUST. Unlike the basic CROUST 
approach, this method only segregates the minority class samples into 𝑘 clusters.  
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If 𝑀𝐴𝑗 refers to the 𝑗𝑡ℎ majority data point and 𝐶𝑖
𝑀𝐼 refers to the centroid of the 𝑖𝑡ℎ

minority cluster, the algorithm follows the rudimentary summation concept of two 
distances: the minimum distance (𝑑1) between 𝑀𝐴𝑗 and the nearest 𝐶𝑖

𝑀𝐼 (equation 4);
and the average distance (𝑑2) of 𝑀𝐴𝑗  with 𝑀 nearest neighbour majority points,
where the nth nearest neighbour is denoted as 𝑀𝑁𝑛 (equation 5).

𝑑1 = 𝑚𝑖𝑛(𝑑𝑖𝑠𝑡(𝑀𝐴𝑗 , 𝐶𝑖
𝑀𝐼)), ∀𝑖 ∈ 𝑘 (4) 

𝑑2 =
1

𝑀
∑ 𝑑𝑖𝑠𝑡(𝑀𝐴𝑗 , 𝑀𝑁𝑛) , 𝑛 ∈ [1, 𝑀]; 𝑛 ≠ 𝑗 (5) 

Unlike the vanilla CROUST approach, ICROUST identifies a majority point as an 
outlier after gaining information about both inter and intra-class neighborhood. 

ICROUST adds 𝑑1 and 𝑑2 for each 𝑗𝑡ℎ  majority sample, 𝑀𝐴𝑗, and then creates a
list to arrange these values in ascending order. The data point corresponding to the 
least value of the summation of 𝑑1 and 𝑑2is then selected and deleted. The entire pro-
cess is then repeated anew for 𝑀𝐴𝑟𝑒𝑚 number of points.
 This single point majority-outlier eradication method shuffles the cluster concen-
tration and hence the skewness of the dataset after each iteration. Iterative deletion of 
𝑴𝑨𝒓𝒆𝒎 points provides much stable results when compared to collective deletion of
the first 𝑴𝑨𝒓𝒆𝒎 points. This is because the clusters and the requisite majority-
minority distances keep changing after a particular point is removed. The information 
captured through this skewness shift provides insight to the importance of a specific 
majority outlier data point.  

2.3 Graphical Representation of the Approach 

Fig. 1 depicts a model-wise comparison of the majority and minority data clustering 
for a synthetic dataset. The image distinctly shows the classifier’s approach to eradi-
cate the majority sample data. As expected, the All KNN model creates a clear sepa-
ration between the majority and minority data points. NearMiss-II eliminates all the 
majority points which are far from the centroid of the majority cluster, creating a 
clean but extremely concise boundary space for the majority samples. Since SBC is 
primarily based on random under-sampling, its feature space resembles the original 
imbalanced feature space. The proposed vanilla CROUST model uniquely creates 
small, clear clusters of data points while spanning over the entire area of the feature 
space. The ICROUST clustering shows least information loss from the majority of 
data samples. While retaining the exact structure of the original imbalanced data, the 
ICROUST feature space is a much sparser version of it. This is because ICROUST 
considers both the intra and inter distances of majority-minority data points before 
deleting a particular majority sample. Its iterative deletion technique also aids in a 
reshuffling of the feature space points before the next sample is removed. This helps 
in reducing those majority points which have other similar majority samples nearby, 
i.e., if G majority points have similar information structure, at least one of those G
points are retained.
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 Fig. 1. Graphical representation of the majority and minority class distribution for a two-
attribute play dataset: (a) Original dataset (b) All KNN (c) NearMiss-II (d) SBC approach (e) 
CROUST approach (f) ICROUST. 

3 Experiments 

This section focuses on the evaluation and results analyses of our proposed under-
sampling method on multiple real-world imbalanced datasets. A brief overview of 
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each dataset and the evaluation criterions are provided along with result comparisons 
with another state of the art techniques. 

3.1 Dataset Review and Experimental Method 

Six real-world datasets from the publicly available KEEL repository [18] are utilized 
to test the performance of the two proposed novel methods against three well-
accepted procedures. To test the robustness of our method, the datasets have been 
chosen such that the imbalance ratio ranges from low to high. Table 1 provides a con-
cise description of the imbalanced datasets. The number of attributes and samples the 
datasets contain and their data imbalance ratio is also mentioned. 

Table 1. Descriptions of KEEL repository datasets 

Dataset name No. of samples No. of attributes Data imbalance ratio 
Ecoli3 336 7 8.6 
Glass6 214 9 6.38 
Segment0 2308 19 6.02 
Vehicle0 846 18 3.25 
Yeast3 1484 8 8.1 
Abalone 2338 8 39.31 

In the experiments conducted, we have used linear SVM [19–21] as the classifier. 
Our approaches are juxtaposed with an all KNN model, a NearMiss-II model and an 
SBC model [12]. The basic random under-sampling technique has not been exhibited 
separately as the SBC model itself is an improved version of it [12]. Also, in our ex-
periments we found that SBC outperformed both CUST and CBU so we have not 
shown their results in the comparison table. The approaches involved in this research 
focuses on the various processes required to alter the inter and intra-class Euclidean 
distance between the majority and minority class points. Hence, the distance-based 
classifier of linear SVM is identified to be the most suitable one. 

In this paper, we have used 10-Fold cross-validation for training and testing our 
models. In each fold, the data is broken down into train and test sets: the algorithm is 
run on the training set, and the test set is kept untouched. 

3.2 Performance Metrics 

The quality and reliability of a classifier are often determined by its performance in a 
test environment based on a metric evaluation result. Accuracy, the universal perfor-
mance assessment criteria, is known to be unsuitable while providing results for class 
imbalanced datasets [22]. This paper focuses on five performance metrics, namely: 
Precision, Recall, Macro F-measure, ROC AUC, and Geometric Mean (G-Mean). 

A confusion matrix is generally used to coherently summarize the performance of a 
classifier on a test data with known true output values. For a binary classifier, the 
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confusion matrix can hold one of four values: correctly predicted positive values, 
True Positive (TP); correctly predicted negative values, True Negative (TN); wrongly 
predicted negative values, False Positive (FP); and wrongly predicted positive values, 
False Negative (FN). 

For imbalanced datasets, precision and recall have a quid pro-quo relationship. It is 
not possible to sustain one without diminishing the other. Thus, F-measure, which 
gauges the trade-off between precision and recall, is identified to be a more superior 
evaluation metric. G-mean  maximizes the accuracy of the true positive rate and true 
negative rate with a sufficient trade-off in between, while AUC [23] generates a sin-
gle value for the receiver operating characteristics (ROC) without considering mis-
classification costs and prior probabilities. Overall, F- measure, G-mean and AUC are 
considered to be more precise metric evaluation techniques for imbalanced data clas-
sifiers than precision and recall. 

3.3 Results and Discussions 

This section examines the results obtained from the experiments conducted on six 
KEEL datasets. For every dataset, the metric evaluation outputs are obtained for mul-
tiple majorities to minority ratios and the best results for each method are displayed. 
This is because the end user may not always require the majority to minority samples 
to be in a simple 1:1 ratio. Thus, the performance of a model cannot be purely based 
on its yield when the dataset is completely balanced. While comparing the potential of 
multiple approaches, there should be at least one such majority-minority ratio position 
where the model outperforms all other classifiers. Based on the averaged 10-Fold 
cross-validation score, Table 2 depicts the best performing under-sampling technique 
and the majority-minority ratio at which it is achieved for macro F1-measure, AUC, 
G-mean, precision and recall. It is clearly noted that both CROUST and ICROUST
dominate over All KNN, NearMiss-II and SBC models. Figures 2 to 4 depict the av-
erage AUC, G-mean and F1-measure for different majority to minority class ratios.
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Table 2. Comparison of model performance for various performance metrics over six datasets 

Dataset Algorithm Macro 
F1-score 

AUC 
(ROC) G-Mean

A
ba

lo
ne

 All KNN 68.66 65.15 54.89 
NearMiss-II 33.53 58.99 55.66 
SBC 63.34 59.16 38.17 
CROUST 55.04 85.56 84.61 
ICROUST 69.27 82.62 82.42 

Ec
ol

i3
 

All KNN 76.58 84.97 84.18 
NearMiss-II 75.61 76.77 75.07 
SBC 77.75 79.12 75.28 
CROUST 78.1 88.16 87.93 
ICROUST 80.73 85.7 85.32 

G
la

ss
6 

All KNN 90.83 88.82 90.58 
NearMiss-II 90.56 87.93 90.36 
SBC 91.18 89.64 90.88 
CROUST 92.83 90.4 92.68 
ICROUST 93.18 92.15 92.68 

Se
gm

en
t 

All KNN 99.24 99.14 99.14 
NearMiss-II 96.84 98.54 98.54 
SBC 99.35 99.16 99.16 
CROUST 97.22 98.41 98.4 
ICROUST 99.46 99.36 99.35 

V
eh

ic
le

0 

All KNN 94.85 97.04 97.02 
NearMiss-II 94.89 96.31 96.29 
SBC 95.18 96.13 96.11 
CROUST 95.54 97.27 97.26 
ICROUST 95.26 95.82 96.4 

Y
ea

st
3 

All KNN 82.13 86.46 86.06 
NearMiss-II 80.91 86.83 86.72 
SBC 81.57 79.56 77.54 
CROUST 80.45 89.83 89.63 
ICROUST 82.8 88.64 88.59 
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Fig. 2. Average AUC score for the different majority to minority class ratios for the Glass6 
dataset 

Fig. 3. Average G-mean score for the different majority to minority class ratios for the Glass6 
dataset 
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Fig. 4. Average macro F1 measure for the different majority to minority class ratios for the 
Glass6 dataset 

Even though we have given a comprehensive comparison of the performance of our algorithm 
over others, we also need to make sure that the prediction of a model is improved by applying 
our method prior than when our method is not applied. To show this, we chose to use a signifi-
cance test. If the p-value is under 5%, we can reject the null hypothesis which is, our method 
does not improve performance and the better results are simply by chance. As we did not make 
any assumptions on the data distribution of the six datasets, the significance of our approach is 
captured by the non-parametric Wilcoxon signed rank test. The results were obtained by run-
ning the test on non-CROUST applied and CROUST applied macro F1-measure of the ten 
folds for each dataset. Table 3 summarizes the p-values attained by the Wilcoxon test. It is to be 
noted that the experiment was performed by using both the default and fine-tuned parameters. 
We wanted to demonstrate that it is not necessary that the default parameters will always work. 
Thus, for some datasets, the p-value was not < 5% as each dataset has different class distribu-
tions. By fine-tuning of the parameters, i.e., trying out different majority to minority ratios and 
also changing the number of clusters improved the results. We found that a good starting value 
for the number of clusters is the total number of samples in your data divided by the number of 
minority samples. The performance of a model is drastically affected by the majority and mi-
nority class ratios and even though both CROUST and iCROUST reduce the loss of important 
information, one needs to find the ratio which works best for the given data. The default ratio 
which we use is 70:30 
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Table 3. Results of the p-value from the Wilcoxon Signed Rank Test using the macro F1-
measure obtained during 10-Fold cross-validation 

Datasets Default P Value Tuned P Value 
Ecoli3 0.4  10-1 0.2  10-3 
Glass6 0.2  10-1 0.1  10-4 
Segment0 0.1 100 0.3  10-3 
Vehicle0 0.8  10-1 0.25  10-3 
Yeast3 0.1  10-1 0.13  10-4 
Abalone 0.1  100 0.37  10-3 

3.4 Benchmark on Credit Card Fraud Detection 

Finally, we benchmarked our proposed technique on the Kaggle dataset 
(https://www.kaggle.com/mlg-ulb/creditcardfraud) which housed credit card fraud 
detection data. The dataset is highly imbalanced data and is thus a prefect suit for 
application of our technique. We divided the dataset randomly into 80% train and 
20% test. We trained the LinearSVC classifier in six different ways including no 
sampling, cost sensitive LinearSVC, NearMiss-II, SBC, CROUST and ICROUST. 
Table 4 indicates that our proposed CROUST outperform all other techniques. 

Table 4. Benchmarking on Kaggle dataset 

Method Accuracy 
Simple LinearSVC 33.17% 
Cost-sensitive LinearSVC 11.54% 
NearMiss-II 12.12% 
SBC 28.27% 
CROUST 45.75% 
iCROUST 35.70% 

4 Conclusion 

Due to its high frequency and delicate complexity, learning from imbalanced datasets 
has gained importance in recent years. Various classification techniques are being 
proposed to find the optimum accuracy and least misclassification rate for minority 
data points. Our recommended novel CROUST and ICROUST approaches intertwine 
outlier detection with the under-sampling methodology. While CROUST simply re-
moves majority samples based on its distance to the centroid of a cluster, ICROUST 
iteratively eliminates those majority samples which are a certain distance away from 
both the closest minority centroid and the nearest 𝑀 neighbouring majority samples. 
The ICROUST process allows reshuffling of data points and captures majority sample 

239



information after each iteration. Via this process, we have minimized the loss of intri-
cate details from majority samples whilst maximizing the prediction accuracy of the 
classifier. Trained with a linear SVM algorithm and tested on 6 real world KEEL 
datasets, CROUST and ICROUST have proven to outperform All KNN, NearMiss-II 
and SBC techniques. ICROUST’s consideration for the data distribution of both the 
minority and majority samples allows it to eliminate majority samples while retaining 
information from the entire feature space. Experimental results of various evaluation 
metrics (precision, recall, F-measure, AUC and G-mean) indisputably side with our 
proposed algorithms. It is to be noted that considering the computational expensive-
ness of ICROUST for high dimensional datasets, interesting research on time com-
plexity minimization can be carried out in the future. 
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Abstract. This Wineinformatics research paper attempts to leverage previous 

research that created the Computational Wine Wheel, a data mining tool that 

distills the key attributes present in human-language-format wine expert re-

views into computational data.  Utilizing this tool, we attempt to discover the 

effects of different years’ weather on the flavor qualities of wines. It does this 

by utilizing a Bi-Max Bi-Clustering algorithm on these distilled reviews, with 

controls for region, winery, reviewer, and grape. Dominate attributes in 2011 

and 2012 vintage for Napa Cabernet are extracted and compared to understand 

the difference between bad and good Napa Cabernet Sauvignon vintages. To 

the best of our knowledge, this is the first paper using computational algorithms 

to discover the effects of weather on wine.    

Keywords: Bi-Max Bi-Clustering; Wineinformatics; Computational Wine 

Wheel; Napa Valley; Cabernet Sauvignon 

1 Introduction 

The intricate process of winemaking has been altered and perfected over the years 

by top competing wine companies and producers. Each step in this process is impera-

tive for the quality of a wine, and can be affected by numerous factors. It all starts 

with grapes on the vine: and it's important that these are properly ripe. The grapes as 

they are harvested contain the potential of the wine; Bad wine can result from good 

grapes, however not vice versa. Grapes can either be hand-picked or machine harvest-

ed. The harvest date of the grapes is one of the most important factors in wine mak-

ing. Picking early will produce wines with higher acidity, lower alcohol and perhaps 

more green flavors and aromas while picking the wines later will yield wines with 

lower acidity, higher alcohol (or sweetness) and slight presence of tannin. Techniques 

used in the process can also generate different attributes and overall quality of wines. 

Some of these practices include but are not limited to cold soaking, skin contact, hot 

and cold fermentation, and oak aging vs steel aging. In addition to picking the grapes 

at the perfect harvest and utilizing technique, weather can also severely determine the 

quality of the wine.  



Every vintage is different. Local temperature is the most important climatic aspect 
and the type of wine usually depends on the location [2].  While many harvest areas 
tend to be near bodies of water, some continental climates are also suitable for wine 
production. Largely because of this climatic variable, the length of the growing sea-
son varies in different regions. This begs the question “What is good wine harvesting 
weather?”. The influences of fog exposure, wind exposure, rainfall and humidity can 
determine the label of the harvest year. Grapes thrive in hot, dry weather, which helps 
develop high sugar content in the fruits. Greg Scheinfeld, founder of Uproot Wines in 
Napa Valley said a vintage relies on two major elements rain and temperature. Ex-
perts say a good harvest starts with a slow spring with light rains especially during 
flowering, which would provide plump and ample berries. Summer during a good 
vintage is dry and has a mild heat index. July is usually considered a perfect month 
because of the lack of rain and the constant sunshine. This provides the grapes with an 
uninterrupted ripening. However, a bad vintage consists of a prolonged winter. The 
effects of the cold weather would produce destroyed budding leaves, flowers, and 
vines. Summer during a bad vintage is too hot and for long periods of time, and caus-
es the grape vines to stop metabolizing and the fruit to dry up. Though there are very 
distinct factors in what makes a good vintage year and contrariwise, the weather fac-
tors do not provide a definite outcome. This means that possibly good wine can 
emerge from what is considered a bad vintage. Data Science is used to further study 
the weather effects on wine.  

Data Science is the study that incorporates varying techniques and theories from 
distinct fields, such as Data Mining, Scientific Methods, Math and Statistics, Visuali-
zation, natural language processing, and the Domain Knowledge, to discover useful 
information from domain-related data [1]. Currently, almost all existing data mining 
research about wine is focused on the physicochemical laboratory tests [10-13]. This 
focus is because of the dataset availability. However, based on Figure 1, sensory 
analysis is much more interesting to wine consumers and distributors because they 
describe aesthetics, pleasure, complexity, color, appearance, odor, aroma, bouquet, 
tartness, and the interactions with the senses of these characteristics of the wine [12]. 
Using Data science on the study of professional wine reviews is referred to as 
Wineinformatics. To better examine wines, wine reviewers from professional wine 
magazines, such as Wine Spectator, Wine Advocate, Wine Enthusiast, and Decanter, 
use human language to describe them, and data science has since converted that lan-
guage into data to be analyzed [7].  

This paper attempts to analyze weather effects on red wine by examining the 

attributes of Napa Valley reds in 2012, a “textbook” harvest year, and contrarily 2011 

by analyzing wine reviews through the Computational Wine Wheel [6]. The BiMax 

bi-clustering is then applied to discover representative attributes of the specific year. 

Finally, the comparison of representative attributes for each year is studied to con-

clude what is the important wine attributes appeared in excellent vintage.  To the best 

of our knowledge, this is the first paper using computational algorithms to discover 

the effects of weather on wine.   
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2 Experimental Methods 

2.1 Selecting a data set 

In order to isolate the weather effects from any effects of any other input variable of 

the winemaking process it is important to choose a data set that minimizes or elimi-

nates other factors.  To this end this study focused on one particular region: Napa 

California, one particular type of wine: Cabernet Sauvignon, one wine review site: 

Wine Spectator, and then further focused in only wines that were produced in the 

focused weather years: 2011 and 2012.  According to Wine Spectator, the 2012 vin-

tage of Cabernet Sauvignon in Napa California scored 96 with the description of 

“Record-sized crop with many stars amid a solid vintage across the board; tannic”; 

while 2011 vintage of Cabernet Sauvignon in Napa California scored merely 86 with 

the description of “Rare rainy harvest proved it can happen; few sunny spots, variable 

quality” [14]. 

Wine Spectator had over 400 Napa Valley red wines reviewed from 2011 wines, 
and over 600 reviewed for the good weather year, 2012.  When these lists of reviewed 
wines were cross compared there were 296 matched wines. These 592 wines were 
used as our data set.  As these wines were all exactly the same wines, from the same 
wineries, reviewed by the same reviewers, and so on, with the only difference being 
the bad weather of 2011 and the good weather of 2012 they were perfect for trying to 
determine the weather effect on wine. 

To give a clear example of how the data set was generated from these reviews, 
let’s look at the review for a single wine and then also look at that what that wine 
looks like as the review gets turned into data to be worked with. As shown in the ex-
ample, the review has been boiled down into a series of attributes that will be signaled 
as on, or 1’s in our data set for this wine, with all missing attributes filled in as a 0.  In 
this way we create a large binary data set ready for analysis. 

Wine: Colgin Syrah Napa Valley IX Estate 2011 

Review: Offers beautifully rich dark berry fruit definition, with pure boysenberry, 
blackberry and blueberry flavors framed by cedary oak and spicy, floral scents. The 
flavors are big, yet this is elegant and graceful on the palate and long on the finish. 
Drink now through 2028. 200 cases made. 

Attributes: 
BERRY|BLACKBERRY|BLUEBERRY|BOYSENBERRY|FRUIT|FLORAL|SPICE|
FINISH|BEAUTY|BIG|DARK|DEFINED|ELEGANT|FLAVORS|GRACE|LONG|PU
RE|RICH|CEDAR|OAK 
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2.2 Methodology 

This paper builds heavily off the Wineinformatics tool known as the Computation-

al Wine Wheel 2.0 [6].  This tool was used on the wine reviews to give the wine qual-

ities of each wine for statistical analysis and data mining.   

Because these were the exact same wines from year to year we first did statistical 
comparison between the wine years, without any deeper analysis.  Looking at some 
simple counts of attributes and z-score representations of attributes across the wines 
reveals that prior to any data mining techniques the two years present some basic 
differences. 8 attributes are shown to have very statistically significant differences in 
their representations.  These attributes are: HERBS, DRY, TANNINS_LOW, 
DENSE, FINISH, WELL_STRUCTURED, BLACKBERRY, and OAK. 

Bi-clustering [8], also known as block or two-mode clustering, is a data analysis 
technique that finds and groups like items in a data set. It does this by manipulating 
the rows and columns to create blocks, or clusters, of similar values across different 
items in a repeated and recursive way. Figure 1 gives a simple example for the bi-
clustering input data and output result.  For this data set, a list of wines with binary 
markings on the presence of each attribute, Bi-Max bi-clustering was utilized [9]. 
This type of clustering arranges and rearranges the rows, which are wines, and the 
columns, which are qualities of the wines, to find clusters where every wine in the 
cluster has every attribute in the cluster. 

Fig 1. A simple example of bi-clustering input data and output result 

We performed BiMax Clustering [9] on all of the 592 wines attributes, with two 
added binary attributes signifying if a wine belonged to 2011 or 2012.  With the goal 
being our analysis focusing on the weather effects, we focused on clusters that con-
tained numerous wines. If weather is the cause of the clustering, it should be some-
thing that appears in a wide amount of wines as they all faced that weather.  To this 
end our minimum threshold for a cluster was set at 3 attributes and 10 wines. 

3 Results 

After this clustering was complete we further filtered out any clusters that did not 
have a year attribute.  Because the year attribute signifies weather, they are the only 
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relevant clusters for our study.  At the conclusion of this extensive filtering to focus in 
on the effects particular to weather we still end up with a robust amount of clusters to 
analyze, 32498 from 2011 and 39631 from 2012. 

Fig 2. Dominate attributes appeared in 2011 and 2012. 

To analyze these clusters we then performed a count of each attribute present in 
each cluster, which allowed us to find what percentage of clusters from either year 
contained any given attribute.  We then compared these numbers as a strict difference, 
as well as ratio differences.  These differences (showed in figure 2) showed many 
drastic changes from 2011 to 2012 that form the basis for our conclusions that weath-
er does have a significant impact on the final taste of a wine. 2012 vintage, which is 
considered as textbook vintage, demonstrates much more attributes in “dense”, “oak” 
and “finish”. All those three attributes are considered as the characteristics of the 
cabernet sauvignon. These three important attributes are less observed in the vintage 
2011, indicates vintage 2011 demonstrate more in “low tannins”, “Herbs” and “Rich”. 
However, cabernet sauvignon is a full body wine; “low tannins” should not be ap-
peared in the description which gives a perfect explanation of why 2011 is considered 
as a less ideal vintage. More detailed analysis in each vintage is given in the following 
subsections.  

3.1 Effects seen in bad weather, 2011 

When comparing the flat difference of attributes seen in 2011 clusters versus 2012 
clusters, 3 attributes are seen in a substantial way. RICH, HERBS, and 
TANNINS_LOW were represented in a huge number of clusters; with RICH and 
HERB being in over 11% of all 2011 clusters, and TANNINS_LOW being in over 
31%.  The tannins being lower in this batch of wines may be a particular item causing 
the weather of 2011 to be considered bad.  This is because Napa Valley red wines are 
Cabernet Sauvignon red wines, which are known to have a profile involving medium 
to high tannins.  Failing to achieve this may be a considerable reason why the types of 
weather seen in 2011 are not loved by the wineries in the region. [4] 
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Analyzing the changes seen in 2011 on a ratio basis, and defining a significant dif-
ference as being greater than 50% more represented, reveals 12 more significantly 
different attributes, while confirming that the 3 from the strict difference comparison, 
for a total of 15 attributes that are considerably impacted by weather. These observa-
tions are described in table 1 and figure 3. Of these 14 TANNINS_LOW actually is 
the smallest percent difference, at a considerable 91%, despite being the largest real 
difference.  The impact quickly rises to numerous factors being 200-430% more rep-
resented in the 2011 wines, and finally spikes on the last three qualities: RED, 
BALANCE, and FRESH, reaching into the thousands of percent more represented. 

TABLE 1.  2011 ATTRIBUTES SEEN MORE 

Attribute % More 

FRESH 2800 

BALANCE 1900 

RED 775 

FOCUSED 429 

BLACK LICORICE 404 

TIGHT 400 

RIPE 347 

SPICE 300 

CHERRY 267 

HERBS 243 

PERSIST 200 

MOCHA 133 

RICH 109 

TANNINS_LOW 91 

GREAT 53 

TABLE 2.  2012 ATTRIBUTES SEEN MORE 

Attribute % More 

PENCIL LEAD 2800 

COMPLEX 800 

ESPRESSO 800 

LICORICE 686 

PURE 600 

BLACK CHERRY 600 

DUSTY 454 

OAK 346 

CRUSHED ROCK 335 

SAVORY 333 

STYLE 250 

FIRM 216 

DENSE 203 

TOAST 200 

SUPPLE 150 

SAGE 100 

SMOKE 100 

TEXTURE 100 

FINISH 53 

3.2 Effects seen in good weather, 2012 

Once again looking at the flat difference, 3 qualities are shown to be in significantly 

more 2012 wines than 2011.  These qualities are DENSE, OAK, and FINISH.  Of 

these qualities, one can again be identified as an important factor when considering 
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Cabernet Sauvignon wines, and that is the presence of OAK.  Typically these wines 

incorporate the OAK during fermentation or in the barrel aging process [5].  In partic-

ular, American Cabernet Sauvignon is especially known for stronger OAK flavors, 

when compared to French wines.  The good weather of 2012 allowing for the OAK 

flavor to come through may be a considerable part of the definition of it being a good 

year. These observations are described in table 2 and figure 4. 

Fig 3. Ratio differences in representation of attributes in 2011 clusters when compared 

to 2012 clusters where difference is > 50% 

Fig. 4 Ratio differences in representation of attributes in 2012 clusters when compared 

to 2011 clusters where difference is > 50% 

 Once again comparing the ratios of attributes more represented in 2012 and focus-

ing on those qualities that are seen at a 50% greater rate or more reveals a set of at-

tributes that can be regarded as the weather impact.  For 2012 this includes 19 total 

attributes, 16 new ones and the 3 from the flat difference comparison.  We see a simi-

lar sort of distribution to the differences in the 2011 comparison, with many qualities 

in a similar sort of variable difference, and then a final spiking into the thousands of 

percent difference.  
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4 Conclusion and Future Works 

Through this very surface level data mining and analysis we’ve shown that there is 

some basis or merit to the general idea that there are good and bad years for wine 

weather.  While this will not come as news to wineries around the world, it does give 

a more objective value to that knowledge.  The sorts of weather seen in 2011 are not 

conducive to bringing out the sorts of flavors wine enthusiasts expect in a good Cab-

ernet Sauvignon wine.  In particular the 2011 wine was lacking in tannins and the 

flavors that oak brings to wine. These are only the bare surface level conclusions that 

data mining can bring to the world of wine in regards to weather, and hopefully open 

a door into deeper analysis in the pursuit of ever more delicious wines. To the best of 

our knowledge, this is the first paper using computational algorithms to discover the 

effects of weather on wine.   

Our paper offers a framework into which much deeper data mining efforts can fol-
low. While it does provide compelling evidence that weather matters, it does not nar-
row down exactly what about the weather matters, and in what respects.  For instance 
it may be relative humidity levels that cause OAK flavors to come out more, or sun-
shine might be the important factor driving tannins.  In order to get at questions like 
that this sort of study would need to be done for a much larger number of years, and 
also various weather attributes would need to be added in a binary fashion to each 
wine.  This would be a good future analysis. 

References 

1. Chen, B., Rhodes, C., Crawford, A., & Hambuchen, L. (2014, December). Wineinformat-

ics: Applying Data Mining on Wine Sensory Reviews Processed by the Computational

Wine Wheel. In Data Mining Workshop (ICDMW), 2014 IEEE International Conference

on (pp. 142-149). IEEE.

2. Wine Spectator Magazine http://www.winespectator.com/ (accessed March 2017)

3. Chemical analysis of grapes and wine: techniques and concepts. Campbelltown, Australia:

Patrick Iland wine promotions, 2004.

4. Wine Folly Blog: Guide to Cabernet Sauvignon Red Wine 

www.winefolly.com/review/guide-to-cabernet-sauvignon-red-wine (accessed April 2017) 

5. Wikipedia: Cabernet Sauvignon  https://en.wikipedia.org/wiki/Cabernet_Sauvignon (ac-

cessed April 2017)

6. Chen, Bernard, Christopher Rhodes, Alexander Yu, and Valentin Velchev. "The Computa-

tional Wine Wheel 2.0 and the TriMax Triclustering in Wineinformatics." In Industrial

Conference on Data Mining, pp. 223-238. Springer International Publishing, 2016.

7. Chen, Bernard, Valentin Velchev, Bryce Nicholson, Joey Garrison, Moani Iwamura, and

Ryan Battisto. "Wineinformatics: Uncork Napa's Cabernet Sauvignon by Association Rule

Based Classification." In Machine Learning and Applications (ICMLA), 2015 IEEE 14th

International Conference on, pp. 565-569. IEEE, 2015.

8. Prelić, Amela, Stefan Bleuler, Philip Zimmermann, Anja Wille, Peter Bühlmann, Wilhelm

Gruissem, Lars Hennig, Lothar Thiele, and Eckart Zitzler. "A systematic comparison and

evaluation of biclustering methods for gene expression data." Bioinformatics 22, no. 9

(2006): 1122-1129.

249



9. Prelić, A., Bleuler, S., Zimmermann, P., Wille, A., Bühlmann, P., Gruissem, W & Zitzler,

E. (2006). A systematic comparison and evaluation of biclustering methods for gene ex-

pression data. Bioinformatics, 22(9), 1122-1129.

10. Cortez, Paulo, António Cerdeira, Fernando Almeida, Telmo Matos, and José Reis. "Mod-

eling wine preferences by data mining from physicochemical properties." Decision Sup-

port Systems 47, no. 4 (2009): 547-553.

11. Capece, Angela, Rossana Romaniello, Gabriella Siesto, Rocchina Pietrafesa, Carmela

Massari, Cinzia Poeta, and Patrizia Romano. "Selection of indigenous Saccharomyces

cerevisiae strains for Nero d'Avola wine and evaluation of selected starter implantation in

pilot fermentation." International journal of food microbiology 144, no. 1 (2010): 187-192.

12. Edelmann, Andrea, Josef Diewok, Kurt Christian Schuster, and Bernhard Lendl. "Rapid

method for the discrimination of red wine cultivars based on mid-infrared spectroscopy of

phenolic wine extracts." Journal of Agricultural and Food Chemistry 49, no. 3 (2001):

1139-1145.

13. Yeo, Michelle, Tristan Fletcher, and John Shawe-Taylor. "Machine Learning in Fine Wine

Price Prediction." Journal of Wine Economics 10, no. 2 (2015): 151-172.

14. https://www.winespectator.com/vintagecharts/search/id/15 (accessed June 2018)

250

http://ocw.metu.edu.tr/file.php/40/Schedule/reading8.pdf
http://ocw.metu.edu.tr/file.php/40/Schedule/reading8.pdf
https://www.winespectator.com/vintagecharts/search/id/15


Context Aware Image Annotation in Active Learning 

Yingcheng Sun and Kenneth Loparo 

Case Western Reserve University, Cleveland, OH 44106, USA 

{yxs489,kal4}@case.edu 

Abstract.  Image annotation for active learning is labor-intensive. Various au-

tomatic and semi-automatic labeling methods are proposed to save the labeling 

cost, but a reduction in the number of labeled instances does not guarantee a re-

duction in cost because the queries that are most valuable to the learner may be 

the most difficult or ambiguous cases, and therefore the most expensive for an 

oracle to label accurately. In this paper, we try to solve this problem by using 

image metadata to offer the oracle more clues about the image during annota-

tion process. We propose a Context Aware Image Annotation Framework 

(CAIAF) that uses image metadata as similarity metric to cluster images into 

groups for annotation. We also present useful metadata information as context 

for each image on the annotation interface. Experiments show that it reduces 

that annotation cost with CAIAF compared to the conventional framework, 

while maintaining a high classification performance.  

Keywords: Images Annotation, Context Information, Metadata, Active Learn-

ing 

1 Introduction 

Digital photos are now part of our everyday life due to the popularization of digital 

cameras, smartphones, surveillance systems, and other image capture devices [1, 2]. 

The number of photos and pictures taken per day increases every year. In semantic 

image classification or Content-Based Image Retrieval (CBIR) tasks such as face 

recognition and automatic pilot, a large amount of labeled data is necessary in the 

form of a training set, and it will entail significant manual effort. Hence, developing a 

strategy to minimize human annotation effort in a multi-label problem is of para-

mount practical importance. Though various automatic or semi-automatic annotation 

techniques are proposed [3, 4], the results are still not satisfactory and convincing 

enough [5], so manual annotation is inevitable at the present stage. 

Active learning algorithms iteratively query only the most informative instances to 

label have gained popularity to reduce human annotation effort. When exposed to 

large quantities of unlabeled data, such algorithms automatically select the promising 

and exemplar instances to be labeled manually. This tremendously reduces the anno-

tation effort and also endows the model with greater generalization capability as it 

gets trained on the salient examples from the underlying data population [6]. In most 

applications, batch mode active learning, where a set of items is picked all at once to 



be labeled and then used to re-train the classifier, is most feasible because it does not 

require the model to be re-trained after each individual selection and makes most 

efficient use of human labor for annotation [7]. 

Most previous work focuses on developing the strategies of selecting samples, but 

the way of querying labels from the annotators are seldom discussed. Burr et al. [8] 

proposed that minimizing the number of queries does not guarantee the reduction of 

the whole annotation cost because the queries that are most valuable to the learner 

may be the most difficult or ambiguous cases, and therefore the most expensive for an 

oracle to label accurately. Figure 1 shows such an example of image annotation of the 

Statue of Liberty.  

Fig. 1. Left: the original Statue of Liberty in New York City.  Right: the replica in Las Vegas. 

Given such two images in monument recognition [9] or landmark classification [10] 

task, it is very hard to annotate them correctly if the oracle does not know there is a 

replica of Statue of Liberty in Las Vegas, since the photos in Figure 1 depict almost 

the same visual objects. Even with some background knowledge, it still takes time for 

the oracle to tell them apart because of the uncertainty. However, the image metadata 

such as the geographical location can help the oracle to annotate them fast and accu-

rate enough in this case. 

In traditional active learning frameworks with batch mode, a group of images are 

picked up and shown to annotators without any specific order. Sometimes the class 

label of images switch frequently during annotation process, which might increase the 

annotation time and error rate. Like the example shown in Figure 2, the left image 

might be wrong annotated on its own without any context because it might be a flow-

er petal, but it could also be a piece of fruit or possibly an octopus tentacle which is 

very ambiguous. However, in the context of a neighborhood of images (the right col-

umn) with similar metadata like taken time, author or user tags, it is clearer that the 

left one shows a flower. The context of additional unannotated images disambiguates 

the visual classification task [11]. 

To address the above issues, we proposed a Context Aware Image Annotation 

Framework (CAIAF) [34]. In this paper, we will discuss more details about using 

image metadata as context information to organize images during annotation process. 
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Most images on the web carry metadata; the idea of using it to improve visual classi-

fication is not new. Prior work takes advantage of user tags for image classification 

and retrieval [12, 13], uses GPS data [14, 15] to improve image classification, and 

utilizes timestamps [16] to both improve recognition and study topical evolution over 

time. The motivation behind much of this work is the notion that images with similar 

metadata tend to depict similar scenes. 

Fig. 2. Left: a flower petal.  Right: neighbors of the left one in terms of metadata. 

In CAIAF, similar images display together in each batch after clustering by the as-

signed metadata, and useful metadata information of the image to be labeled is also 

presented on the annotation interface. By doing these, annotators will have more clues 

about each image during the annotation process and thus reduce the annotation cost 

and improves the performance. Experiments show that CAIAF saves the annotation 

time and also leads to a better annotation performance. 

The rest of this paper is organized as follows. In Section 2, we present related 

work. In Section 3, we propose the CAIAF and explain the metadata used in this 

framework. In Section 4, we introduce the dataset, comparison methods and evalua-

tion metrics, as well as the experimental results. We conclude our work in Section 5. 

2 Related Work 

2.1 Improve Image Classification by Exploiting Metadata 

Most images on the web carry metadata that can be very useful to improve image 

visual classification. One class of image metadata where this notion is particularly 

relevant is social-network metadata, which can be harvested for images embedded in 

social networks such as Flickr. In [12] the authors study the relationship between tags 

and manual annotations, with the goal of recovering annotations using a combination 

of tags and image content. The problem of recommending tags was studied in [17], 

where possible tags were obtained from similar images and similar users. The same 

problem was studied in [18], who exploit the relationships between tags to suggest 

future tags based on existing ones. Friendship information between users was studied 

for tag recommendation in [19], and in [20] for the case of Facebook. McAuley and 

Leskovec [21] pioneered the study of multilabel image annotation using metadata, 
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and demonstrated impressive results using only metadata and no visual features. Jus-

tin et al. [11] exploits social-network metadata to improve image annotation.  

Another commonly used source of metadata comes directly from the camera, in the 

form of Exif and GPS data [10, 22, 23]. Such metadata can be used to determine 

whether two photos were taken by the same person, or from the same location, which 

provides an informative signal and context for certain image categories. Kevin et al. 

[24] use the GPS coordinates as location context to improve image classification.

Matthew et al. [25] integrates Exif metadata like exposure time, flash use and subject

distance to tackle the “indoor-outdoor” image classification problem.

These researches discuss different methods to build a better image classification 

model. Our work differs from them because we focus on the annotator (oracle) side, 

and tries to reduce the annotation cost by using image metadata. 

2.2 Reduce Image Annotation Cost in Active Learning 

Machine learning methods such as active learning, distant learning and reinforcement 

learning are widely used in classification tasks [35- 39]. Most previous work in active 

learning has assumed a fixed cost for acquiring each label, i.e., all queries are equally 

expensive for the oracle. Burr et al. [8] prove that the cost is not fixed, and they make 

an empirical study of annotation costs in four real-world text and image domains. 

They predicted the annotation cost in the text domain but failed in the image domain. 

Burr et al. later [26] propose an annotation paradigm DUALIST that solicits and 

learns from labels on both features and instances. It is fast enough to support real-time 

interactive speeds in text field. Qiang et.al [27] explored the possible factors are asso-

ciated with the cost of time in clinical text annotation. Stefan et al. [28] discussed the 

“difficulty” of tweet that affects labeling performance of annotators. However, the 

problem of how to reduce the image annotation cost has not been studied.  

Some researchers try to reduce the human annotation effort in active learning by 

using the current learned model to assist in the labeling of query instances in struc-

tured-output tasks like parsing [29] or named entity recognition [30]. Haertel, et al. 

[31] proposed a parallel active learning method which can eliminate the wait time

with minimal staleness. Thiago et al. [32] introduce a ranked batch-mode active learn-

ing framework to reduce the manual labeling delays. However, these methods do not

actually represent or reason about costs. Instead, they attempt to reduce the number of

annotation actions required for a query. Our research tries to solve this problem from

another perspective that uses metadata to give annotators more context, and then to

reduce the annotation cost and improve the performance.

3 Context Aware Image Annotation Framework 

Traditional active learning frameworks query the oracle one instance per time to label, 

even in batch mode, because the selected images are usually shown in an order of 

their informative vale or just randomly. It will not help the annotation too much if the 

oracle knows the previous labeled and following unlabeled images. However, we 
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design a Context Aware Image Annotation Framework (CAIAF) by using the image 

metadata, and try to give annotators more clues in the annotation activity. In CAIAF, 

each batch of images are clustered by the similarity of their metadata and displayed in 

groups. Fig. 3 shows the process. 

Query Instances 

Selecting

Query Instances 

Selecting

M selected ImagesM selected Images

ClusteringClustering

Clustered ImagesClustered Images

Image

AnnotationAnnotation

Classifier

Annotation 

Interface 

with context 

and clues

Image

Metadata

Image

Metadata

Fig. 3. The framework of labeling images with metadata as context information 

First, M images are selected from corpus by query instances selecting algorithm with 

batch mode. Next, the selected images are clustered by the similarity of metadata. In 

this paper, we use K-means as the clustering method. Next, the clustered images will 

be shown to the annotator by groups. Each image is displayed with its metadata in-

formation. This process iterates until the threshold is met. In order to support a con-

text description relevant for annotating photos, we have defined four context dimen-

sions: location, time, user tags, and camera tags.  

Location   With the widespread availability of cellphones and cameras that have 

GPS capabilities, it is common for images being uploaded to the Internet today to 

have GPS coordinates associated with them. With this geographical information in 

hand, it is much easier to correctly deduce the label of geo-related images, like the 

example of Statue of Liberty shown in Figure 1. Images will be clustered by their 

geodesic distance if the location is set as the context clue. The real location like “New 

York City” transferred from coordinates will also be shown on the annotation inter-

face.  

Time   The creation time (and date) of the photo is another dimension that can be 

used to organize the images. It allows the association of an instant (date and time) 

with a photo, and also of the different time interpretations and attributes listed above 

(e.g., night, Monday, July). Thus, the temporal concept can be used to cluster photo-

graphs by events such as sunrise and sunset. Images will be grouped by closeness of 

their timestamps if the time is set as the context clue. The time will also be shown on 

the annotation interface.  

User Tags    One class of image metadata where this notion is particularly relevant 

is social-network metadata, which can be harvested for images embedded in social 

networks such as Flickr. These metadata, such as user-generated tags are applied to 

images by people as a means to communicate with other people; as such, they can be 

255



highly informative as to the semantic contents of images. We compute the distance 

between images using word embedding since it can capture the semantic similarity 

between texts [40, 41, 42]. Images will be clustered by their similarity if the “user 

tags” is set as the context. The original user- generated tags location will display the 

annotation interface.  

Camera Tags    Exif metadata recorded by the camera provides cues independent 

of the scene content that can be exploited to improve image annotation. The Exif 

metadata standard for JPEG images includes a number of tags related to picture taking 

conditions, including FlashUsed, FocalLength, ExposureTime, Aperture, FNumber, 

ShutterSpeed, and Subject Distance. It is clear that some of these cues can help dis-

criminate between certain scene types (e.g., long subject distances occur primarily on 

landscape photos); the scene classification problem at hand determines which cues 

help the most. We do not use the camera tag metadata as context in our paper because 

it is not a distinguishable feature for our dataset, but it has been proved that the scene 

brightness, subject distance and flash are salient in the problem of “indoor-outdoor” 

classification problem [25]. 

User Tags: pastaUser Tags: pasta

Food

Flower

Possible ClassificationPossible Classification

Batch: 3/20Batch: 3/20

Shooting TimeShooting Time

Taken on 2006:06:25 08:12:17Taken on 2006:06:25 08:12:17

Geo TagsGeo Tags

AnnotationAnnotation

Fig. 4. A screenshot of the annotation interface developed based on CAIAF 

A simple annotation interface is developed based on the proposed framework CAIAF. 

A screenshot of it is shown in Figure 4. In this interface, a batch of images are all 

presented to the oracle. In our experiment, we set the batch size as five, so there are 

five images listed in a row. The oracle needs to label them one by one, and choose the 

class of the current image with the button on the right corner. After clicking any of the 

class buttons, the next image will be chosen and shown on the upper part. In Figure 4, 

the “food or flower” image classification is being queried for annotation. The left 

column lists the temporal and geographical information of the current image being 

labeled. The “user tags” are listed the top of the image that can help to understand the 

content of the image. Besides these clues, the row of images is also clustered by the 
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metadata, and partitioned by a dashed red line. With all these information as context, 

it is easier for the oracle to annotate the image fast and accurate. The number of batch 

of images that have been annotated and the total number of batches are shown on the 

left corner.  The annotation time of each batch of images is logged. 

4 Experiment And Analysis 

4.1 Dataset 

In this paper, we use the NUS-WIDE dataset [43] for our experiments. This dataset is 

created by NUS’s Lab for Media Search and has been widely used for image labeling 

and retrieval. It consists of 269,648 images collected from Flickr with plentiful 

metadata, each manually annotated for the presence or absence of 81 labels.  To make 

it easier for the annotation experiment, we picked 8 categories from them and make 

four pairs of comparison sets: bird and cat, flower and food, lake and ocean, town and 

temple and use five types of metadata information: image description, data and time, 

geographical coordinates, headline, and keywords as shown in Fig. 5. We discard 

images which metadata is not complete or unavailable. Following [44] we also dis-

card images that labels are absent. We randomly picked 100 images from the left ones 

for each category, and 800 in total. 

Fig. 5. Selected pieces of metadata information and the raw image 

We developed a conventional image annotation interface without any metadata clues 

as the comparison. Image is queried one by one in that interface. We call it “plain 

interface” in this paper. 

4.2 Experiment 

We use a python active learning module
1
 offered by Google for the image annotation 

experiment. We set the batch size as 5, and choose “Informative and diverse” as the 

active learning method and “Linear SVM” as the classification model. We choose the 

“image description” and “keywords” as the main metadata clues for the “bird and cat” 

and “town and temple” annotation, “data and time” for the “flower and food” annota-

tion and “geographical coordinates” for the “lake and ocean” annotation. 

<Image Description> Yup, that's Bill Cosby. 

<Date and Time> 2007:12:20 11:50:15 

<Geo> (40.810001, -73.959982) 

<Headline> Cool Cos 

 <Keywords> 2007, december, bill cosby, 

celebrity, bokeh, portrait, man, sunglasses, fuji, 

s5 pro, 85mm f/1.4D, actor, columbia universi-

ty, teachers college, flash, sb-800, strobist 

1
 https://github.com/google/active-learning 
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Two volunteers in my Lab as annotators are involved in the image annotation ex-

periment. Since one will be familiar with the images labeled by himself before, each 

of the annotators should label an image either with the plain interface or with our 

proposed CAIAF. In our experiment, each annotator labels two pairs with plain inter-

face, and the other two pairs with CAIAF. We count their time used for labeling each 

batch of images as the annotation cost, and Figure 6 shows the results. 

(a) Bird and Cat (b) Flower and Food

(c) Lake and Ocean (d) Town and Temple

Fig. 6. The comparison of CAIAF and conventional image annotation framework with plain 

interface without metadata clues and context in terms of cumulative annotation time. 

From the result we can see that for all the four pairs of images, it takes less time for 

the annotation with CAIAF than plain framework as the annotation goes on. Images 

with useful context information yield to better annotation performance than plain 

interface without any context clues. The annotation of “Town and Temple” takes 

more time on average than the other three pairs, but it still uses less time with CAIAF 

than one with conventional active learning framework. Also, images labeled by 

CAIAF have less or at least equal errors than the plain one. Table 1 shows the final 
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classification result. We can see that the F1 score of classification with CAIAF is 

equal to the plain one for the first pair, but a little bit higher for the other three pairs.  

Table 1. F1 score of classification result (%) 

Learning with 

plain interface 

Learning 

with CAIAF 
Improvement 

Bird and Cat 61.6% 61.6% 0% 

Flower and Food 63.7% 63.9% 0.3% 

Lake and Ocean 61.4% 62.3% 1.4% 

Town and Temple 58.3% 59.7% 0% 

5 Conclusions and Future Work 

Given a large pool of unlabeled images, active learning provides a way to iteratively 

select the most informative unlabeled images to label. In practice, batch mode active 

learning, where a set of items is picked all at once to be labeled and then used to re-

train the classifier, is most feasible because it does not require the model to be re-

trained after each individual selection and makes most efficient use of human labor 

for annotation.  

In this paper, we explored the possibility of reducing the annotation cost while 

maintaining the active learning performance. The experiment shows that our proposed 

context aware image annotation framework with plentiful metadata clues takes less 

time for the oracle to label images than the plain one without any metadata infor-

mation as context. Also, the classification performance of active learning with CAIAF 

is equal or better than the plain one. In the future, we will explore the combination of 

multiple dimensions of context information and make more efficient annotation 

method such as semi-automatic or automatic annotation framework. We are also in-

terested in the possibility of reducing annotation cost in other domains such as text or 

emails. 
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Risk and Error Matrix Charts 
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Abstract. Measuring classifier performance is important in machine learning. Risk charts and 
error matrix charts have been developed for this purpose. The strengths and weaknesses of 
using these charts are outlined. Challenges with using these charts are discussed including how 
base rates and using prevalence data for building models and incidence data for evaluating 
models affect model performance. A number of solutions for overcoming these challenges are 
covered   

Keywords: Error Matrix, Confusion Table, Cumulative Gain Chart, Risk Chart 

1 Introduction 

1.1 Measuring classifier performance 

The performance of binary classifier will be illustrated using risk chart [10] and error 
matrix charts [4,6] for two types of target variables, i.e. binary and continuous varia-
bles. The binary variable, for example, distinguishes risk cases from non-risk cases, 
while the continuous variable represents the magnitude of the risk.  For example, risk 
to revenue with tax collections has dollar amount while risk of rain has the magnitude 
of precipitation in either inches or millimetres. In some applications the magnitude of 
the risk variable can have “negative or positive” values or “debit or credit” in ac-
counting term. When developing a supervised learning model, the priority is frequent-
ly aimed at the ranked order of the magnitude of the risk, e.g. revenue. Hence the 
modelling process should take into consideration both the classification of the risk 
and the magnitude of the risk.  

In order to measure and visualise the performance of the classifiers using both the 
binary and continuous target variables, a revised risk chart and error matrix chart are 
proposed in this paper. An example of risk chart is given in Fig. 1, while an example 
of error matrix chart is given in Fig. 3. There are a number of reasons for using these 
charts. Firstly they are useful for evaluating the effects of the weighted classification 
problem [8]. Some classification problems can be weighted based on the importance 
of the cases.  For example, with a tax avoidance and evasion detection model, some 
cases are likely to provide greater revenue than the others and hence are given greater 
weight.  In some cases, there will be not much difference in terms of their strike rates, 
but there can be significant differences in their risk to revenue. The risk to revenue is 
particularly useful if only a portion of the population will be actioned for recovering 
the revenue because of limited audit and investigatory resources.  



Both Risk charts and Error Matrix charts are sensitive to classifiers performance when 
compared to receiver operating curve (ROC) charts [2]. One challenge with measur-
ing the performance of classifiers is class imbalance.  Recent use of risk charts and 
error matrix charts indicate that they are very sensitive to class imbalance when com-
pared with ROC.  However, ROC charts cannot be used to evaluate the magnitude of 
the risk where risk chart and error matrix charts can.  

Risk charts and error matrix charts are ideal for (i) measuring classifier performance 
including risk which is a measure of the size of the risk gain or loss associated with 
target variable of each observation; (ii)  comparing classifier performance prior and 
post intervention (iii) further improving risk charts and error matrix charts for measur-
ing classifier performance.  

1.2 Base-rate variation with prevalence and incidence data 

If a sample of size n is drawn for a binary classification problem, then the numbers of 
sample instances, n0 and n1 are respectively in class 0 and 1, n0 + n1 = n.  The base 
rate is the ratio of n1 and n,   α = n1 / n.  When the base rate is not 0.5, then there is class 
imbalance.  One of the challenges with assessing classifier performance is on sample 
selection bias.  This refers to differences in the proportion of cases selected for preva-
lence data when compared to incidence data. Prevalence data is used for model build-
ing, while the incidence data contains the cases which were actioned. Selection bias 
can distort the assessment of the classifier using several known methods such as mis-
classification rate and cumulative gain chart.  Base rates can affect how well a classi-
fier performs with identifying positive and negative cases. If the base rate is low then 
the classifier will  have a low strike rate although the misclassification rate is high. If 
the base rate is high, then the classifier will  have a high strike rate although the mis-
classification rate is low. These will be demonstrated in section 2 and 3. 

The base rate of the prevalence dataset and incidence dataset can be very different and 
these will  cause issues in obtaining accurate measures of comparative model perfor-
mance. Unlike ROC charts, which are not affected by base-rates, risk charts and error 
matrix charts can be misinterpreted when the base-rate changes from the data used to 
develop a model compared to the data employed to evaluate the performance of a 
model.  These changes can arise because: 

1. Each modeller has a tendency to use different base-rate from prevalence for
sampling prior model building unless each modeller uses class imbalance
data.  Having understood the characteristics of risk charts and error matrix
charts, it is likely that the modeller who used smallest base-rate in his/her
sample, will produce smaller error or bigger AUC, although their model
performances are the same.

2. Once the model has been built, new data is used to obtain risk score for in-
dependent evaluation.  Cases being selected for intervention are generally
those which are high risk with those that are either low risk or no risk being
excluded from consideration when it comes to evaluation of model perfor-
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mance. This distorts the results obtained using risk charts and error matrix 
charts. 

Hence, the incidence data for evaluating model performance needs to be corrected for 
this bias. Solutions for doing this are proposed in Section 4 of this paper. 

1.3 Objectives 

These include (i) to illustrate the development and the usage of risk charts and error 
matrix charts for measuring model performance, (ii) to show how the performance of 
models are affected by the samples used to develop the models compared to the sam-
ples used to evaluate the models and (iii) to outline solutions that can be employed to 
improve the evaluation of models.   

2 Risk charts 

Detailed description of risk chart can be found in [10]. This chart involves plotting 
two variables, i.e. target variable (being 1 or 0) and risk variable (see Fig. 1). An ex-
ample is where the data set has two class target variable, e.g. adjusted or not adjusted 
cases when it comes to revenue collection; and the risk variable, e.g.  the magnitude 
of the adjustment if made to recovery of revenue. The adjustment value is a measure 
of the size of the risk associated with each observation. Cases which have no adjust-
ment following an intervention will of course have no risk associated with them (i.e. 
Adjustment ). Cases that do have an adjustment will have a risk associated with 
them, and for convenience the value of the adjustment is viewed as the magnitude of 
the risk. 

Gain is a measure of the effectiveness of a classification model calculated as the per-
centage of correct predictions obtained with the model, versus the percentage of cor-
rect predictions obtained without a model. It shows the percentage of positive predic-
tions that the model gains with each slice of the population. A higher overall gain 
indicates better performance. A cumulative gains chart (see Fig. 1) helps visualize the 
benefit of using a predictive model. It also allows the effectiveness of different pre-
dictive models to be compared. The information from the cumulative gains chart can 
be applied to determine which portion of the overall population is to be targeted.  
The advantages of using these charts include to:  

i. Investigate why models improve when error increases due to the changes on
base-rate of prevalence and incidence data

ii. Understand the characteristics, strength and weaknesses of the tools for
measuring classifier performance.

iii. Identify the methods to be used for comparing performance prior and post
modelling, especially when the base-rate changes
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An example of a risk chart in shown in Fig. 1(a).  If the lowest scores (i.e. the least 
risky cases) were removed from the sample, then the results as shown in Fig. 1(b) 
could be obtained. Hence, the area under curve for the risk chart cannot be used for 
measuring the model accuracy unless further factors are taken onto consideration.  A 
more realistic measure for visualising the risk chart is proposed as in Fig. 2: this 
shows upper and lower limits of maximum area under curve for the risk chart.   

There are three curves in the risk chart in Fig. 1(a).  The first is the strike rate for each 
risk scored population, with the score going from high to low (i.e. left to right).  The 
second shows the cumulative revenue based on the risk scores.  The third is the cumu-
lative cases based on the risk scores. Fig. 1(a) is the performance of a classifier for 
prevalence data. It is assumed that the performance of this model is reliable and when 
new data is scored, it still produces same performance.  As noted previously, in prac-
tice only the high risk cases are usually selected for targeting to minimize costs. 
Hence, by reducing the potential true negative cases (as incidence data), the area un-
der risk curves reduces (see Fig. 1(b)). In fact the performances are the same, but the 
area is relative to the upper and lower limit (trapezoidal shape) of the risk charts, 
which are also consistently dependent on the base-rate. Hence, the proposed standard-
isation of the AUC measures is proposed. 

In Fig. 2, class imbalance is illustrated and how it affects the risk chart. The slope of 
the dashed line shows the percentage of positive cases. The higher the percentage, the 
more the gradient of the line decreases. If it was 100 percent positive cases, the line 
would be a diagonal going from bottom left to top right of the chart. The line would 
be vertical if there were very small or no positive cases.  Fig. 2 can be used for evalu-
ating the risk. The x-axis is the case load which can be sorted either (1) high-to-low 
positive scores from 1 to 0 or (2) low-to-high for negative scores from -1 to 0. The 
curves will be reversed if the caseload was sorted from (i) low-to-high positive scores 
from 0 to 1 or (ii) high-to-low negative scores from 0 to -1. 

In order to improve the usage and utilise the risk chart for model comparison, the risk 
chart illustrated in [9] need to be revised. The two main characteristics are used to 
revise risk charts, i.e. establishing risk chart limit and standardising AUC, i.e. (1) 
introducing risk chart limit.  Let’s defined λ = caseload or percentile of population 
sorted by its ranked scores, 0 ≤ λ  ≤ 1;  �� = ∑� � 

� 
. Let’s also define Ѳ = The cumula-

tive gain or risk,   0 ≤ Ѳ  ≤ 1,  

(a) For �� 	is binary (1 or 0) then the following formula applies:

Ѳ(��) = 
�
	∑ ������   where I = 1,…., N and n = count of  �� when �� =1.

(b) For quantifying the magnitude of �� , m(��) continuous variable is used:

Ѳ(��)  = 
�

∑ �(��)���� where I = 1,…., N and M = ∑ �(��)����
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Let’s define α is the base rate, α = n/N; where n = count of (��) when ��= 1 and N = 
count of (��) when ��= 1 or ��= 0 (N = total number of instances). 

Fig. 1. Risk charts of classifier model performance prior (a) and after selecting score ≥ 0.5 (b) 

The risk chart limit consists of 

(a) upper boundary of the instances which are ranked from highest to the lowest.

(b) lower boundary of the instances which are ranked from lowest to the highest.

In order to obtain consistent measure of AUC for risk chart, the standardised AUC is 
proposed as : AUC – min(AUC)/[max(AUC) – min(AUC)], this will give the range of 
standardised AUC between 0 and 1. In classification, the risk chart limit of the binary 
target variable has the following upper boundaries are: 
. 

Fig. 2. Upper and Lower limit of Maxi-
mum Area Under Curve of Risk Chart 
where α is the base rate of binary classifi-
cation 

(a) Ѳ =  
$ 
%  for λ < α 

(b) Ѳ = 1 for λ ≥ α
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And lower boundaries are: 

(a) Ѳ = 0 for λ < 1- α

(b) Ѳ =  
$ 
% + )1 − �

+,   for λ ≥ 1-α

The performance measure of classifier with binary target variable can be simply ex-
pressed as the standardized AUC : 

Ω = (-./0 12)
�0+ = 3 -./0+

3(�0+) (1) 

It must satisfy 0 ≤ Ω ≤ 1 (2)
Where  Ѳ = performance, λ = Caseload, Ω = Standardised AUC (Area Under Curve). 
There are two properties can be derived from equation (1) and (2): 

2 AUC – α > 0, so α < 2 AUC (3) 

2(1-α) > 0, so α < 1   (4) 

The performance measure of classifier with binary target variable for balance class 
distribution can be derived by substituting α = 0.5 in equation (1), to give:  Ω = 2789
– 0.5.  and for random performance where the original AUC is the lower triangle.  The
standardized AUC can be obtained by substituting AUC=0.5 to equation (1), to give
Ω = 0.5.   Hence, both AUC and Ω are symmetrical at the diagonal: Ω = 789 = 0.5.
The performance measure of classifier with binary target variable for class Imbalance, 
in particular applying to rare case problems: 

As : → 0, the equation (1) gives Ω ≈ 789
As : → 1, the performance becomes less reliable, as it is not satisfy the 

condition in equation (1).   Whenever possible, it is suggested to consider the con-
version of α and scores by using (1-α) and (1-scores) if the condition in equation (2) 
and (3) cannot be achieved. 

3 Risk and error matrix charts 

A confusion matrix [7] or also known as an error matrix contains information about 
actual and predicted classifications provided by a classification model. Performance 
of such models is commonly evaluated using the data in the matrix. The construction 
of the error matrix chart is based on the generation of proportion score function (PSF) 
[5] which was developed from [4]. The algorithm for generating a PSF is in Algo-
rithm 1.

Error matrix chart is, as indicated previously, illustrated in Fig. 3. It is called by this 
name because of the characteristics of the charts in which the area can be represented 
as an error matrix.  The vertical dash lines which illustrates the cut-off points and the 
horizontal curve line which represent as PSF. They are used to divide these charts 
onto four regions of the upper right hand of the chart containing the false positives 
(FP) and the lower right hand of the chart containing the true positives (TP).  The 
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upper left hand of the charts contains the false negatives (FN), the lower left hand of 
the chart contains the true negatives (TN). The error matrix can be represented as: 

=>? >@
A? A@B

Let‘s consider introducing low, medium and high risk by the low risk vertical line and 
the high risk vertical line. 

Algorithm 1 : Generation of PSF 
1. Input(score, predictedClass, trueClass, numberBin)
2. rankedScore  ← rank(score, by numberBin)
3. For i = 1 to numberBin
4. sortedRS[i]  ← get(rankedScore,i)
5. binSize[i] ← count(sortedRS[i])
6. correct[i] ← count(sortedRS[i], if predClass = trueClass)
7. psf[i] ← correct[i]/binSize[i]
8. lambda[i] ← i/numberBin;
9. End;
10. plot(psf,lambda)

Let’s consider the y-axis Ѳ, and the x-axis λ. The four quadrant which formed by 
proportion score function, Ѳ(λ) and the cut-off point c,  in the Fig. 3, represent the 
error matrix, hence it is called as error matrix chart, where: 

TP = (1 − �) −		C Ѳ(�)	E��
F (5) 

FP =	C Ѳ(�)	E��
F  (6)  

FN =	C Ѳ(�)	E�F
G  (7)  

TN = λ - C Ѳ(�)	E�F
G (8) 

Hence other characteristics such NPV and PPV can be derived: 

NPV = 1 - 
�
H C Ѳ(�)	E�F

G (9) 

PPV = 1 - 
�
�0H 	C Ѳ(�)	E��

F  (10) 

In order to obtain error matrix decomposition, low, medium and high risk lines were 
introduced in Fig. 3 and the error matrix decomposition was obtained. The objective 
of the error matrix decomposition is to enable local classifier performance analysis of 
for example either high, medium or low risk cases.   

Error Matrix charts enables the examination of classification hits and errors. It pro-
vides different measures than AUC in ROC or revised risk chart. Some of the 
measures produced in the error matrix chart and its composition can be useful in cer-
tain applications. An example is where the predictive model was intended to identify 
rare cases of serious non-compliance. If the targeting was based on the overall model 
performance, then it means the intention is to maximise the strike rate of the non-risk 
(compliant) cases as they are the majority in the population.  In error matrix charts, 
the matrix can be decomposed into areas of interest and the region of various compo-
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nents in the error matrix charts can be compared to select which model’s performance 
is relevant to identifying rare cases of non-compliance. 

Fig. 3. Error Matrix charts with low and high risk cut-off points and their matrix representation. 

Fig. 4. Error Matrix with gain and loss risk for describing two stage model. 

There are many binary classification models which are required to measure ‘gain’ and 
‘loss’ associated to the classifications. Gain risk variable is the magnitude of the risks 
when the prediction is correct and has positive impact or value, while loss risk varia-
ble is the magnitude of the risk when the prediction is incorrect and has negative im-
pact or value. When an instance is predicted positive, the actual can be either (a) posi-
tive, then it has gain risk variable and (b) negative, then it has loss risk variable. Simi-
larly when the instance is predicted negative, the actual can be either (a) positive, then 
it has loss risk variable and (b) negative, then it has gain risk variable. 

A detection model can be used to illustrate the gain and loss risk in revenue.  Each 
outcome of the detection would produce positive or negative revenue.  This problem 
can also be considered as two-stage modelling [3]. The first stage is to predict if a 
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case will result positive or negative outcome.  The second stage is to predict the reve-
nue gain for both positive and negative outcomes.  PSF has been used to demonstrate 
the first stage, i.e. the measure for false positive, true positive, false negative and false 
negative as in Fig. 4.  In order to provide a more comprehensive view of the classifier 
performance, the ‘gain’ and ‘loss’ chart should be part of the PSF.  The ‘gain’ and 
‘loss’ chart is also demonstrated in Fig. 4. 

Another example of misleading or biased results is where the sample of prevalence 
and the sample of incidence cases are different: 

i. Let’s consider sample with 41 is true negative, 5 false positive, 3 false nega-
tive, 5 true positive.

ii. In order to minimise the intervention cost, the true negative cases being re-
duced, by reducing the true non-risk cases from 41 to 5, it saves 35/58 =
35.185% resources.

iii. The representation of error matrix are changing as shown below:

= 3 5
41 5B → =3 5

5 5B
The initial misclassification error which is e = 0.14814815 becomes L =
0.444444.

The approach to deal with these issues will be discussed on next section. 

4 Performance of models using prevalence and incidence data 

When comparing classifier performance of prevalence and incidence data are re-
quired, it is important to make sure the results are comparable. There are several is-
sues when the sampling used for model building and/or sampling of model evaluation 
are not randomly drawn.  These issues are illustrated next. 

4.1 Reasons 

Comparisons of classifier performance utilising prevalence and incidence data is nec-
essary for several reasons: 

i. Improving model deployment. Constructing the risk and error matrix charts using
the incidence data are required for analysing the effects of changing the threshold/cut-
off points and case-load selection for model deployment.
ii. Monitoring model performance. One question that often needs resolution is “Has
there been any concept drift with model performance where for example it strays from
detecting fraud?” If there is concept drift and the model performance is not at an ac-
ceptable level, then the model should be rebuilt.
iii. Business reporting and analysis evaluation. Model/classifier performance using
incidence data is frequently requested for business performance analysis and report-
ing.
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4.2 Prevalence and incidence sampling 

In order to achieve the objectives for comparing model performance using prevalence 
and incidence data, the sampling selected for both types of data needs to be from the 
same distribution.  For example, if the prevalence sampling is drawn from accidental 
sampling (see below), then the incidence sampling should be the same as used in 
prevalence sampling.  The focus of this paper is on measuring classifier performance 
where the base-rate of prevalence and incidence data is significantly different.  This 
issue is generally due to the method of sampling used to build the model (prevalence) 
and the sampling used to analyse the modelling outcome (incidence) are frequently 
different in practice. In order to compare the performance of prevalence and incidence 
data, the sampling used for building the model should be the same as that used for 
model evaluation.  Generally a model can be constructed using:  

i. Accidental sampling. This is the most applicable solution for many data min-
ing applications especially for detecting fraud. The known cases of fraud are
usually rare in terms of their occurrence and can be expensive to obtain. Hence
the need to maximise the data set used for training purposes.  The sample used
will often be what is readily available and convenient. This is known as grab,
convenience or opportunity sampling.  It involves the sample being drawn
from that part of the population which is close at hand. The model developer
using such a sample cannot scientifically make generalizations about the total
population from this sample because it would not be representative. This type
of sampling can be useful for initial model building.

ii. Non-Accidental sampling The most common forms of non-accidental sam-
plings are random sampling, systematic sampling, stratified sampling, cluster
sampling and probability-proportional-to-size sampling. While these  are the
preferred methods for building models, they can have the disadvantages that
the positive cases included in these samples may not be readily apparent to
those who develop models. That is, those who have this responsibility may not
identify all the true positive cases. This is another way of saying some true
positive cases remain invisible in the selected sample. If the non-accidental
sample contains a limited number of positive cases, this can undermine model

performance.

As has been emphasized incidence data usually has cases that have high risk scores 
and have been actioned. Therefore, the outcomes with these cases are known. Hence, 
this accidental sample is very different from the sample used to develop the model.  

Here the distribution of incidence data has significantly changed from the distribution 
of prevalence data. There are three possible methods for dealing this challenge.  They 
are: 
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i. Oversampling – where all the cells/clusters/strata and scoring percentiles
have at least ‘minimum’ required number of subjecrs, while several others
have more data than what is required.  The “correction sampling incidence
data” proposed in this paper can be utilised and this should provide a reliable
correction sampling.

ii. Under Sampling – There are two scenarios:  (i) One or more of the
cells/strata/cluster have less data than what are required by the threshold of
the sampling.  The correction sampling incidence data can be employed,
however, the result may generally be less reliable than the one with over-
sampling. (ii) One or more of the cells/strata/cluster have no samples or
missing data.  Here the accuracy of the corrected sampling for these entries
depends on the accuracy of the assumptions applied about the distribution
they were drawn.

iii. Same sampling – This sampling usually occurs when the prevalence and in-
cidence data are drawn using the same methods.

There are two possible methods with same sampling to select the incidence data for 
model evaluation: (i) Non-Accidental Sampling such as random sampling can be used 
for measuring classifier performance; (b) Accidental sampling. This is not recom-
mended for model evaluation as it will cause errors 

If prevalence data is drawn using accidental sampling and is used for building the 
model, then there is a need to reconstruct the incidence data prior measuring model 
performance. This can be called ‘corrected sampling incidence data”.    The recon-
struction or correction of the incidence data can be done by “substitution sampling”. 
Substitution sampling is a sampling algorithm used to reconstruct the prevalence data 
using the incidence data. The main characteristics of substitution sampling is “draw-
ing a random sample” from prevalence data, then substituting each instance using 
incidence data. The substitution of the prevalence instances which are the same strata 
or cluster or cell as the incidence data is being substituted. The sample size of preva-
lence data is not the same as incidence data in practice. There are three possible sce-
narios of sampling being over, under or the same size with the ‘random sample’ 
drawn from prevalence data.  If the data in each strata or cluster or cell are either over 
or under sampling, then bootstrap or jackknife method [9] can be utilised for substi-
tuting instances in each strata or cluster or cell, until all instance from “substitution 
sampling” comes from incidence data. The main advantage with substitution sampling 
is how it captures key population characteristics in prevalence data, the sample col-
lected for model building and the data drawn from ‘accidental sampling’.  This meth-
od of sampling produces characteristics in the sample that are proportional to the 
prevalence data. The detail is provided in next section. 

4.3 Corrected Sampling Incidence Data 

Substitution sampling is a method of sampling that involves the substitution and divi-
sion of a population into smaller groups known as strata or cluster or cell.  The strata 
and cluster are formed based on members' shared attributes or characteristics. A ran-
dom sample from each stratum or cluster is taken in a number proportional to the 
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stratum's or cluster’s size when compared to the population. These subsets of the stra-
ta or clusters are then pooled to form a random sample.  Fig. 5 illustrates the descrip-
tion of “substitution sampling” when the sample has only two strata or cluster.  The 
bigger data set (LHS) indicates the sample drawn from prevalence data, while the 
smaller data set (RHS) is the sample belongs to incidence data. 

Fig. 5. Substitution sampling, the bogger data 
set (LHS) indicates the sample drawn from 
prevalence data, while the smaller one (RHS) 
is the sample belongs to incidence data. 

There are two substitution sampling strategies which are described below. 

Mixed Resampling procedure. Let’s define the prevalence stratified data is 
M�, M3, … , M	, where M	 is the number of cell size at nth cell.  The incidence stratified
data is is P�, P3, … , P	, where P	 is the number of cell size at nth cell. The stratified
sampling need to be carried out and the incidence data should be added by a number 
of sample in order to match with some proportion of prevalence data which can be 
formulated as:  

P� +	Q� = 	:M� 	 (11) 

In order to minimise the increase of the overall sample size: 

Minimise  ∑ Q�	��� (12) 

∑ Q�	��� ≥ 0 for increasing the overall sample size. (13) 

Equation (11) can be expressed as: 	Q� = 	:M� 	− P� 	 (14) 

Substituting (14) onto expression (13) and (12)  
Minimise	∑ :M� 	− P� 		��� and ∑ :M� 	− P� 		��� ≥ 0. (15) 

Let us minimise  R(S) = S	∑ 	M� 	− ∑ 	P� 	STE	R(S) 	≥ 0		���	���

Hence S = ∑ 	UVWVXY
∑ 	ZV	WVXY

and Q� =	[∑ 	UVWVXY
∑ 	ZV	WVXY

\ M� −	P� (16) 

There are 3 possibilities of cell sampling required: 
If 	P�  < M�   then use P� plus  additional re-sampling Q�with replacement from P�
If 	P�  = 	M�     then use P�
If 	P�  > M�   , then use sampling without replacement from P�
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Over Re-sampling procedure. For over re-sampling procedure applied, the follow-
ing condition applies:  ⋁ ^ ∶ 	Q� 	≥ 0 then we need to introduce β adjustment, so that
all sample are not being reduced, but being increased.    We need to substitute Q� with
(` +	a�) where ⋁ ^ ∶ 	Q� 	≥ 0, substituting this to equation 11 in order to get

P� + (	` +	a�) = 	:M� 	 (17) 
Equation (17) is used the same way as in expression (12) to (15) in order to obtain 

S = (∑ 	UV)	b	cWVXY
∑ 	ZV	WVXY

(18) 

and substituting α onto equation (17) to give: 

a� =	[(∑ 	UV)b	cWVXY
∑ 	ZV	WVXY

\ M� −	P� − 	` (19) 

Substituting equation (18) to Q� =  (` +	a�) gives:

Q� = 	[(∑ 	UV)b	cWVXY
∑ 	ZV	WVXY

\ M� −	P� (20) 

Hence, we need to minimise ∆ with the following constraint: 
⋁ ^ 	 ∶ 	Q(`) = Q� 	≥ 0	 (21) 

The search the value of β is required in order to 
minimise	Q� 	STE	  Q� 	≥ 0 for I = 1, …, n
where n is the number of stratified cells as in Algorithm 2. 

Algorithm 2: Corrected Sampling 

1. β ← abs (∑ R(Q�))	��� ; where R(Q�) = 	Q� 	^RQ� < 0	STE		R(Q�) = 0	^R			Q� ≥ 0	
2. g0 = 0; β0 = 0; Ѳ = 0; r = (1+sqrt(5))/2;  converge = false;
3. Evaluate: Q(`);  if  Q(`) < 0 then g = 0; else g = 1;
4. While convergence eq false then
5. Ω = (1-r) * (β-β0);
6. if g eq 1 then β01 = β0 + Ω;  ̀ �� = 	` − Ω;
7. Evaluate:  Q(`01);  if :  Q(`01) < 0 then g01 = 0; else g01 = 1;
8. Evaluate:  Q(`11);  if :  Q(`11) < 0 then g11 = 0; else g11 = 1;
9. if g01 eq 1 and g11 eq 1 then
10. Diff = β01 – β0; β = β01; g=g01; 
11. If g01 eq 0 and g11 eq 1 then
12. Diff = β11 – β01; β0 = β01; β = β11;g0=g01;g=g11; 
13. If g01 eq 0 and g11 eq 0 then
14. Diff = β – β11; β0 = β11;g0=g11; 
15. If diff < 3 then converge = true
16. else  ̀0 = 	`; 	` = 	` + 	Ω + 	Ѳ;  Ѳ = Ω;
17. Evaluate:  Q(`);  if :  Q(`) < 0 then g = 0; else g = 1;
18. EndWhile;
19. β = round(β); ∆ = Q(`)
20. While ∆ < 0
21. β = β +1; ∆ = Q(`)
22. endWhile;
23. Output(β)
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The white wine data from UCI data repository [1] was used for the experiment using 
mixed resampling procedure and over resampling procedure. The data was clustered 
into seven clusters.  One of the clusters consists of only one instance and was re-
moved.  The random sample of 200 instances was selected as incident data, while the 
remaining 4697 instance was selected as prevalence data. The results of experimenta-
tion using the methods illustrated above for optimized mixture sample is shown in 
Table 1 while optimized over sampling is shown in Table 2. 

 Table 1.  Optimised mixture sampling of incidence data 
Prevalence Incidence Adjusted Incidence Sample 

Cluster ef % n % ∆ gh (n+∆)/n 
1 675 14.3678 26 13.0 2.7356 3 1.10522
2 1227 26.1175 56 28.0 -3.7650 -4 0.93277
3 101 2.1499 5 2.5 -0.7003 -1 0.85994
4 1309 27.8629 66 33.0 -10.2742 -10 0.84433
5 948 20.1788 35 17.5 5.3576 5 1.15307
6 437 9.3018 12 6.0 6.6037 7 1.55031

Table 2. Optimised over sampling of incidence data 
Prevalence Incidence Adjusted Incidence Sample 

Cluster ei % n % ∆ gh (n+∆)/n % 
1 675 14.3678 26 13.0 7.9080 8 1.30416 17.0
2 1227 26.1175 56 28.0 5.6373 6 1.10067 31.0
3 101 2.1499 5 2.5 0.0736 0 1.01473 2.5
4 1309 27.8629 66 33.0 -0.2435 0 0.99631 33.0
5 948 20.1788 35 17.5 12.6220 13 1.36063 24.0
6 437 9.3018 12 6.0 9.9523 10 1.82936 11.0

5 Conclusion and Future Directions 

Error Matrix charts enables the visualisation of classification errors and their compo-
sition.  It provides different measures from AUC in ROC or AUC in Revised risk 
chart.  The measures from error matrix chart and its composition can be very useful 
for many applications especially class imbalance and rare-cases where the overall 
measure such as the AUC in ROC may not be a useful.  Both risk chart and error ma-
trix charts are very sensitive to base-rates which usually occur when class-imbalance 
data are used for modelling.  Two approaches have been suggested for comparing 
classifier performance with risk and error matrix charts as both approaches provides 
different types of measures of model performance.  

When evaluating model performance of prior and post interventions, it is important 
to make sure the same sampling strategy is applied to both prevalence and inciden-
tence datasets, otherwise it can bias the measure of model performance. Although the 
sampling of incidence data can be corrected with the algorithm proposed in this paper; 
the severe under-sampling of incidence data still cannot be solved with any re-
sampling methods. This is due to mainly the sample size being too small or alterna-
tively due to data being missing in each cell. Future research of the proposed methods 
need to be directed towards understanding further the properties and characteristics of 
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risk charts, error matrix charts and their comparative performances with respect to 
sampling for prevalence and incidence data. 

Acknowledgement 

The author is very grateful to Graham Williams for implementing some of the pro-
posed earlier risk chart revision to Rattle and Warwick Graco for assistance editing 
this paper. No real ATO data was used in the paper due to privacy, legal and security 
requirements. 

References 

1. Cortez, P, Cerdeira, A., Almeida, F., Matos, T. and Reis, J.:  Modeling wine preferences
by data mining from physicochemical properties. In Decision Support Systems, Elsevier,
47(4):547-553. ISSN: 0167-9236.  (2009)

2. Fawcett, T.: An introduction to ROC analysis.  Pattern Recognition Letters, 27, 861-874.
(2006)

3. Heckman, J. J.:  "The Common Structure of Statistical Models of Truncation Sample Se-
lection and Limited Dependent Variables and a Simple Estimator for Such Models", An-
nals of Economic and Social Measurement, 5/4, (1976)

4. Koesmarno, H.K.: Class-size percentile transformation for reconstructing a distribution
function. Journal of Applied Statistics, 23 (4): 423-434. (1996)

5. Koesmarno, H.K.:  Measuring classifier performance with PSF.  Paper presented at ATO
Analytics Community of Practice (2010).

6. Koesmarno, H.K.:  Risk and Error Matrix Charts.  Paper presented at Whole of Govern-
ment Data Analytics Centre of Excellence, Research Week 20 November 2014.

7. Kohavi, R., Provost, F: Glossary of terms, Machine Learning, Vol. 30, No. 2/3, pp. 271-
274 (1998)

8. Polo, J. L., Berzal, F., & Cubero, J. C.: Taking class importance into account. In Hybrid
Information Technology, 2006. ICHIT'06. International Conference on (Vol. 1, pp. 1-6).
IEEE (2006)

9. Shao, J. and Tu, D. The Jackknife and Bootstrap. Springer-Verlag, Inc. (1995)
10. Williams, G.J.: Data mining with Rattle and R: The Art of Excavating Data for Knowledge

Discovery. Springer (2011)

277



Rapidly Determining the Starting Sample Size in Pro-
gressive Sampling: Mean Convergence is Sufficient 

Amr ElRafey1 and Janusz Wojtusiak1

1 George Mason University 
4400 University Dr, Fairfax, VA 22030, USA 

aelrafey@gmu.edu 

Abstract. Progressive Sampling (PS) techniques are a widely used class of 
sampling methods which start with an initial sample and incrementally add data 
points to this initial sample up to the point beyond which model accuracy no 
longer significantly improves. An important and ongoing area of research in PS 
has to do with determining the initial sample size to be used and the two main 
techniques found in the literature for doing so are to use meta-learning to pre-
dict the shape of the entire learning curve or to use information based measures 
to assess the quality of the starting sample. In the following paper we propose a 
simple mean convergence based approach which does not require scanning the 
entire data set. Our experiments on real data sets indicate that our proposed 
method is capable of determining an appropriate starting sample size in signifi-
cantly less time. 

Keywords: Progressive Sampling, Sampling, Learning Curve, Divergence, Me-
ta-learning. 

1 Introduction 

Over the past decade or so, sampling techniques have received a growing interest in 
the data mining / machine learning community, primarily due to the rapid growth in 
the size of data sets [1]. It is worth noting here, that there is a distinction between the 
classical notion of sampling in statistics and the notion of sampling in the data mining 
context. In statistics, the primary goal of sampling is usually to estimate population 
parameters such as the mean, variance and so on, whereas in data mining applications, 
the primary goal of sampling is to reduce the size of the data set without losing any 
important patterns in the data. More specifically, in the context of data mining, given 
a data set 𝐷 = (𝑥𝑖  , 𝑦𝑖) 𝑓𝑜𝑟 𝑖 = 1,2, , , , , , 𝑁 where 𝑥𝑖 represents the independent vari-
ables 
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and 𝑦𝑖  represents the dependent variable, and given a learning algorithm 𝑓 with per-
formance 𝑃𝑒𝑟(𝑓) , we wish to select a sample 𝑆𝑂𝑝𝑡𝑖𝑚𝑎𝑙  from 𝐷 such that

1. 𝑃𝑒𝑟 (𝑓(𝑆𝑂𝑝𝑡𝑖𝑚𝑎𝑙)) ≃ 𝑃𝑒𝑟 (𝑓(𝐷))
2. |𝑆𝑂𝑝𝑡𝑖𝑚𝑎𝑙  | ≤ |𝑆𝑖 | ∀ 𝑖, 𝑤ℎ𝑒𝑟𝑒 𝑃𝑒𝑟(𝑓(𝑆𝑖)) ≃ 𝑃𝑒𝑟(𝑓(𝐷))

where |.| refers to the cardinality of the sample. That is, we wish to find the smallest 
possible sample where the performance of 𝑓 on the sample is approximately the same 
as the performance of 𝑓 on the entire data set. Furthermore, we would also like to 
have a method 𝑀𝑂𝑝𝑡𝑖𝑚𝑎𝑙  (𝐷) for finding 𝑆𝑂𝑝𝑡𝑖𝑚𝑎𝑙  such that

3. 𝑇 (𝑀𝑂𝑝𝑡𝑖𝑚𝑎𝑙  (𝐷)) ≤ 𝑇 (𝑀𝑗 (𝐷)) ∀ 𝑗, 𝑤ℎ𝑒𝑟𝑒 𝑀𝑗 (𝐷) = 𝑆𝑂𝑝𝑡𝑖𝑚𝑎𝑙

where 𝑇(. ) refers to the computational time of a method. Specifically, we would like 
to have a procedure for finding 𝑆𝑂𝑝𝑡𝑖𝑚𝑎𝑙  which requires less computational time than
all other procedures.  

The three main categories of sampling techniques found in the data mining litera-
ture are Random Sampling [2], Active Learning [3] and Progressive Sampling [4]. 
Generally speaking, random sampling methods operate by selecting an arbitrary sam-
ple of predetermined size 𝑁 from the data and in so doing, they attempt to satisfy the 
complexity constraint outlined above without paying much attention to the first 2 
requirements. Active learning techniques attempt to find the most informative obser-
vations to include in a sample of predefined size 𝑁 and as such they ignore the re-
quirement of finding the smallest possible sample and they ignore the complexity 
constraint.  

Progressive sampling methods apply a learner 𝑓 to an initial sample and then grow 
this initial sample  up  to  the  point  beyond  which there  are  no further  improve-
ments in 𝑃𝑒𝑟(𝑓). As such, they appear to be the only class of sampling methods which 
attempt to satisfy both requirements 1 and 2 above. However, the process of applying 
the learning algorithm 𝑓 to the progressive samples can be computationally expensive 
and ideally, we would want to start the PS algorithm with an initial sample 𝑆𝐼𝑛𝑖𝑡𝑖𝑎𝑙    ≃
𝑆𝑂𝑝𝑡𝑖𝑚𝑎𝑙 .  That is, we would want the difference between our initial sample and the
optimal sample to be as small as possible. 

There are in the literature two main methods for determining an optimal size of 
𝑆𝐼𝑛𝑖𝑡𝑖𝑎𝑙 . The first of these methods involves using meta-learning to predict the shape
of the learning curve usually based on the first few iterations of PS [5]. The problem 
with this method, is that in-order to improve the prediction, a greater number of itera-
tions are needed. The second method is the one proposed by Gu et al. which uses 
information divergence to compare the progressive samples to the entire data set [6]. 
This method requires scanning the entire data set to generate descriptive statistics in-
order to carry out the comparisons with progressive samples and as such may be in-
feasible with extremely large data sets. 

We propose here a simple and somewhat obvious technique for determining an ap-
propriate 𝑆𝐼𝑛𝑖𝑡𝑖𝑎𝑙 . Instead of comparing the progressive samples to the entire data set
we compare the means of each of the 𝑘 features of each sample 𝑆𝑖 to the means of the
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𝑘 features of the sample immediately preceding it 𝑆𝑖−1 and terminate the procedure
once the difference between the successive means has converged. Our experiments 
with publicly available data sets indicate that our proposed technique achieves a sig-
nificant reduction in the time required to determine the size of the initial sample. 

This paper is structured as follows, firstly we provide an overview the PS algo-
rithm along with detailed explanations of both the information divergence technique 
and the meta-learning techniques found in the literature. We then outline our proposed 
technique followed by results on real data. We conclude this paper with a summary of 
our findings and a conclusion. 

2 Background and Related Work 

2.1 Progressive Sampling 

The central theme of PS is the learning curve, depicted in Fig. 1) below. Essentially, 
this curve expresses an expectation that, for any data set 𝐷 and any classifier 𝑓, as the 
sample size grows, so too will the performance 𝑃𝑒𝑟(𝑓) of 𝑓trained on this sample. 
This improvement in performance however, slows down and eventually plateaus once 
the sample exceeds a certain size. As such the standard PS algorithm usually follows 
the following steps 

Algorithm 1: Standard Progressive Sampling 

1. Select an initial sample 𝑆𝐼𝑛𝑖𝑡𝑖𝑎𝑙  (usually the first 𝑛 observations in a given data set)

2. Train a classifier on this initial sample (𝑆𝐼𝑛𝑖𝑡𝑖𝑎𝑙  ) and calculate an initial perfor-

mance 𝑃𝑒𝑟𝐼𝑛𝑖𝑡𝑖𝑎𝑙  (𝑓(𝑆𝐼𝑛𝑖𝑡𝑖𝑎𝑙)) (usually the performance of 𝑓 will be classifier accu-

racy on a test data set)

3. Add 𝑛 data points to 𝑆𝐼𝑛𝑖𝑡𝑖𝑎𝑙   and calculate 𝑃𝑒𝑟𝐼𝑛𝑖𝑡𝑖𝑎𝑙+𝑛 (𝑓(𝑆𝐼𝑛𝑖𝑡𝑖𝑎𝑙+𝑛))

4. Test for convergence in performance

5. While convergence not detected

Repeat steps 3 and 4

6. Return 𝑆𝑂𝑝𝑡𝑖𝑚𝑎𝑙

Fig. 1. A hypothetical learning curve 
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Notwithstanding the apparent simplicity of this technique, it nonetheless attempts 
to satisfy the first 2 sampling requirements outlined in the introduction by only adding 
new points at each iteration if convergence has not yet been detected. 

A number of methods have been proposed in the literature for adding data points to 
successive samples (step 3), including arithmetic sampling [1], geometric sampling 
[1] and progressive batch mode uncertainty sampling [7]. Furthermore, a number of
methods have been proposed for testing for convergence (step 4) including linear
regression with local sampling [8] and adaptive sampling using Chebyshev bounds
[9]. All of these refinements have been attempts at ensuring that the algorithm satis-
fies the first 2 sampling requirements we set out in the introduction.

The focus of this paper is step 1 in the algorithm above, namely, the selection of an 
initial sample 𝑆𝐼𝑛𝑖𝑡𝑖𝑎𝑙 . To clarify the importance of this step, let us consider a hypo-
thetical example in which we have a data set with 𝑁 = 20,000,000 observations and 
let us suppose that 𝑆𝑂𝑝𝑡𝑖𝑚𝑎𝑙   ≃ 10,000,000. Suppose further that we begin with 𝑆𝐼𝑛𝑖𝑡𝑖𝑎𝑙
= 200,000 and we decide to add 200,000 data points at each iteration of the PS algo-
rithm (that is, we have decided to simply add 1% of the data at each iteration). Final-
ly, suppose that our classifier has complexity 𝑂(𝑛3). In this example, a simple calcu-
lation reveals that the time required to execute the PS algorithm and determine 
𝑆𝑂𝑝𝑡𝑖𝑚𝑎𝑙  is actually greater than the time required to run the classifier on the entire
data set. We have also completely ignored the time required to determine the classifi-
er performance on each of the samples, which would have required a substantial 
amount of time. If, as is often the case, our performance measure is the area under the 
curve (AUC) statistic, then the complexity of calculating AUC is 𝑂(𝑛 log(𝑛)) [13] and 
depending on the size of the validation set, this could have required a significant 
amount of time. 

The hypothetical example above serves to demonstrate the difficulties of generat-
ing a learning curve for a specific classifier on large data sets. In many situations, it 
may simply be infeasible to execute the PS algorithm given the size of the data set. 
Alternatively, we may be tempted to add a very large number of observations at each 
iteration of PS in order to reduce the time required to find 𝑆𝑂𝑝𝑡𝑖𝑚𝑎𝑙 . To clarify, we had
chosen to add on 1% of the data set at each iteration in the example above, but we 
could have chosen to add on, for example, 5% or we could have used a geometric 
progression, whereby the number of points being added at each iteration grows geo-
metrically. These solutions may save us some time, but they run of the risk of over-
shooting 𝑆𝑂𝑝𝑡𝑖𝑚𝑎𝑙  resulting in a final sample which may be much larger than neces-
sary. As such, it is necessary to have some method of rapidly determining an appro-
priate starting sample 𝑆𝐼𝑛𝑖𝑡𝑖𝑎𝑙 .
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2.2 Methods for Finding 𝑺𝑰𝒏𝒊𝒕𝒊𝒂𝒍

Meta Learning Techniques 

The first and more recently developed group of methods found in the literature for 
determining OSS involve using the 𝑛 first iterations of PS to predict the shape of the 
learning curve [10]. These techniques were proposed as a way to determine the total 
sample size required 𝑠𝑂𝑝𝑡𝑖𝑚𝑎𝑙  and not just the initial sample size 𝑆𝐼𝑛𝑖𝑡𝑖𝑎𝑙 furthermore
they were proposed as a method to allow for rapid comparison of different learning 
algorithms on large data sets [10]. The main idea here is to fit a nonlinear inverse-law 
power model of the form 

𝐴𝑐𝑐(𝑓(𝑆𝑖)) =  α +   𝛽𝑁𝑠𝑖
−γ (1) 

where 𝐴𝑐𝑐(𝑓(𝑆𝑖)) represents the accuracy of the classifier on the sample 𝑆𝑖 and the
parameters 𝛼, 𝛽 and 𝛾 represent the minimum accuracy achievable on the data set 𝐷, 
the scale and the learning rate respectively. One major drawback of this technique is 
that, generally speaking, in order to better predict the shape of the learning curve a 
large number of iterations of PS are needed. To tackle this issue, Figueroa et al. [5] 
proposed a weighted version of the model above, whereby the sample sizes were used 
as weights in the non-linear regression model. However, and notwithstanding the 
improvements in predictive accuracy, their technique still required a relatively large 
number of data points in-order to predict the learning curve with satisfactory accura-
cy. 

Information Based Technique 

In their paper titled Efficiently determining the starting sample size for progressive 
sampling [6] authors Gu et al. argue that larger samples will resemble the entire data 
set more so than the smaller samples. To measure resemblance, the authors make use 
of Kullback’s information measure [11], which is usually referred to as divergence. 
Divergence is a statistical concept used to express the level of difficulty of discrimi-
nating between two competing hypothesis 𝐻1  and 𝐻2 regarding the underlying
distribution of a  random  variable  𝑋.  To clarify, suppose  that  we  sample  a single 
observation 𝑥 from variable 𝑋 and suppose further that there are 2 possible underlying 
probability density functions which may have generated 𝑥 , 𝑓1(𝑥), 𝑓2(𝑥) representing
our two competing hypothesis 𝐻1 and 𝐻2. The information divergence of this obser-
vation 𝑥 is given by 

𝐽(1,2)  =  ∫(𝑓1(𝑥)    −    𝑓2(𝑥)) log
𝑓1(𝑥)

𝑓2(𝑥)
(2) 

where 𝐽 (1,2) above quantifies the difficulty of discriminating between 𝐻1 and 𝐻2. In
the event that the random variable 𝑋 is multinomial with 𝑐 categories, the 2 competing 
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hypothesis would be that 𝑋 belongs to population 1 𝑝1𝑗 or 𝑋 belongs to population 2
𝑝2𝑗  where 𝑗 = 1,2, … . , 𝑐. In this case, information divergence is given by

𝐽(1,2)   =    ∑(𝑝1𝑗    −    𝑝2𝑗)

𝑐

𝑗=1

 log
𝑝1𝑗
𝑝2𝑗

(3) 

The definitions above naturally extend to data sets with 𝑘 multinomial features. 
Given a data set 𝐷 and a sample 𝑆 the information divergence between 𝐷 and 𝑆 for 
each feature 𝑘 with 𝑐 categories is given by 

𝐽(𝐷, 𝑆)   =    ∑(𝑝𝐷𝑗    −    𝑝𝑆𝑗)

𝑐

𝑗=1

 log
𝑝𝐷𝑗
𝑝𝑆𝑗

(4) 

and the averaged information divergence between 𝐷 and 𝑆 for all features 𝑘 is then 

𝐽(𝐷, 𝑆)   =    ∑𝐽𝑘(𝐷, 𝑆)

𝑘

𝑖=1

(5) 

Finally, the authors define a measure of sample quality 𝑄 which is given by 

𝑄(𝑆)  = exp(−𝐽(𝐷, 𝑆)) (6) 

The above measure of sample quality is applied to data sets with continuous features 
𝑘 by calculating the histograms of each the continuous features and then treating each 
bin as a categorical value. Gu et al. then outlined an algorithm for finding 
𝑆𝐼𝑛𝑖𝑡𝑖𝑎𝑙  which essentially involved calculating descriptive statistics for the entire data
set 𝐷 then calculating sample quality 𝑆𝑖 for each of the successive samples until con-
vergence of the quality measures is detected.  

The authors tested out their proposed algorithm on four publicly available data sets 
and their results indicated that in some cases the initial sample returned by their 
method was almost equal to, that is, the sample size returned was the size at which PS 
detected convergence. However, according to the results presented in their paper, the 
time required to find  , was in many cases, only a marginal improvement on the time 
required for PS to converge without 𝑆𝐼𝑛𝑖𝑡𝑖𝑎𝑙  and this is not surprising given the num-
ber of computations required by their algorithm. 

3 Proposed Technique 

As explained earlier, Gu et al.’s technique requires calculating descriptive statistics of 
the entire data set and in cases where the data set is extremely large, this may be com-
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putationally expensive. We propose here a technique which does not rely on the dis-
tribution of the entire data set 𝐷 but instead on the means of the successive samples 
S_i,S_(i+1),…..,D. We appeal to the law of large numbers [12] which states that for 
independent and identically distributed variables 𝑋1, 𝑋2, … . ., with 𝐸(𝑋1) =  𝐸(𝑋2) =
⋯… . . , = 𝑢, the sample average of 𝑛 such variables 𝑋𝑛̅̅̅̅ =  

1

𝑛
 (𝑋1 + 𝑋2 +⋯…… ,𝑋𝑛)

converges almost surely to the expected value 𝑢. In the context of a hypothetical data 
set 𝐷 with 𝐾 features, for each feature, we know a priori that the strong law of large 
numbers holds and implies that  

𝑋𝑛𝑘
̅̅ ̅̅ ̅

𝑎.𝑠
→ 𝑢𝑘    𝑎𝑠 𝑛 →   ∞ 

(7) 

meaning that the averages of the successive samples converge almost surely to the 
average of the entire data set. Furthermore, a necessary and sufficient condition of 
almost sure convergence is that 

𝑃(| 𝑋𝑛𝑘
̅̅ ̅̅ ̅  −   𝑋𝑛−1𝑘

̅̅ ̅̅ ̅̅ ̅̅  |  >   ε)   →   0   𝑎𝑠 𝑛 →   ∞ (8) 

suggesting the terms of the sequence 𝑋𝑛𝑘̅̅ ̅̅ ̅ , 𝑋𝑛+1𝑘̅̅ ̅̅ ̅̅ ̅̅  , … . ., grow arbitrarily closer to one
another. This implies that that it would be sufficient to simply compare the averages 
of the successive samples to each other instead of comparing them to the entire data 
set, in-order to ascertain whether mean convergence has occurred or not. We therefore 
propose the following method for determining an appropriate size for 𝑆𝐼𝑛𝑖𝑡𝑖𝑎𝑙  . For
each sample 𝑆𝑖, we calculate the mean of each of the 𝑘 features and then calculate

𝐶𝑆𝑖  =  ∑
| 𝑋𝑖𝑗
̅̅ ̅̅   −  𝑋𝑖−1𝑗

̅̅ ̅̅ ̅̅ ̅ |

𝑋𝑖−1𝑗
̅̅ ̅̅ ̅̅ ̅ 

𝑘

𝑗=1

(9) 

representing the sum of the absolute percentage differences in the means for each of 
the 𝑘 features from the preceding sample 𝑆𝑖−1. The reason why we propose using
absolute percentage differences as opposed to absolute differences is due to the fact 
that some features will have values that are substantially larger than others and there-
fore, using percentage differences allows us to overcome this issue. As such, our pro-
posed technique involves producing a mean difference curve as demonstrated in Fig. 
2 below and testing for convergence to determine the size of 𝑆𝑖.

284



Fig. 2. Plot of successive 𝐶𝑆𝑖′𝑠 on a real data set.

4 Results on Real Data 

We tested out our proposed technique on 7 publicly available datasets available on the 
UCI and Kaggle repositories (Credit Card Fraud Detection [14] , Rain In Australia 
[15], Diabetes for 130 US-hospitals [16] , Poker Hand [17] , Covertype [17] , Census 
Income KDD [17] and Dota2 Games Results [17] ). For each data set, we started with 
a sample of 1%, calculated the means for this sample then proceeded to iteratively add 
an additional 1% and calculate the new means along with 𝐶𝑆𝑖 from expression (9)
above. Once we had reached a sample of 10%, we started to test for convergence. 
Specifically, at each iteration, we ran an ordinary least squares regression of the last 
10 𝐶𝑆𝑖′𝑠 on the numbers {1: 10} and recorded the confidence intervals of the regres-
sion coefficient. If the confidence interval crossed 0, then convergence had been 
achieved and we reported the size of this sample as 𝑆𝐼𝑛𝑖𝑡𝑖𝑎𝑙  along with the time re-
quired to reach convergence. 

We further tried the information divergence measure proposed by Gu et al. For 
each data set, we firstly calculated the statistics of the entire set and then starting with 
a sample of 1% we calculated the quality of the sample 𝑄𝑆𝑖  from expression (6) above
and then iteratively added 1% of the data to the sample and calculated an updated 
quality measure. Once we reached a sample of 10%, we started testing for conver-
gence in exactly the same way we did for our mean convergence technique. We again 
recorded the sample size at which convergence was achieved along with the time 
required to execute this technique on the data. 

Finally, for each data set we used standard PS to determine. Starting again with 1% 
of the data, we applied a classification algorithm to this sample and then recorded it’s 
AUC statistic for predicting a testing data set if the outcome variable was binary or 
classification accuracy if the outcome variable had more than 2 categories. We then 
proceeded to add an additional 1% to this data and reapplying the classifier. Conver-
gence was tested for in the exactly the same way as was done for the previous 2 
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properties exhibited by these materials are dictated by the concentration, type
and arrangement of atoms in the material. A novel and more efficient algorithm
to study and analyze the arrangement of atoms in a given alloy is proposed in
this study. Analysis of these microstructures in the materials can aid material
scientists in identifying potential vulnerabilities in existing materials, and devel-
oping better new materials.
Alloys are traditionally developed by mixing small quantities of metals or other
elements in a primary metal lattice. The primary element is called the solvent,
and the other elements form the solutes in the solid state solution. The arrange-
ment of atoms in these materials under different conditions can significantly alter
the physical and functional properties of the material. Extreme temperature and
pressure conditions can cause clustering tendencies in the solute atoms in some
materials leading to a non homogeneous distribution which can affect their me-
chanical properties. The change in the distribution of Nickel atoms in the alloy
used in nuclear reactor systems after prolonged use, may lead to catastrophic
failures [2]. Compositional analyses for material samples are currently being con-
ducted by using a technique called Atom Probe Tomography (APT). An Atom
Probe is an instrument that probes through the surface of an element by re-
moving layers of atoms from the specimen through successive evaporation[3].
Computational methods are then used to build a three dimensional reconstruc-
tion of the sample prior to its evaporation, providing atomic scale information
on the structure of a sample and the composition of atoms in those structures.
The instrument is equipped with a software system to study frequency distri-
butions of different elements in the sample. The frequency distribution analysis
is conducted by a technique called voxelization[5]. The material is divided into
cubic blocks or voxels with equal atoms or volume, and these voxels or bins are
used to create the histogram plots. A new shape invariant binning algorithm,
the Uniform Partitioning Algorithm is proposed in this paper. This algorithm
partitions the data into bins based on atomic distances instead of shape or vol-
ume restrictions, hence it is better at detecting spatial correlations. Synthetic
datasets with known heterogeneous and homogeneous distributions were cre-
ated to validate the distributions detected by the binning algorithm. Existence
of solute clusters, which are regions in the material with a significantly higher
number of solute atoms than the number in a similar region in a homogeneous
solution, leads to heterogeneities in the material. Two novel methods to create
realistic solute clusters in the synthetic alloy dataset are also presented. These
techniques simulate the formation of solute clusters in the material.
Bin size and the method of constructing the bins are crucial factors that affect
the obtained frequency distributions. We compare the proposed algorithm with
the voxelization and spherical (nearest-neighbor) binning techniques on different
types of distributions and varying bin sizes, and show that it is more efficient
and scalable than the other two techniques.
Existing statistical tools used for analyzing materials are introduced in the next
section. The Uniform Partitioning Algorithm is presented in the Methodology
section along with the the creation of synthetic homogeneous and heterogeneous
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methods. We also randomly assigned one of 3 classifiers, Logistic Regression (LR), 
C5.0 decision trees or Random Forests classifier (RF) to each data set. 

As such, for each of the data sets we used, we reported the execution time and the 
size of the 𝑆𝐼𝑛𝑖𝑡𝑖𝑎𝑙  returned by each technique along with the size of 𝑆𝑂𝑝𝑡𝑖𝑚𝑎𝑙  using
PS. Our results are presented in Table 1. below and they clearly indicate that not only 
is our proposed technique significantly faster, but that the initial samples returned by 
it are closer to 𝑆𝑂𝑝𝑡𝑖𝑚𝑎𝑙  than the information based technique.

To begin with, the execution time of our proposed technique averaged 8.42 sec-
onds per data set whereas the information based technique averaged 59.8 seconds per 
data set, a result which is barely surprising considering the simplicity of our proposed 
method. More interestingly however, our technique produced an 𝑆𝐼𝑛𝑖𝑡𝑖𝑎𝑙  which deviat-
ed from the PS 𝑆𝑂𝑝𝑡𝑖𝑚𝑎𝑙  by only 4% per data set. On the other hand, the information
divergence technique produced an 𝑆𝐼𝑛𝑖𝑡𝑖𝑎𝑙 which, on average deviated by 9% per data
set from the PS  𝑆𝑂𝑝𝑡𝑖𝑚𝑎𝑙 .

5 Conclusion 

In the previous sections, we have demonstrated how the use of an exceedingly simple 
mean convergence technique can be used to rapidly and effectively determine the size 
of an appropriate initial sample for progressive sampling. Our proposed method does 
not require scanning the entire data set, nor does it require performing any kind of 
complex calculations on the successive samples. One objection to our proposed meth-
od is that it neglects many of the statistical properties of each of the 𝑘 features of the 
data such as the variance, kurtosis and correlation with other features and focuses 
solely on the mean of each feature. However, what we are trying to achieve is to rap-
idly find an appropriate starting sample which we can train a classifier on and obtain 
results which are not far from those which would be obtained using 𝑆𝑂𝑝𝑡𝑖𝑚𝑎𝑙 . As
demonstrated experimentally, our proposed method is capable of achieving this. Fur-
thermore, and while it is true that the information divergence measure proposed by 
Gu et al. is more statistically sound, it may, in many cases, be unnecessary. This is 
due to that fact that a number of features may not actually add much predictive power 
to our classifier and yet the information divergence technique would expend a consid-
erable amount of time in calculating detailed statistics for those features and would 
converge much later than necessary as we suspect may have been happening in our 
experiments above. We therefore conclude that the technique we propose here, while 
being crude, will in many cases be sufficient. 
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Table 1. Results on real data sets. 

Data Set / Number 
of Independent 
Variables / 
Classifier 

𝑺𝑰𝒏𝒊𝒕𝒊𝒂𝒍 returned
using Mean 
Convergence 
Technique 

𝑺𝑰𝒏𝒊𝒕𝒊𝒂𝒍 returned
using Information 
measure

𝑺𝑶𝒑𝒕𝒊𝒎𝒂𝒍 returned
using Progressive 
Sampling

Credit Card Fraud 
Detection / 29 / 
Logistic Regression 

11% (5 secs) 11% (87 secs) 11% 

Rain In Australia / 
22 /Logistic 
Regression 

21% (2 secs) 13% (15 secs) 33% 

Diabetes – USA 130 
Hospitals / 44 / 
Logistic Regression  

26% (4 secs) 33% (24 secs) 19% 

Poker Hand / 10 / 
C50 28% (13 secs) 25% (53 secs) 30% 

Covertype / 54 / 
C50 16% (22 secs) 23% (142 secs) 16% 

Census – Income / 
41 / C50 19% ( 9 secs) 26% (82) 22% 

Dota2 Games Re-
sults / 117 / Ran-
dom  
Forests 

11% (4 secs) 26% (16 secs) 12% 
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Abstract.The process control of wastewater treatment plants using data analyt-
ics can improve the process efficiency and economics. Machine-learning mod-
els such as Neural Network models (ANN) were developed for WWTP process 
control. Ensemble models such as bagging and rotation forest have shown to be 
more stable than base classifier alone (like ANN) with lower tendency for over-
fitting. However, these models have not been used widely to predict wastewater 
treatment plant performance. This paper highlights a series of predictive models 
to provide forecasts on global plant performance. The predictive models will be 
a mixture of data mining models including bagging, ANN or SVM. The predic-
tion of global plant performance employs the combination of individual unit 
performance forecasts. Thereby the global model will be providing a feedback 
control model based on current input quality parameters and estimated perfor-
mances. 

Keywords:Ensemble model, Wastewater treatment, Plant performance predic-
tion, Process control. 

1 Introduction 

Water treatment plants are now becoming an integral part of the economy in order to 
meet the growing water demands and develop cities sustainably. The main objectives 
of research on water treatment plants includes boosting the efficiency in a sustainable 
manner and lowering the costs for the plant. A control system based on artificial intel-
ligence will be able to adapting to variable influent quality, thereby lowering of oper-
ating costs for WWTP with consistent effluent standards. The benefits of using AI 
based control system were shown by a study that implemented a fuzzy neural control 
to predict aeration performance in an Aerated Submerged Biofilm Wastewater Treat-
ment Process. The savings on operating costs after implementing the AI controller 
was found to be 33%. The controller was reliable and was easy to integrate into the 
global control system [1] thereby increasing process control efficiency. 

Many AI models have been developed that either predict process variables such as 
dissolved oxygen, COD (chemical oxygen demand), BOD (biological oxygen de-



mand), SS (suspended solids) [2], effluent quality [3–5]. AI based controls have been 
used to run processes such as coagulation [6], dissolved oxygen control [7–9] or nu-
trient control for biological treatment process [10]. However, there have been few 
such models that have predicted performance of the plant [11, 12] or process efficien-
cy [13] and thereby integrated it for overall plant process control. 

The development of artificial intelligence systems for water treatment control has 
been evolving from predicting variables or effluent quality to controlling a process via 
adaptive sensors. Online and real-time analysis of water treatment process conditions 
including biological treatment processes is possible due to instrumentation advances 
and "soft sensors" based on easy-to-measure process/secondary variables. The "soft 
sensors" are mathematical models that offer inexpensive ways to predict variables and 
monitor processes/instruments. The soft sensors can be based on either first principles 
or be data-driven. The most popular modelling methods were multivariate statistical 
methods based on PLS and ANN including FFNN (Feed-Forward Neural Networks) 
and Fuzzy ANN. Some other models used for prediction of the process variables in-
clude SOM (Self Organizing Maps), ANFIS (Adaptive Neuro Fuzzy Inference Sys-
tem) and hybrid models such as PCA-FFN, Fuzzy PLS or NN-PLS. These methods 
were applied on various processes such as ASP (Activated Sludge Process), MBR 
(Membrane Bioreactors) etc., and often were found to predict the output variables 
with good accuracy even at pilot scale plants. The soft sensors also showed good ca-
pacity to monitor WWTPs and enabled process control through early fault detection 
and large process changes/disturbances [2]. 

Implementation of soft sensor control system in real WWTP face some challenges 
including unfamiliarity of engineers with AI models, risk of overfitting, data inter-
pretability and noisy data [2]. Ensemble methods solve these challenges as highlight-
ed in this paper. The work focusses on performance modelling based on influent and 
effluent BOD as municipal wastewater plants aim to decrease effluent BOD levels 
before discharge [2]. The paper also highlights development of a series of prediction 
models built to use predicted data from its predecessors as inputs. The objective of 
these models is to predict performance on local (unit operation) level and use these 
predictions as inputs for global level model in an attempt to automate the process 
control of the entire plant. 

2 Materials and Methods 

2.1 Dataset Pre-processing 

The dataset from UCI Repository [14]contained data attributes obtained via daily 
measurement using sensors for the primary and secondary settlers in the plant during 
the years 1990-91. The dataset had 38 attributes in addition to the date of measure-
ment. For our purpose, an attribute called "number of days in operation" was intro-
duced by converting the dates with the earliest date considered as Day 1 (i.e. 1 Jan 
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1990 as Day 1). This was done to model the performance with respect to time (in 
days) to account for measurements that were missing in the time series. The dataset 
had 527 instances and with elimination of data rows with missing values resulted in 
380 instances (72% of the dataset). The list of attributes includes pH, conductivity, 
Biochemical Oxygen Demand (BOD), suspended solids (SS), sediments, volatile 
suspended solids, local performance of the settlers based on input BOD and the global 
performance of the plant based on the input BOD.  

As the BOD measurements in the dataset were found using sensors, these attributes 
were used for the model development. In actual implementation, these parameters can 
also be predicted/modelled based on other water quality measurements [2].This pre-
dicted BOD data will be used as inputs in the subsequent prediction models. Other 
pre-processing such as sample selection to discard outliers or data reconciliation (fix-
ing errors) [2] was not performed as the dataset had only 380 instances in comparison 
to the large data generated from an actual WWTP. 

2.2 Model Performance Measures 

The performance measures used in the present study were mostly based on minimiz-
ing residuals and are detailed below: 

1. Root Mean Squared Error (RMSE): It is calculated by the following formula:

(1) 

where pi is the predicted value for the ith instance, ai is the actual value for the ith in-
stance and N is the total number of instances in the given dataset. The smaller the 
RMSE, the better the performance of the model[15]. The RMSE tends to have a bias 
towards larger events[16], so other performance measures need to be evaluated for 
model selection. RMSE values less than half the standard deviation of measured data 
can be considered low[17]. 

2. Mean Absolute Error (MAE): This is the average of the absolute values of the dif-
ference between the predicted and actual values. It reduces the bias towards large
events unlike RMSE. The equation for MAE [16] is:

(2) 

where pi is the predicted value for the ith instance, ai is the actual value for the ith in-
stance and N is the total number of instances in the given data set. MAE values less 
than half the standard deviation of measured data can be considered low [17]. 
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3. Relative Absolute Error (RAE): It is the relative equivalent of MAE [15] and is
given by:

(3) 

where pi is the predicted value for the ith instance, ai is the actual value for the ith in-
stance is the mean of the actual values and N is the total number of instances in the 
given data set.  

4. Correlation Coefficient (R): It measures the degree of linear relation between two
variables. A correlation coefficient of 0 implies no correlation between variables
while a value of 1 implies perfect correlation. The correlation coefficient between
actual and predicted variables enables us to get the accuracy of the prediction mod-
el[15]. Hence it is also known as prediction efficiency [17]. This measure is calcu-
lated by [15]:

(4) 

where  and are the averages respectively, and 

5. Nash – Sutcliffe Efficiency (NSE): The NSE is a normalized statistic that gives the
comparison between residual variance and measured data variance. With an opti-
mal value of 1 for model that fits data perfectly, NSE also gives a mathematical
value for the scatterplot for observed vs predicted data line that fits the 1:1 line. For
NSE values ≤ 0, the mean observed value will be a better predictor that the given
model predictions. The formula to compute NSE[17] is:

(5) 
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whereN is the total number of observations;  is the ith observation, is the 

ithpredicted value and is the mean of observed data for the attribute being 
forecasted. 

6. RSR:The RMSE – Standard Deviation Ratio or RSR, is a model evaluation statistic
to standardize RMSE using observations’ standard deviation. An optimal value of
0 indicates a perfect model. The RSR is calculated by[17]:

(6) 

3 Results and Discussion 

The data mining models were developed using the open source software Waikato 
Environment for Knowledge Analysis (Weka) [18]. Here, 10-fold cross validation 
was used for model development. Acceptable results were obtained without parameter 
tuning and default model parameters defined in Weka were used. The only parameter 
changed was for kernel type in SVM. The kernel was changed from polykernel (de-
fault) to normalized polykernel as it was found to enhance performance in all models 
except for global model performance. Individual prediction models were built from 
these data mining algorithms to predict the primary and secondary settler performance 
and the global plant performance. The details on the attributes used for input and out-
put are given in the appendixes. The results obtained for the above mentioned models 
are discussed below. 

In continuation of our previous work, dimensionality reduction was attempted to 
reduce the number of attributes used as inputs and simplify the model development. 
The variable selection is crucial as it affects the model output. Most commonly used 
techniques include filtering, wrapping and embedded methods. Filters and wrappers 
select variables by evaluating and ranking them on their significance. Due to com-
plexity of criteria search schemes employed for feature selection when there are large 
number of inputs, feature extraction is used to reduce the dimensionality by producing 
small combinations of original variables. These methods include Principal Compo-
nent Analysis (PCA) and Partial Least Squares (PLS). Further information on applica-
tion of such techniques can be found in the reference [2].  

Feature selection was applied using in-built Weka algorithms including "Wrapper-
SubsetEval" (selection based on cross-validation) and "CfsSubsetEval" (selection 
based on low intercorrelation and high correlation with output). However, the models 
built after feature selection had low R2 (<0.5) and high values for other error statistics 
as compared to models without feature selection. Dimensionality reduction using 
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feature extraction, in particular Principal Component Analysis (PCA), was also tested 
to improve model performance. In contrast, models with PCA extracted attributes had 
lower performance compared to the models without PCA extracted attributes possibly 
due to loss of correlated data after feature selection. Therefore, for the model devel-
opment, the input attributes were manually selected based on their correlation with the 
output attribute and limited to local variables for the specific unit operation. The re-
sults for the models developed for individual units are discussed below. 

3.1 Model Selection for Primary Settler Performance Forecast 

The primary settler performance based on BOD (attribute # 30) was modelled using 8 
local attributes as follows: 

1. Input pH (attribute #10)
2. Input BOD (attribute #11)
3. Input SS (attribute #12)
4. Input VSS (attribute #13)
5. Input sediments (attribute #14)
6. Input conductivity (attribute #15)
7. Input BOD to secondary settler (attribute #17) equal to output BOD from primary

settler
8. Number of days in operation

It was observed that by including the input flow to the plant (attribute # 1), the
model performance improves slightly (RMSE reduces by 0.3) but not significantly. 
Therefore, by including flow as an input attribute, we can have a good process control 
without affecting model performance. Similarly, excluding the suspended solids and 
sediments attributes only improves model performance for ANN but has no signifi-
cant effect for other models. Overall, bagging with ANN as base learner gives the best 
prediction performance as shown in Table 1. The ensemble bagging improved the 
ANN model by reducing error by 50% as depicted in Figure 1. 

A simple model built with linear regression had R2 = 0.94 with RMSE = 4.92 and 
RAE =29.4%. The linear regression in WEKA, by default, uses Akaike criterion for 
attribute selection (M5 and Greedy method) and eliminates collinear attributes.  The 
models obtained using both attribute selection methods were same and the equation 
from the linear regression was derived by equation (7): 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑎𝑎𝑎𝑎𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎𝑃𝑃𝑃𝑃𝑎𝑎𝑎𝑎(#30)=1.97∗𝐼𝐼𝑃𝑃𝐼𝐼𝐼𝐼𝑎𝑎𝐼𝐼𝐼𝐼(#10)+0.24∗𝐼𝐼𝑃𝑃𝐼𝐼𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝐼𝐼(#11
)+0.004∗𝐼𝐼𝑃𝑃𝐼𝐼𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎(#12)−0.446∗𝐼𝐼𝑃𝑃𝐼𝐼𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝐼𝐼(#17)+25.98 (7) 

In comparison to the other models, this model did not have acceptable error and bag-
ging did not improve the model performance. 
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Fig. 1.Scatterplot for predicted vs observed primary settler performance based on BOD for 
models – ANN (left)and Bagging with ANN (right) 

Table 1.Model Comparison for Prediction of Primary Settler Performance based on Input BOD 
(attribute # 30) 

Model R MAE RMSE RSR NSE RAE(%) 
ANN 0.99 1.52 2.14 0.14 0.98 12.72 
SVM (normalized polykernel) 0.98 1.89 2.87 0.19 0.96 15.74 
SVM (polykernel) 0.94 3.31 5.11 0.34 0.88 27.64 
Bagging with ANN (10 iterations) 0.99 0.45 0.87 0.06 0.99 3.76 
Bagging with SVM (10 iterations) 0.98 1.90 2.90 0.19 0.96 15.88 
Additive Regression (ANN) 0.99 0.90 1.40 0.09 0.99 7.51 
Additive Regression (SVM) 0.99 1.56 2.45 0.16 0.97 12.89 

3.2 Model Selection for Secondary Settler Performance Forecast 

The secondary settler performance based on BOD (attribute # 33) was modelled using 
8 local attributes as follows: 

1. Input pH (attribute #16)
2. Input BOD (attribute #17)
3. Input SS (attribute #19)
4. Input VSS (attribute #20)
5. Input sediments (attribute #21)
6. Input conductivity (attribute #22)
7. Output BOD (attribute #24)
8. Number of days in operation
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It was observed that by including the input flow to the plant (attribute # 1), the 
model performance decreases slightly (RMSE increases by 0.01) but not significantly. 
Similarly, excluding the suspended solids and sediments attributes reduces model 
performance (increases the error by 3%). By incorporating these parameters, process 
control of secondary settler as well as previous unit operations can also be enhanced. 
Overall, bagging with ANN as base learner gives stable prediction performance as 
shown in Table 2 and Figure 2 as it improves the ANN model by reducing error by 
50%. 

A simple model built with linear regression had R2 = 0.92 with RMSE = 2.9 and 
RAE =32.8%. Using the default parameter setting, the models obtained was by equa-
tion (8): 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑎𝑎𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑎𝑎𝑎𝑎𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎𝑃𝑃𝑃𝑃𝑎𝑎𝑎𝑎𝐼𝐼 
(#33)=0.13∗𝐼𝐼𝑃𝑃𝐼𝐼𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝐼𝐼(#17)−0.81∗𝐼𝐼𝑃𝑃𝐼𝐼𝐼𝐼𝑎𝑎𝑎𝑎𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑎𝑎𝐼𝐼(#21)−0.7∗𝑎𝑎𝐼𝐼𝑎𝑎𝐼𝐼𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝐼𝐼(#24)+8
0.04 (8) 

Similar to the linear regression model for primary settler, this model also did not have 
acceptable error and bagging did not improve the model performance. 

Fig. 2.Scatterplot for predicted vs observed secondary settler performance based on BOD for 
models - ANN (left) and Bagging with ANN (right) 

Table 2.Model Comparison for Prediction of Secondary Settler Performance based on Input 
BOD (attribute # 33) 

Model R MAE RMSE RSR NSE RAE(%) 
ANN 0.99 0.58 0.98 0.14 0.98 12.81 
SVM (normalized polykernel) 0.93 0.76 2.79 0.40 0.84 16.74 
SVM (polykernel) 0.92 1.24 2.84 0.41 0.83 27.23 
Bagging with ANN (10 iterations) 0.99 0.28 0.66 0.10 0.99 6.16 
Bagging with SVM (10 iterations) 0.93 0.73 2.84 0.41 0.83 15.99 
Additive Regression (ANN) 0.99 0.48 0.87 0.13 0.98 10.42 
Additive Regression (SVM) 0.95 0.66 2.40 0.35 0.88 14.52 
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3.3 Model Selection for Global Plant Performance Forecast 

The global performance based on BOD (attribute # 35) was modelled using 3 global 
attributes and 2 local performance attributes as follows: 

1. Input flow to plant (attribute #1)
2. Input BOD to the plant (attribute #4)
3. Output BOD (attribute #24)
4. Performance of Primary Settler based on input BOD (attribute #30)
5. Performance of Secondary Settler based on input BOD (attribute #33)
6. Number of days in operation

Models were first built using all available global plant attributes including input
conductivity, pH, SS, VSS, BOD, and sediments to the plant. However, as most of 
these variables are dependent on settler's variables as well, these global attributes 
were replaced by the local performance attributes (attributes #30 and 33). The models 
built using local performance attributes had the same or better level of performance 
than the models built on global plant attributes. 

It was observed that by excluding the input flow to the plant (attribute # 1), the 
model performance decreases slightly but not significantly. However, excluding the 
suspended solids and sediments attributes reduces model performance significantly 
(increases the error to 56%). Besides, bagging with ANN that gave the best prediction 
results, additive regression (AR) with ANN also gave similar results. It was also ob-
served that for global performance data, the polynomial kernel for SVM outperformed 
normalized kernel as shown in Table 3. 

Table 3.Model Comparison for Global Performance Prediction based on Input BOD (attribute# 
35) 

Model R MAE RMSE RSR NSE RAE(%) 
ANN 0.99 0.48 0.89 0.16 0.97 14.81 
SVM (normalized polykernel) 0.80 0.69 3.37 0.62 0.62 21.25 
SVM (polykernel) 0.96 0.86 1.61 0.30 0.91 26.74 
Bagging with ANN (10 iterations) 0.99 0.28 0.86 0.16 0.97 8.70 
Bagging with SVM (10 iterations) 0.79 0.62 3.43 0.63 0.60 19.34 
Additive Regression (ANN) 0.99 0.35 0.74 0.14 0.98 10.79 
Additive Regression (SVM) 0.96 0.85 1.64 0.61 0.63 26.47 

The linear regression model for global performance prediction had a R2 value of 
0.96 with MAE =0.96 and RAE = 29.7% which was comparable to the SVM model 
performance as given in Table 3. 
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In order to build a series of prediction models for process control automation, the 
local performance attributes (attributes #30 and 33) from original dataset were re-
placed with predictions from models built for primary and secondary settlers. The 
predictions were chosen from the top 3 performing models namely Bagging with 
ANN, Additive Regression with ANN and ANN. The results indicated that there is no 
significant change between the models built using original data or predicted data as 
observed from Tables 3 -4 and figure 3. This confirms that by replacing certain attrib-
utes with accurate forecasts based on easily measured inputs, the automation of pro-
cess control system for a wastewater treatment plant is possible.  

Fig. 3.Scatterplot for predicted vs observed global performance based on BOD for models - 
Bagging with ANN using original data set (left) and Bagging with ANN using predicted local 
performance inputs (attributes #30 and 33) (right) 

A mix of model predictions used as input data for local performance attributes was 
also tested. For example, for attribute # 30 – predictions from bagging with ANN was 
taken and for attribute #33 – predictions from Additive Regression with ANN was 
taken. The model performance based on the mixed model prediction data was similar 
to the ones found in Table 4 with no significant difference in their error statistics as 
well. 

Table 4.Model Comparison for Global Performance Prediction based on Input BOD (attribute# 
35) using Predicted Local Performance Attributes as inputs

Prediction Model for 
attributes 30& 33 

Model for global performance R MAE RMSE RSR NSE RAE(%) 

ANN ANN 0.99 0.47 0.84 0.15 0.98 14.66 
SVM (polykernel) 0.96 0.87 1.67 0.31 0.91 26.91 
Bagging with ANN (10 iterations) 0.99 0.27 0.72 0.13 0.98 8.34 
Bagging with SVM (10 iterations) 0.96 0.86 1.67 0.31 0.91 26.74 
Additive Regression (ANN) 0.99 0.38 0.74 0.14 0.98 11.79 
Additive Regression (SVM) 0.96 0.86 1.68 0.31 0.90 26.54 

Bagging with ANN ANN 0.99 0.48 0.87 0.16 0.97 14.73 

299



Prediction Model for 
attributes 30& 33 

Model for global performance R MAE RMSE RSR NSE RAE(%) 

SVM (polykernel) 0.96 0.86 1.65 0.30 0.91 26.71 
Bagging with ANN (10 iterations) 0.99 0.28 0.81 0.15 0.98 8.65 
Bagging with SVM (10 iterations) 0.96 0.86 1.65 0.30 0.91 26.65 
Additive Regression (ANN) 0.99 0.38 0.74 0.13 0.98 11.92 
Additive Regression (SVM) 0.96 0.85 1.66 0.31 0.91 26.43 

Additive Regression 
with ANN 

ANN 0.99 0.46 0.84 0.15 0.98 14.36 
SVM (polykernel) 0.96 0.86 1.65 0.30 0.91 26.62 
Bagging with ANN (10 iterations) 0.99 0.27 0.74 0.14 0.98 8.41 
Bagging with SVM (10 iterations) 0.96 0.86 1.66 0.30 0.91 26.70 
Additive Regression (ANN) 0.99 0.37 0.73 0.13 0.98 11.39 
Additive Regression (SVM) 0.96 0.85 1.68 0.31 0.91 26.42 

4 Conclusion 

In this paper, attempts were made to build a series of prediction models to enable total 
automation of a wastewater treatment plant. From various models tested, it was ob-
served that ensembles always gave a higher performance compared to the base learn-
ers (ANN and SVM) tested. The series of prediction models built using ensembles 
highlighted that predicted attributes can be used as model inputs to subsequent models 
with minimal loss of accuracy or efficiency. This study paves the way for incorporat-
ing prediction models for water quality parameters that require complex measurement 
techniques and devices as inputs in the overall process control system. In this way, 
implementation of automated WWTP is possible, thereby improving efficiency and 
reducing costs. 
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Abstract. Metallic systems are used in the construction of transporta-
tion, electrical, medical, agricultural and other industrial equipment. Al-
loys are metallic systems created by combining metals with other metals
or elements. Combination of metals reduces the cost of the material with-
out the loss of important properties. Alloys usually consist of a primary
metal called the base or solvent with secondary constituents or solutes.
The arrangement of atoms of different types within the material plays a
key role in defining the physical and electrical properties of the material.
In-depth study of microstructures in materials is crucial for understand-
ing the properties exhibited by them and engineering new materials with
desirable properties. Atom Probe Tomography is a technique used to an-
alyze material samples by creating three-dimensional reconstructions of
atoms in the sample. Material samples consist of millions or billions of
atoms, therefore compositional analysis at the atomic scale is not trivial.
A novel algorithm, Uniform Partitioning Algorithm (UPA) for sampling
atoms to study the atomic distribution in a material is presented in this
paper. The algorithm is shown to be more efficient in capturing spatial
correlations and neighborhood properties between atoms in the material
than the existing voxelization and spherical binning techniques. These
comparisons are performed on synthetic datasets with known distribu-
tions for validation. In order to create datasets with heterogeneous distri-
butions, two new approaches that simulate clustering tendencies between
atoms of same type are also presented.

Keywords: Binning Algorithms · Frequency Distributions · Composi-
tional Analysis · Big Data

1 Introduction

Metallic systems or alloys can be defined as materials created by combining met-
als with other metals or elements. These materials have many applications in
everyday life. For example, steel is used for construction of roads, railways, build-
ings; Aluminum based alloys are used for manufacturing automobiles, utensils;
and Titanium based alloys are a major component in medical equipment. The
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datasets. The performance of UPA and other binning algorithms with respect
to bin size and distributions is evaluated in the Experiments and Results sec-
tion. We summarize the results and discuss future applications in the Conclusion
section.

2 Background and Related Work

Counting statistics are an efficient means to assess the distribution of elements in
an inter-metallic system. Frequency distribution analyses are performed on the
given crystal structure to study important attributes like density, concentration,
and clustering or anti-clustering tendencies. These compositional analyses are
usually performed by partitioning the 3D data into bins, such that the size of
each bin is constant. The size constraint is usually defined in two ways:

1. Volume: The geometrical space occupied by each bin is almost equal. The
atomic density of a single element in each bin is calculated as the ratio of
the number of atoms of that type in a bin, and the volume of the bin.

2. Count: The number of atoms in each bin is constant. The concentration of
an element in the bin is defined as the ratio of the number of atoms of that
type in a bin and the total number of atoms in the bin.

Voxelization is the simplest and most commonly used method to create these
bins [5][6][1]. The data is divided into discrete cubic or cuboid blocks. These
blocks act as the bins for the compositional analyses. These grid based counting
techniques are often preferred because of their ease of application even on large
datasets. Analyses of neighborhood of each atom in the material however, result
in more detailed frequency distribution statistics. Stephenson et al present the
construction of spherical bins around each atom for the compositional analy-
sis in [7]. Each bin represents the k-Nearest Neighborhood (kNN) of an atom.
These methods, while more accurate are computationally infeasible and not scal-
able for larger datasets. About 20-25% of total atoms are not detected by the
Atom Probe used for this study because of the evaporation process. Furthermore,
the reconstructed atomic positions do not align perfectly with the lattice sites
defined by the crystal structure due to energy related atomic movements and
re-constructional artifacts[5]. Therefore, even if the crystal structure of the ma-
terial is cubic, the atomic positions in the resulting dataset may not form cubes.
This makes overlaying a 3-dimensional grid on the atomic dataset obtained from
Atom Probe Tomography challenging without performing additional operations
on the data[4]. Furthermore, voxelization restricts the sample size and the shape
of bins due to the inherent forced gridding. The proposed binning algorithm
employs a distance based partitioning technique that is not restricted by any
shape. Hence, it is better at detecting spatial correlations in the data.

Binomial distributions are directly compared with the experimental frequency
distribution to study the deviation from a random distribution. This deviation
is usually quantified by applying the χ2 measure [5] [6]. The comparison with
the binomial distribution is based on the assumption that the solution contains
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a single phase with the solute atoms mixed randomly with the solvent atoms
throughout the solution with an average concentration value. However, regions
with randomly mixed solute atoms, but with varying mean concentrations, can
coexist in the solution. The Square Wave Model [9] is used to approximate the
frequency distributions of such alloy solutions. The frequency distribution of the
solute atom in this model is defined as the sum of two displaced binomial distri-
bution for a dataset with two coexisting phases.
The size of the bin in terms of volume or count plays a critical role in character-
izing the arrangement of atoms. Slight deviations from randomness may remain
undetected if the bin size is too large due to positional errors[5]. Smaller bin sizes,
on the other hand, can lead to statistical errors [11]. Most of the bins in such
a scenario may be irrelevant if the solute concentrations are extremely low in
the alloy system. We present a sensitivity analysis for the Uniform Partitioning
Algorithm, and the two existing binning algorithms with respect to varying bin
sizes and distributions. This analysis is used to determine the lowest resolution
(largest bin size) at which the algorithms successfully detect heterogeneities in
the dataset.

3 Methodology

3.1 Uniform Partitioning Algorithm (UPA)

The Uniform Partitioning Algorithm (UPA) can be used to divide a region into
k contiguous sub regions such that all sub-regions have approximately equal
weights. This weight can be any attribute of the data. It was originally developed
to partition two-dimensional spatial data to solve challenging resource allocation
problems[10]. This algorithm can be applied in a three dimensional context to
partition the atomic dataset into k parts, such that each part has an equal
number of atoms. These parts can then be used as the bins. UPA is a recursive
algorithm that divides the input lattice of size N into two parts such that each
part contains Nk

2 and N(k
2 +(k mod 2)) atoms respectively, where k is the desired

number of bins for that lattice segment. The algorithm is called recursively on
the two parts with updated k and N values until k is equal to 1. The atoms
in the input lattice are assigned to one of the two parts represented by the two
farthest points in the input lattice at each stage. The farthest two points in
the lattice are identified by calculating the bounding cuboid of the structure.
The material structure can be of any shape. An atom may not necessarily exist
at the eight corners of the bounding cuboid. The locations of these 8 corners
are updated to the locations of their closest atoms. The four body diagonals
corresponding to these 8 corners represent the longest distances in the lattice.
The atoms connecting the longest of these four body diagonals are the two
farthest points in the lattice. Figure 1a shows these atoms (encircled in red) for
an example lattice. The function farthestAtomsInTheLattice(L) in Algorithm
1 (Line 7) returns these two points. The input lattice is now partitioned by
assigning atoms to the two parts based on distance in a round robin fashion
(Lines 15-21 in Algorithm 1), such that one part has N k

2 atoms while the other
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Algorithm 1: Uniform Partitioning Binning Algorithm

1 UPA()
Input : Input Lattice : L = {A1, A2 . . . AN}, Number of parts: k, Part List: P
/* P is an empty list initially */

Output: P = {P1, P2 . . . Pk}
2 if k == 1 then

/* Termination Condition for the recursion */

3 P.append(L) return

4 N = size(L)
5 k1 = k/2
6 k2 = (k/2 + k%2)
7 [point1, point2] = farthestAtomsInTheLattice(L)
8 L1 = [], L2 = []
9 LP1 = sortByDistanceFromPoint(point1, L)

/* sort atoms in the input lattice by their distance from point1 in

increasing order */

10 LP2 = sortByDistanceFromPoint(point2, L)
11 i = 0, j = 0
12 while i < N(k1/k) do
13 atom1 = LP1.pop()
14 atom2 = LP2.pop()
15 while atom1 not in L2 do
16 atom1 = LP1.pop()

17 L1.append(atom1)
18 i = i + 1
19 while atom2 not in L1 do
20 atom2 = LP2.pop()

21 L2.append(atom2)
22 j = j + 1

23 while j < N(k2/k) do
24 atom2 = LP2.pop()
25 while atom2 not in L1 do
26 atom2 = LP2.pop()

27 L2.append(atom2)
28 j = j + 1

29 return UPA(L1, k1, P )
30 return UPA(L2, k2, P )
31
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part has N(k
2 + (k mod 2)) atoms as illustrated in Figure 1b. The function is

executed recursively on these two resulting lattices with k = k
2 and k = k

2 + (k
mod 2) respectively (Lines 29-30 in Algorithm 1). This can be seen in Figure 1c,
the process is repeated for one of the two lattices obtained in part b). The result
of partitioning the initial dataset into four bins is demonstrated in part d.

The time complexity of the algorithm can be computed as the sum of the
complexity of three steps in the function.
Assuming k = 2m for some m ∈ I+, size of the lattice in iteration i is N/(2i)
and lattice of size N/(2i) is processed 2i times.
Farthest Points Calculation is linear for the size of the input lattice, S1 =
Σm

i=02i(N/2i), Sorting by distance from the two points is O(nlogn) for an n sized
lattice, S2 = 2(Σm

i=02i(N/2i)log(N/2i), and assignment to corresponding lattice
is again linear, S3 = Σm

i=02i(N/2i). Therefore, S = S1 + S2 + S3 = O(NlogN)
for k << N , and S = S1 + S2 + S3 = O(Nlog2N) for k ≈ N .

Fig. 1. UPA Binning Example: The red circles represent the farthest atoms in the
input lattice.

3.2 Data Generation and Collection

The Uniform Partitioning Algorithm is evaluated based on its ability to detect
significant variations in the distribution of solutes in the lattice. These results can
be validated using datasets with known concentrations and distributions. Hence,
performance of each binning algorithm was analyzed using synthetic datasets.
Additionally, data collection using an Atom Probe is an expensive and time
consuming process, thus it is not feasible for testing algorithms. Furthermore,
the APT data is both incomplete due to low detector efficiency and noisy due to
artifacts introduced by the reconstruction and detection process. The creation of
synthetic datasets that simulate alloy systems involves two steps, lattice creation
and atom distribution.

Lattice Creation: The first step of creating a synthetic dataset is to simulate
a lattice. Metallic systems usually occur as cubic crystal structures. There are
three types of cubic lattices, Simple Cubic (SC), Body Centered Cubic(BCC)
and Face Centered Cubic(FCC). Figure 2 shows the unit cells for a simple cubic
lattice, a BCC lattice and an FCC lattice. For this research, Face Centered
Cubic lattices was created by repeating the corresponding unit cell in the x, y,
z direction.
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Fig. 2. Unit Cells: Simple Cubic, Body Centered Cubic and Face Centered Cubic[14]

Fig. 3. Homogeneous Distributions : a) Random/Uniform Distribution b) Multi-Phase
Distribution with 2 phases.

Distribution of atoms: Once the positions of the lattice sites are known,
different atoms in the synthetic material need to be assigned to these lattice
positions. These atoms are assigned in proportion to the average concentration
for each element. We assume the alloy has two different elements A and B with
concentrations cA = 0.04 and cB = 0.96 in this study. These values are arbitrarily
chosen as examples, the methodology can be used to simulate and analyze any
composition. Atoms are distributed across the lattice either homogeneously or
heterogeneously. These distributions along with their variants are discussed in
detail below.
Homogeneous Distributions

1. Random/Uniform Distribution: This distribution simulates a binomial dis-
tribution, the probability of an atom of a specific type to be located at
any lattice site is equal to the concentration of that element in the system.
Such datasets can be created by generating random numbers between 0 an
1 for each lattice site, and comparing those with the concentrations. Figure
3a shows an example of a conventional alloy dataset with 256,000 atoms,
cA = 0.04 and cB = 0.96 homogeneously distributed across the lattice.

2. Multi-Phase Distribution: As discussed earlier, the arrangement of solutes
and solvents is dependent on temperature and pressure conditions. Certain
alloy solutions can form multiple phases in the the lattice where each phase
denotes a region with homogeneously distributed solute and solvent atoms
with different concentrations. Figure 3b shows an example of an alloy dataset
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with 256,000 atoms with two phases, half of the lattice (bottom left) has
higher average concentration of the solute atom A, cA = 0.07 and the other
half has lower concentration of the solute cA = 0.01. The mean concentra-
tion of the solute in the material is still cA = 0.04. This dataset was created
by dividing the lattice into two equal parts along the longest body diago-
nal and randomly distributing atoms within these parts with corresponding
concentrations. This process can be used to create more than two phases if
necessary.

Heterogeneous Distributions
The probability that a solute atom, an atom of type A will have at least one
solute atom as its direct neighbor in a homogeneous solution can be calculated as
p(AA) = (1−(1−cA)n), where n is the number of direct neighbors for the crystal
structure. FCC(n) = 12, BCC(n) = 8 and SC(n) = 6. If the concentration of
solute atoms is significantly higher in a region in the lattice, this group of solute
atoms is defined as a cluster, if it also satisfies additional constraints like the
volume and number of atoms. Clustering tendencies can be increased in synthetic
datasets by increasing the probability of solute-solute (AA) neighborhood i.e, if
p(sim) >> p(AA), the dataset will have segregation tendencies. We created
and experimented with four types of heterogeneous distributions with varying
degrees of segregation tendencies.

1. Fixed Clusters: In order to test the ability of the algorithm to detect non
uniformity within the dataset, clusters were placed at known locations in
the dataset. The clusters were created by selecting a cube of side = s/4,
where s is the side of the entire lattice. The concentration of solute atoms
was increased to 0.16 within these cubes. Four such cubes were created at
the corners of the lattice, as can be seen in Figure 4a. The remaining solute
atoms are distributed randomly within the lattice.

2. Cluster Introduction: Instead of creating artificial zones with higher concen-
trations of solute atoms with known locations, the objective is to organically
create clusters. In this distribution, randomly distributed solute atoms were
swapped with the solvent atoms such that the likelihood of solute-solute
neighborhood is much higher than p(AA). For the simulated FCC dataset,
p(AA) ≈ 0.39 and p(sim) = 0.85. For a fixed number of iterations, a solute
atom is randomly selected, and a random number (pc = [0− 1]) is compared
with p(sim). If pc < p(sim), this solute atom is swapped with a solvent atom
that has at least one solute neighbor. The algorithm is loosely based on the
methodology presented in [6]. If pc > p(sim), anti clustering tendencies are
not introduced in our simulation unlike in the one described in [6]. Figure
4b shows an example of the solute distribution in such a dataset. The dis-
tribution obtained after ensuring that solute atoms have solute neighbors,
while deviating from a homogeneous distribution does not result in wider or
denser clusters.

3. Hierarchical Clustering: The mth coordination number of an atom is defined
as the number of nearest neighbors for an atom at the mth level in the lattice.
In a perfect FCC lattice, mth nearest neighbors of an atom are located at
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Fig. 4. Heterogeneous Distributions : a)Fixed Clusters b)Cluster Introduction
c)Hierarchical Clusters d)Incremental Clusters

a distance of a
√
m/2 from the atom, where a is the side of the unit cell

in the lattice. In order to create wider clusters, the likelihood of solute-
solute mth neighborhood was increased to p(sim), starting from m = 1 to
a predefined maximum (maxLevel). Solute-solute neighborhood at the kth

level for a solute atom signifies that the atom has at least one solute atom
within a

√
m/2 for all m = 1 to k. For example, in Figure 5a part i), the

solute atom at site 1 satisfies the second level solute-solute neighborhood
condition, but fails the third level condition. To ensure mth solute-solute
neighborhood for a solute atom that satisfies kth condition for k < m, a
solvent atom that has solute neighbors at least until m levels is selected.
The solvent atom at site 2 in Figure 5a part ii) is an example of such an
atom for m = 3. Finally, the solute atom and its kth solute neighborhood is
swapped with the selected matrix element and its kth solvent neighborhood,
as shown in Figure 5a part iii). Figure 4c shows a dataset with hierarchical
clustering with maxLevel = 4.

4. Incremental Clustering: The cluster introduction simulation ensures that
each solute atom is more likely to have at least one solute atom as a direct
neighbor. This condition can be extended to ensure that each solute atom is
more likely to have at least k solute atoms as direct neighbors to create denser
clusters. k cannot be greater than the first coordination number. This process
is repeated iteratively starting from k = 1 through k = maxNeighbors. In
Figure 5b, the solute atom at site 1 does not have two direct neighbors.
This solute atom along with its one direct solute neighbor are swapped with
the solvent atom and one of its direct solvent neighbors. Figure 4d shows a
dataset with incremental clustering with maxNeighbors = 4.

3.3 Compositional Analysis

If all atoms are homogeneously distributed in an alloy, then the probability
of selecting i solute atoms (type: A) in an nb sized sample is equal to p(i) =(
nb

i

)
((cA)i(1 − cA)nb−i). If the total number of bins or samples is n, then the

number of bins expected to have i solute atoms is equal to e(i) = np(i). The
deviation of any distribution from a homogeneous distribution can be studied
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Fig. 5. a)Hierarchical Clustering Example b)Incremental Clustering Example. The lev-
els are for illustration purposes only and do not reflect the accurate coordination num-
ber.

by using the χ2-statistic for the number of bins with i solute atoms for i = 0
to nb. χ

2 = Σnb
i=0(e(i) − f(i))2/e(i), where f(i) is the observed number of bins

with i solute atoms. The p-value for this comparison can be calculated by us-
ing the obtained χ2 statistic value and nb degrees of freedom. Smaller values
of e(i) tend to bias the χ2 statistic value. Therefore, it is a common practice
to sum up e(j) + e(j + 1) . . . e(nb), if e(j) is considerably small (e(j) < 5), and
adjust the degrees of freedom as j instead of nb. As it is known, the χ2 statistic
increases with increasing sample size or the number of bins (n) for these experi-
ments[6], Pearson’s coefficient, µ is used to normalize the effect of large n where
µ =

√
χ2/(n+ χ2).

For a multi-phase homogeneous distribution, if the dataset contains two phases
with different mean solute concentrations, the distribution is modeled as a sum
of two displaced binomial distributions. In the square wave model, the number
of bins expected to have i solute atoms is given by:

esq(i) = n
(
nb

i

)
(α((c1A)i(1− c1A)nb−i) + (1− α)((c2A)i(1− c2A)nb−i)) where,

c1A is the concentration of A in the first phase and c2A is the concentration of
A in the second phase. Since α is the proportion of the total atoms in the first
phase, 1 − α is the proportion of atoms in the second phase. The values α and
c1A were estimated by using a maximum log likelihood function [12]. Once α
and c1A are estimated, c2A can be calculated using c1A, α and cA. There is a
caveat in comparing the expected distribution of this kind with observed counts.
It is an inherent assumption in the expected distribution that no bin will overlap
between the two phases i solute atoms are either selected from one phase or the
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other. This assumption might be violated by any binning technique, hence, more
sophisticated models may be required to estimate the expected distribution.

4 Experiments and Results

Voxelization, spherical binning and UPA binning were used to detect the het-
erogeneities in the different synthetic datasets. Creating spherical bins for every
atom in the dataset with 256,000 atoms is computationally infeasible, hence
sampling was used to create spherical bins. In spherical binning, an atom can
be assigned to multiple bins resulting in overlapping bins. Further, due to the
sampling, it is not guaranteed that all atoms are assigned to a bin. In voxeliza-
tion and UPA binning, every atom is assigned to a unique bin. For a given bin
size nb, the expected total number of bins is k = bN/nbc, where N is the total
number of atoms, and the value of nb is adjusted accordingly, nb = N/k. The
input lattice is a cube, therefore, in order to create k cubic voxels with equal
atoms, k1/3 must be an integer. The effective bin size in case of voxelization is
therefore equal to a perfect cube integer less than or equal to bN/nbc. To achieve
almost complete coverage for spherical binning, 3k atoms are selected to create
3k bins instead of k bins. Figure 6 shows the spherical bins(a), voxels(b) and
UPA bins(c) for a dataset with 256, 000 atoms; the bin size was set to 1500;
change in color denotes change in bin in the figure. As discussed earlier, both
Pearson’s coefficient and the p-value with respect to the χ2-statistic were used to
quantify the deviation of the observed distribution from the expected binomial
curve. The distribution is said to be heterogeneous if p-value < 0.05 and µ is
close to 1. In case of the phased distribution, the square wave model was used to
estimate the expected distribution. The model was able to estimate the solute
concentrations in the two phases and the proportion of one phase over another
accurately.

4.1 Sensitivity to Bin Size

Figure 7 shows the degree of homogeneity detected by the different binning
algorithms for the two homogeneous datasets described in the previous section.
It can be seen that µ << 1 for the completely random distribution for all types
of binnings, specially for UPA because it provides complete coverage and more
detailed neighborhood information. The increase in µ in spherical binning for the
phase distribution can be explained by increased overlap between the two phases
in the bins. In case of a mid range µ value or a low but not significantly lower
p-value, the bins in question can be further inspected by material scientists.
Figure 8 shows the degree of heterogeneity detected by the different binning

algorithms for the four heterogeneous datasets. Clustering tendencies introduced
by increasing the probability of solute-solute neighborhood are detected by the
binning algorithms only for smaller bin sizes. Increase in µ at lower bin sizes is
indicative of segregation tendencies. The clustering tendencies are much more
obvious for the incremental and hierarchical clustering datasets. The value of
the Pearson’s coefficient, µ is equal to one for all binning techniques for bin size
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Fig. 6. a)Spherical Bins, number of bins = 512 b)Voxels, number of bins = 216 c)UPA:
Farthest Corner, number of bins = 171 d)UPA: Random Corner, number of bins = 171.
Change in color denotes change in bin.

Fig. 7. Pearson’s coefficient vs Bin Size: Homogeneous Distributions

less than 1000. The effective bin size for voxelization is about 1180 even for bin
sizes greater than 1200. Hence, it appears that voxels catch the clusters even
in larger bins for incremental clusters but, this is caused by the effective bin
size being smaller than the expected bin size. The fixed clusters are detected
only if the bin size is smaller than 800. An iterative bin size analysis can aid
materials scientists in discovering the lowest resolution at which heterogeneities
occur, hence in quantifying the degree of clustering.

4.2 Random UPA

The Uniform Partitioning Algorithm can be further enhanced as a sampling
tool to capture the neighborhood relations even more completely by partitioning
along two random atoms instead of the farthest two atoms at every recursive
step. The bins resulting from partitioning using such a scheme are shown in
Figure 6d. This process can be repeated t times to collect kt samples that are
truly shape invariant and include all the atoms. The results obtained from this
binning scheme are shown in Figure 9. It can be seen that this binning technique
is able to detect heterogeneities at the lowest possible resolution (largest bin
size). The results for the phase distribution (µ > 0.5) for most bin sizes are not
representative of the actual distribution due to the overlapping phases in bins,
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Fig. 8. Pearson’s coefficient vs Bin Size: Heterogeneous Distributions

This effect is more pronounced for larger bin sizes. As depicted in Figure 10,
the experimental distribution is close to the expected distribution, except for
the concentrations in between the two peaks as the model does not account for
these bins.

5 Conclusion

The O(NlogN) Uniform Partitioning Algorithm proposed in this study is com-
pletely parallelizable and can detect spatial correlations and heterogeneities in
distributions more efficiently than existing techniques. The distributable nature
of this algorithm makes it a perfect candidate for use with large datasets con-
taining billions of atoms. Additionally, this approach can be used to study the
composition of High Entropy Alloys (HEAs). HEAs are metallic systems devel-
oped using a new technique of mixing metals, where five or more metals are mixed
in almost equal proportions. These materials are characterized by increased ran-
domness in the micro-structure due to no clear solvent/solute elements and are
assumed to have a homogeneous random mixing of atoms. The expected homo-
geneous mixing of the elements is yet to be verified at the nano-scale[13]. The
proposed algorithm can be repeated for each element as a solute for detecting
atomic affinities.
Two novel approaches to simulate clustering tendencies in alloys were also dis-
cussed. These methods can be used to validate other distribution analysis tech-
niques or cluster discovery algorithms. A broader application of the Uniform
Partitioning Algorithm is the ability to physically locate the clusters in the dis-
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Fig. 9. Pearson’s coefficient vs Bin Size: Random UPA

Fig. 10. Expected vs Observed Frequency Distribution for Multi Phase Distribution:
UPA Random (Bin Size = 1500, 10 runs)

tribution. If the compositional analysis detects segregation tendencies, then the
Uniform Partitioning Algorithm can be used to partition a dataset containing
only the solute atoms. Higher density bins (number of solute atoms by volume)
can be studied further to isolate clusters in the dataset.
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Abstract. Nowadays, companies must inevitably analyze the available
data and extract meaningful knowledge. As an essential prerequisite,
Extract-Transform-Load (ETL) requires significant effort, especially for
Big Data. The existing solutions fail to formalize, integrate and evaluate
the ETL process for Big Data in a scalable and cost-effective way. In
this paper, we introduce a cloud-based architecture for data fusion and
aggregation from a variety of sources. We identify three scenarios that
generalize data aggregation during ETL. They are particularly valuable
in the context of machine learning, as they facilitate feature engineering
even in complex cases when the data from an extended time period has
to be processed. In our experiments, we investigate user logs collected
with Kinesis streams on Amazon AWS Hadoop clusters and demonstrate
the scalability of our solution. The considered datasets range from 30
GB to 2.5 TB. The results were deployed in the domains, such as churn
prediction, fraud detection, service outage prediction, and more generally
– decision support and recommendation systems.

Keywords: Data warehouses, Data streams, ETL, Business analytics

1 Introduction

Ubiquitous smart devices, sensors and social media result in sheer data vol-
umes, while consumers became accustomed to personalized services that are
available instantaneously. Delivering targeted information shapes the success of
many companies, health providers and governmental institutions. In the past,
they could decide which data to store by making compromises between available
resources and capabilities to manage the data. In the era of Big Data, companies
experience growing pressure to store and analyze the whole data that is being
collected just to stay competitive in the data-driven marketplace.



Several steps are needed to make the data available in a usable format: iden-
tification of all relationships and business context, data collection and ETL,
which usually is time-consuming in terms of both development and execution.
Once the data is processed and loaded into a data warehouse (DWH), it needs to
be fully ready for reporting, visualization, analytics and decision support. Even
though all building blocks for efficient ETL and Big Data analytics are present
on the market, there is no comprehensive cloud-based architecture offering an
integrated, scalable and cost-effective solution. Most approaches are either for
specific purposes or only provide general definitions [1, 2].

In this article, we propose an architecture that first addresses the integra-
tion of high-velocity data by using scalable streaming technologies and Lambda
functions. Then, it performs ETL using a combination of traditional tools for
processing dimensional data, and Spark – for processing high-volume transac-
tional data. We discuss detailed steps for performing three generic ETL scenarios
covering a variety of real applications, ranging from traditional Business Intelli-
gence (BI), to feature engineering in machine learning, such as churn prediction
and fraud detection. In such applications, events like “the time that passed from
the last occurrence of event X”, “the time since the user’s last login”, “last use of
a service”, or “last bought product” could be valuable features.

Most importantly, the whole process is integrated from end-to-end and eval-
uated in a production environment on real high-velocity Big Data, something
that lacks in most related approaches. The three scenarios were evaluated with
different workloads ranging from 30 GB to 2.5 TB using the proposed architec-
ture on Hadoop clusters deployed on Amazon AWS. The evaluation of each step
of the three ETL scenarios showed that the cluster size could be optimized so it
can process the required data volume within the expected time.

2 Related Work

Traditional BI relies on ETL tools for data import into DWH servers [3]. For
reasonably sized data volumes there are ETL tools that have been successfully
used in organizations throughout the years, such as Informatica, IBM Infos-
phere Datastage, Ab Intio, Microsoft SQL Server Integration Services (SSIS),
Oracle Data Integrator, Talend, Pentaho Data Integration Platform (PDI), etc.
Recently, ETL tools started to evolve into Enterprise Application Integration
(EAI) systems that now perform much more functionalities than just ETL. Tra-
ditional ETL and ELT (Extract-Load-Transform) tools are reviewed in [4], with
a focus on description of their terminology and capabilities, but without a dis-
cussion on how to tackle Big Data challenges. Scalable loading of data in NoSQL
tables is one such challenge, which could be addressed by proper row key designs
(i.e., their clustered index), as elaborated in [5].

The authors of [6] propose the BigDimETL approach, which aims to conserve
the multidimensional DWH structure while integrating Big Data. However, the
work is only theoretical, with no experimental evaluation.
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Quite often, a user prefers a “quick and dirty” approximation over a correct
answer that takes much longer to compute. Online aggregation in [7] was pro-
posed to address this issue, as the batch-oriented nature of traditional MapRe-
duce implementations makes these techniques hard to apply.

The idea of in-database analytics is pursued by the MADlib open source
library [8]. It provides an evolving suite of SQL-based algorithms for machine
learning, data mining and statistics that run at scale within a database engine,
with no need for the data import/export to other tools.

GraphLab [9] expresses asynchronous, dynamic, graph-parallel computation
while ensuring data consistency and achieving a high performance degree in
the shared-memory setting, which is not originally supported by MapReduce
and Spark. Our approach also recognizes that data consistency is essential, but
achieves it differently, by relying on consistent dimensional tables. Consistent
DWHs allow using data mining and machine learning libraries directly within
the database system. Alternatively, consistent data in DWH could be used with
more traditional visualization, reporting and BI services.

Another distributed parallel architecture for Big Data ETL is proposed in
[10], but its limitation is that ETL should be completed before the data is ag-
gregated. It is alleviated with our solution by performing aggregation during the
ETL process. An approach that proposes a set of rules to map star schemas
into NoSQL logical models with a pre-computed aggregate lattice is described
in [11]. Similar to our case, the aggregate metrics need to be defined up front
so that ETL can calculate them. The CloudETL system presented in [12] ex-
ploits MapReduce and Hive for distributed data processing, focusing on slowly
changing dimensions. Our approach goes beyond it by using Spark for faster
processing and Lambda functions for handling high-velocity data.

GENUS system [13] deals with data veracity by cleansing and tagging, sim-
ilarly to our idea of standardization by templates. However, a drawback of this
approach is poor evaluation, especially concerning high volume, versatility and
velocity of the data. From the veracity perspective, the authors consider just
one simple example. Moreover, the document store used is XML, without any
scalability considerations. A real-time data ETL framework was presented in
[14] to process historical/incoming data separately. Dynamic mirror replication
technology was proposed to avoid the contention between OLAP queries and
OLTP updates. A kind of drawback is that the evaluation of this methodology
was conducted on a static dataset of only 16 GB.

Reference architecture for Big Data systems and classification implementa-
tion technologies and products/services, which is based on analysis of published
implementation architectures of Big Data use cases, is provided in [15]. It aimed
to facilitate architecture design and selection of technologies or commercial so-
lutions when constructing Big Data systems. Their recommendations are con-
sidered in the design of the proposed system. From the perspective of the afore-
mentioned areas of deployment of the proposed architecture, we also compared
our work with other approaches referring to Big Data analysis in combination
with data mining and machine learning, such as [16].
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3 Architecture

The proposed system is shown in Figure 1. In organizations, commonly there are
traditional data sources, such as relational database systems and structured/semi-
structured data from internal or third-party data providers, that generate rea-
sonably-sized data. This kind of data can be processed with traditional data
integration tools. In our experiments, Pentaho Data Integration Platform (PDI)
was utilized for such ETL tasks, which process the incoming low-volume data
and store it in DWH (marked with light gray arrows in Figure 1).

We chose PDI because it enables users to ingest, blend, cleanse and prepare
diverse data from any source. Its visual tools eliminate coding and complexity
of creating data pipelines. It offers the data agnostic connectivity spanning from
flat files to Hadoop, powerful orchestration and scheduling capabilities (including
notifications and alerts), agile views for data modeling/visualization on the fly
during the data preparation process, support for Hadoop distributions, Spark,
NoSQL data stores and analytic databases, etc.

On the other hand, if there are data producers that generate Big Data with
high volume, velocity or versatility, then the classical approach for ETL is not
suitable. Big Data streams can be efficiently collected and processed by Dis-
tributed Streaming Platforms (DSP), which are scalable, replicated and fault-
tolerant (e.g., Apache Kafka, Amazon Kinesis, etc.).

By defining a retention policy, DSPs can be configured to retain the data on
the queue for a specific time after it was published, regardless if it was consumed
or not. For example, for Amazon Kinesis the maximum data retention period
is one week. DSPs allow the same data stream to be consumed by multiple
consumers independently and simultaneously, each of them working at their own
pace. Accessing the data on a DSP queue can be performed by either push or
pull mechanisms. The pull mechanism is innate for Amazon Kinesis and Apache
Kafka, so each consumer has and manages its read pointer.

Our solution allows consumption of DSP queues by the three most common
types of consumers: Push Lambda functions (stream-based model), as well as
Storage and Analytics Stream Pullers. The first two types are redundant alter-
natives for permanent raw data storage on different Object Storage containers,
such as Amazon S3 or Windows Azure Blob Storage (WABS). Each of them is
reliable with guaranteed Service Level Agreement (SLA). Using both of them
can simplify deployment procedures and further improve the system’s reliability.
If the data format changes drastically or sources vary, consumers can be updated
without any downtime or risk of data loss. Having both alternatives also provides
integration convenience with the existing infrastructure.

Once the data is permanently stored on S3 or WABS in a raw format, we
employ another Lambda function, which triggers after new files are deposited
in a particular location. This function can cleanse the data (e.g., extract plain
text from HTML files) and ingest it to Full-text search indexing services, such
as Elasticsearch or Solr, which would subsequently provide free-text search func-
tionality [17]. To some extent, this results with robustness to data veracity and
complements the analytical capabilities of DWHs.
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Analytics Stream Pullers (e.g., Apache Spark Streaming, Apache Storm or
Apache Flink) are a different kind of consumers that process data streams to
provide near real-time insights and analytics. Our architecture complements this
by employing on-demand Spark clusters for implementing more sophisticated
algorithms for ETL and feature engineering. They can analyze changing trends
over extended time periods (e.g., week-by-week or month-by-month comparisons
of various metrics) or find the time since some particular event happened. Such
metrics are not computable with Analytics Stream Pullers.

To facilitate on-demand starting of Spark clusters, on the machine that hosts
Data Integration Tool (DIT) there is a Cluster Launcher module. It can be in-
voked manually or based on a predefined schedule by DIT. Cluster Launcher can
start an Amazon EMR or Azure HDInsight cluster with configurable size and
can run a particular Spark job. After the Spark cluster is started, it downloads
the source code from a release branch of a code repository and automatically
starts it. Code development and management adhere to the adopted organiza-
tion’s strategy (e.g., GitFlow), which defines rules and best practices for conflict
resolution, peer-review, merging to staging and production branches, etc. Each
Spark cluster during its lifetime executes only a specific ETL job. If the organi-
zation requires multiple ETL processes of unrelated data, then multiple Spark
jobs can be defined and for each of them a separate workflow is managed (i.e.,
separate code repositories, execution schedules, target DWHs).

Next, the so-called Distributed Load Agent (DLA) is executed on all cluster
nodes to process distinct portions of HDFS data generated by Spark. After DLA
work is complete, the data is available in DWH for various BI tools and data
mining or machine learning methods. Traditionally, data ingestion is a massive
burden on database servers and often is a bottleneck. After Extract-Transform
steps are completed and the primary/foreign keys are set, the load needs to be
performed. The idea of DLA comes from the principles of edge computing, and
it is partly inspired by the technology described in [18]. The goal is to offload
most of the work to remote machines away from DWH. These edge nodes would
compress the data and prepare an output, which could be simply copied to the
database end. Thus, the overall impact on the database server would be minimal.
In the proposed architecture, the whole on-demand cluster is considered as being
on the edge from the DWH perspective (see Figure 1).

4 ETL Data-flow Scenarios

Let us describe three ETL data-flow scenarios commonly needed in organizations.
These scenarios relate to the significant data portion to be stored in DWH,
i.e., fact tables. The volume of dimensional data is considerably smaller. Thus,
it usually does not require processing based on Big Data technologies; rather
traditional ETL tools are sufficient. The proposed architecture assumes that
traditional ETL tools already process dimensional data and that one only needs
to handle the data to be stored in fact tables. The steps for implementing the
ETL process of the three scenarios are shown in Figure 2.
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3. Generate unique ids for each record 
(MaxId + ZipWithUniqueId)

4. Transform and clean the data; and
set primary and foreign keys to the dimensions

(MapPartitions)

6. Group data by grouping key, such as userId
(GroupByKey)

7. Calculate sessions, aggregate data per
session, determine incomplete sessions

(MapPartitions)

5. Transform and clean the data; and
set foreign keys to the dimensions

(MapPartitions)

8. Extract sessions (FlatMap),
generate primary keys (MaxId+ZipWithUniqueId),

update them (MapPartitions + Persist)

3. Read all incomplete data from S3

4. Merge of all new and incomplete data (Union)

9. Save sessions to HDFS

10. Extract unaggregated records (FlatMap),
generate primary keys (MaxId+ZipWithUniqueId),

update them (MapPartitions)

11. Save unaggregated records of complete
sessions to HDFS

13. Save unaggregated records of incomplete
sessions in raw format to S3 for future use

12. Extract unaggregated records of incomplete
sessions (FlatMap)

6. Aggregate data per grouping key
(MapPartitions)

7. Extract aggregated records (FlatMap),
generate primary keys(MaxId+ZipWithUniqueId),

update them (MapPartitions + Persist)

5. Group data by grouping key, such as userid
and hour of day (GroupByKey)

9. Extract unaggregated records (FlatMap)

8. Save aggregated data to HDFS

10. Save unaggregated data to HDFS

5. Save output to HDFS

c) ETL3: Session-based aggregation

a) ETL1

b) ETL2

a) ETL1: No aggregation

b) ETL2: Predefined time period aggregation

Fig. 2: Extract/Transform steps in Spark for completing the three ETL scenarios
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Business (i.e., natural) keys denote unique record identifiers that could have
some business meaning, but most importantly, they are managed by operational
data stores (ODS). In DWH, a surrogate key is a necessary generalization of the
ODS business key and is one of the essential elements of DWH design. Every
join between dimension tables and fact tables in a DWH environment is based
on surrogate keys, not business keys. It is up to the data extraction logic to
systematically look up and replace every incoming business key with a DWH
surrogate key each time either a dimension record or a fact record is brought
into DWH. Surrogate keys provide independence from ODS business keys, which
could be subject to deletion, updating or recycling.

Populating foreign keys in fact tables in a traditional way with joins between
the fact and dimension tables would be inefficient for large datasets because it
requires shuffling and redistributing the data across the cluster nodes. On the
other hand, if the dimensions’ business and surrogate keys are distributed across
nodes in advance, populating foreign surrogate keys is a simple dictionary lookup
operation based on business keys with O(1) complexity. This method does not
require reshuffling and adheres to the data locality principle.

Figure 2 shows the data flow for all proposed scenarios. The first two steps
are common, so they are omitted. Each scenario is described in details in the fol-
lowing subsections. After the cluster is started per a defined schedule, Spark first
loads business and surrogate keys of all processed dimensions. Also, the max-
imum values of surrogate keys for each table are calculated in step 1, because
they define the starting values of new surrogate keys to be generated during
a subsequent run of the ETL process. Then, Spark distributes them with the
Broadcast operation to each node. For non-existing business keys, new surro-
gate keys are generated as a sequence of increasing integers, starting from the
current maximum key for the table. Gaps in the generated sequence of numbers
are allowed by design (for computational efficiency). During the surrogate key
generation, their density is calculated (defined as the ratio of the total number
of surrogate keys and the maximum), which shows how efficiently they are used.
If the density is low and the maximum value of surrogate keys increases rapidly,
this may be used to recommend a redesign. Step 2 reads all new data from S3
(using Spark operations TextFiles or WholeTextFiles).

4.1 ETL Scenario 1: No Aggregation

The first scenario requires parsing, data type conversion, setting foreign keys
(Extract-Transform steps) and loading only into the fact tables of DWH. This
scenario is the simplest of the three and does not need any aggregations in the
fact tables. It is required for the whole generated data be available at the lowest
level of granularity (after performing proper cleansing), including associations
with other entities in the system. Some typical use-cases of this workflow refer to
the log analysis in resource management, application troubleshooting, marketing
insights, regulatory compliance, security, etc. What is common about these use-
cases is that the original data needs to be preserved entirely without any level of
aggregation so that particular events can be pinpointed. Hence, it is also worth
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mentioning one more application aspect – regulatory compliance and security.
Indeed, maintaining compliance with industry regulations often requires the data
to be preserved in a source format to tag certain events.

Step 3 generates unique numeric identifiers for each record with the Zip-
WithUniqueId transformation. Even though there can be gaps in the generated
numbers, it does not require data shuffling, making it very efficient. When the
maximum surrogate key value (MaxId) is added to the generated number, a
unique surrogate key of each record is obtained. In step 4 the transform phase
of ETL is performed, consisting of data transformations, data cleaning, type
casting, setting primary surrogate keys (using unique IDs generated in the pre-
vious step) and setting foreign keys to the dimensions (by performing lookups
in the dictionary already distributed to each node in step 1). This step uses the
MapPartitions Spark operation, which guarantees that the transformations will
not cause shuffling, thus adhering to the data locality principle. Step 5 stores
the output of the transformations to HDFS in text format.

4.2 ETL Scenario 2: Predefined Time Period Aggregation

Scenario 2 refers to a predefined time period aggregation. It is present through
aggregating the data for nominal or dynamically quantized column domain (e.g.,
user, campaign, asset) in conjunction with some predefined time period. Associ-
ating the aggregated records with the actual records that comprise them, allows
drilling down. For example, if suddenly a spike in the number of daily signups
happens, the change can be quickly validated by checking logs to see who signed
up and when. Such functionality is not always possible with traditional dash-
boards, as they do not maintain the data source that is used to calculate the
metrics. Another use of aggregated data is for concept drift detection, trend
analysis over extended periods, or feature engineering [19].

The corresponding steps are shown in Figure 2, flow b. Steps 1 to 4 are
like in scenario 1. The GroupByKey operation handles records with the same
grouping key in step 5. Step 6 aggregates records within the same group, thus
producing a new record with one or more aggregate values (e.g., count, sum).
For each such new record, all records that comprise it are also preserved. Step 7
extracts the aggregated records (with the Map or FlatMap operations), generates
primary keys for them with the same method as applied in step 3 and updates
the aggregated records to reflect primary keys. It also sets the foreign key to the
new record in all records that comprise it. Step 8 stores new records (without
the comprising records) on HDFS. Step 9 extracts the comprising records of each
new record with the FlatMap operation in one set of the unaggregated records.
Then these records are stored to HDFS in step 10.

4.3 ETL Scenario 3: Session-based Aggregation

Aggregation on predefined time periods still does not cover all use-cases. For
instance, consider the task of feature engineering. In many applications, e.g.,
churn prediction and fraud detection, meaningful features may be defined as: “the
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time that passed from the last occurrence of event X”, “the time since the user’s
last login”, “last use of a service”, or “last bought product”. Similar attributes
could be utilized in other data mining applications, such as identifying reasons
for service outages or even predicting them. Even though such features are easy to
understand, their calculation requires to look in a variable, practically unlimited
data periods [20]. On the other hand, in typical streaming scenarios, only the
very recent data portions are accessible.

Scenario 3 calculates user sessions, performs aggregation on session level and
loads the data in both aggregated and unaggregated formats. We show ETL for
this scenario in Figure 2, flow c. Incomplete sessions are defined as those that
were still active at the end of the period that is being processed. Records of
incomplete sessions are then stored separately so that they could be taken into
account in the next run. Step 3 reads the data corresponding to incomplete ses-
sions. Step 4 merges two datasets – new and incomplete data. In step 5, the data
is cleansed and transformed, and foreign keys to dimensions are set. In step 6,
the records are grouped by a more coarse grouping key, such as the user id. This
enables implementation of complex business rules in step 7 for determining user
sessions because all recent user records are available sequentially in one logical
and physical location. During step 7, full sessions are determined, along with the
records that comprise them and some aggregations are performed per session.
Step 8 extracts full sessions with the FlatMap operator, generates primary keys
for them and updates the records to reflect the generated keys: aggregated to
have proper primary keys and comprising records to have proper foreign keys to
the corresponding aggregate (session) records. The result of this step is preserved
in memory as it will be needed three times in the following steps. Step 9 stores
full sessions to HDFS. Using the result from step 8, Step 10 combines the unag-
gregated records that comprised completed sessions, and generates and sets their
primary keys. In step 11, these records are stored to HDFS. Step 12 extracts the
unaggregated records of incomplete sessions into one set and then step 13 stores
them in the original format (without any data cleansing and transformations)
in S3 so they can be used in the next run in step 3.

4.4 Data Load Steps for All Scenarios

After the last step described in each scenario, Data Load steps are executed.
First, the data is loaded to DWH, using the proposed distributed data load
algorithm that processes one table at a time in a parallel way. Finally, all meta-
data that was collected during the cluster lifetime (i.e., various metrics such as
duration of each step, the number of processed records per table, etc.) is loaded
into DWH and then the cluster self-terminates.

5 Experimental Results

Let us present the results of evaluation of three ETL scenarios with the pro-
posed architecture. Table 1 shows information about the considered datasets.
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Table 1: Statistics on datasets and generated records in each ETL scenario
ETL scenario

ETL1 ETL2 ETL3 ETL3 (100 days)

Source type CSV JSON JSON JSON
Source columns 31 17 17 17
Destination aggregated columns - 86 86 86
Destination unaggregated columns 86 26 26 26
Source S3 objects 550 410K 410K 36M
Source size (GB) 53 30 30 2603
Source records 137M 44M 46M 3987M
Destination unaggregated records 137M 44M 44M 3985M
Destination unaggregated size (GB) 94 28 28 2427
Destination aggregated records - 2M 1M 108M
Destination aggregated size (GB) - 2 1 70

The data was provided from a service that collects user logs very frequently,
and the processing result was timely and actionable information. All three sce-
narios were used to populate data marts that we designed for a subscription
video-on-demand company that was competing with Netflix in their local mar-
ket. First, decision support systems leveraged the aggregated data for evaluating
investment opportunities and tracking historical performance. ETL scenarios 2/3
were applied for feature engineering to build machine learning systems for: churn
prediction, fraud detection (i.e., account sharing against the terms of use), and
predicting service outages. Finally, we preprocessed the log data to infer implicit
user feedback, in order to build a recommendation system.

The experiments with each of the scenarios were repeated ten times and
all presented times represent the average of the repetitions. All scenarios were
evaluated on clusters with 5, 10, 15, 20, 30, 40 and 60 nodes so that we could
investigate the impact of cluster size on the speedup.

ETL scenario 1 We experimented with the whole data stored in one large text
file, as well as 550 smaller text files (see Table 1, column ETL1). The size of
the source files did not influence the performance of the system, which is under-
standable, considering that S3 is a distributed storage system. The performance
of each step (Spark duration and DLA duration) depending on cluster size is
shown in Figure 3a. Note that Amazon does not bill the booting duration. Simi-
larly, the cost depending on cluster size is shown in Figure 3b. It is evident that
the 15-node cluster was the most cost-effective because its chargeable duration
is just under one hour. It is also notable that when we used more than 30 nodes,
the overall duration did not improve significantly.

ETL scenario 2 Duration of each step and the cost for this case study (Table 1,
column ETL2) depending on cluster size is shown in Figures 4a and 4b, respec-
tively. Obviously, the 5-node and 15-node clusters are the cheapest. However,
the latter completes the job faster for the same cost.
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Fig. 6: Speedup of Extract-Transform steps (Spark) of the three ETL scenarios.

ETL scenario 3 The results of the experiments with the third scenario, which
performs session-based aggregation, are shown in Figures 5a and 5b. As before,
the most cost-effective is the 15-node cluster.

To verify that our architecture is reliable and sustainable, we executed sce-
nario 3 (the most complex one) on a considerably increased workload using the
data collected during 100 days (Table 1, column ETL3 (100 days)). We used a 20-
node cluster with “r3.2xlarge” instances. Considering that the volume of source
data (2.6 TB) exceeds the cluster’s storage capacity (20 × 160 = 3.2 TB total
hard drive space, of which less than 1 TB is available for HDFS), the Spark and
DLA jobs were executed interchangeably one day at a time (i.e., flow c shown in
Figure 2 was executed 100 times on the same cluster). Execution in a one-day-
at-a-time fashion also enabled the results of the ETL to be available even though
the whole process is still in progress. The Spark jobs completed in 174,481 sec-
onds in total, or on average about 1,745 seconds per daily data volume. This is
considerably less than when a cluster of same size processes daily data (2,034
seconds, see Figure 5a). We attribute these savings to the overhead of starting
a Spark job on a new cluster and to the variance in daily data volumes. DLA
completed in 8,514 seconds, an increase which is linearly proportional to the pro-
cessed data volume. Figure 6 shows the obtained speedup of Extract-Transform
steps in Spark when comparing different cluster sizes for the three ETL scenar-
ios, which is based on the results reported in Figures 3a-5a. Obviously, as the
number of nodes increases, the speedup decreases.
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6 Conclusions

We proposed a cloud-based architecture for efficient ETL of Big Data. Spark
performs Extract-Transform phases. Then the results are loaded into a data
warehouse using distributed load agents that utilize the processing resources of
the cluster slaves (edge nodes), instead of the database server. To that end, ETL
employs on-demand Hadoop clusters with a variable size that run for a limited
duration on Amazon AWS. By defining and evaluating three ETL scenarios that
cover a variety of use cases, we demonstrated the scalability of our solution.
Most notable was the non-trivial usage of the proposed scenarios for feature
engineering in the considered data mining applications.

Having such run-time facilities, one can think about automatizing ETL’s
design too. Elemental data analysis (file formats, data types, measure units),
data model recovery, dimensional model identification, are activities that at least
to some extent can be performed by a computer program. Our initial experiments
are promising. We believe that the full ETL effort from the design to a running
data warehouse can be limited to days instead of months.
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Abstract. Quoting out of context can be deceiving, likewise, data mining without 
context can be misleading. Context consideration is important because it provides 
additional information in terms of background, connection and perspectives, as 
profoundly illustrated in the parable of “The Blind Men and the Elephant”, and 
this can be a reminder of the need to explore the context of errors. 
Errors in data mining and classification are inevitable due to various factors such 
as sampling and computation restrictions, measurement and assumption limita-
tions, therefore it may be worthwhile exploring and learning from errors from 
various perspectives and within contexts, rather than simply directing all effort 
and resources with the intention of eliminating them.  
Instead of taking a typical and direct approach to tackle errors head-on by way of 
theory and algorithm enhancement to reduce errors, this paper discuses a retro-
spective way which focuses on the examination of errors from the context of 
value ambiguity between class labels, to explore various aspects of errors and 
value patterns by transforming a confusion matrix from a classification result ta-
ble into a matrix of categorical, incremental and correlational context, to emulate 
a kind of internal context to help identify and understand errors and value patterns 
in a contextual and introspective way for the benefit of knowledge discovery.  

Keywords: Context, value ambiguity, confusion matrix, context construction, 
contextual analysis 

1 Introduction 

1.1 Importance of Contexts and Errors 

One example to demonstrate the importance of context analysis is the detection of the 
fraudulent financial data patterns of Enron in data mining research based on publicly 
available financial data [1]. Enron, an American energy company, declared bankruptcy 
in December 2001 and its share price dived from $90 in August 2000 to $0.12 in Janu-
ary 2002. Its collapse was due to financial fraud committed by the management team, 
which resulted in the loss of thousands of jobs and the demise of Arthur Andersen, one 
of the largest accounting firms in the world at the time [2].  



It is widely accepted that the identification of management fraud can be difficult 
because high-level management authorities can easily overrule internal controls and 
protocols to falsify reports with a high level of sophistication and collusion. However, 
by comparing the reported data from a fraudulent firm like Enron with contextual in-
formation, such as a "centroid” model from an aggregated and balanced data set of 
industry-representative firms, together with finer-grained historical data integration and 
comparison based on quarterly reports in addition to yearly reports, some unusual pat-
terns became more conspicuous in Enron’s data within the context of "centroid” values, 
especially when compared progressively in a quarter-by-quarter way, as shown in Fig-
ure 1.  

Figure 1 - Quarterly cash flow earnings ratio comparison between Enron and its industry model 

This figure shows that Enron’s cash flow earnings ratio increased as the fraud pro-
gressed in its final three years. While showing increases in the first three non-audited 
quarters of each year, each fourth quarter turned sharply negative when it was audited 
as part of the year-end activities and with more special purpose entities to be included 
or manipulated in the annual balance sheet.  

On the other hand, unusual financial data patterns do not necessarily indicate a cer-
tain fraud, as shown in Figure 2. While Enron’s Year 2000 revenue was showing too 
good to be true and it indeed committed management fraud, it would be wrong to spec-
ulate Texaco and Goldman Sachs were also likely associated with management fraud 
simply because they were showing similarly and exceptionally good performance but 
on a smaller scale.  
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Figure 2 - Enron's Year 2000 Reported Revenue vs. Similarly Sized Companies 

Nevertheless, wrong decision and errors are inevitable, so instead of attempting to avoid 
them or get rid of them at all costs, it may be more sensible to look into the errors 
closely in order to understand them better, to analyze errors and value patterns from 
various perspectives, to examine and evaluate errors and value patterns rationally, sys-
tematically and contextually; in essence, and within context, to consider errors as a part 
of the knowledge in order to help develop better preventive and corrective measures. 

1.2 Measuring the Ambiguity of Value Ranges as Contexts of Errors 

An error can be considered as a kind of discrepancy between one’s expectation and 
their observation and perception, and such discrepancy sometimes may be due to am-
biguity. The word ambiguity in this context indicates there may be more than one option 
available and that the number of options and the exact meaning of each option can be 
open for interpretation, which can subsequently cause confusion and lead to misjudg-
ment, misclassification and errors in scientific and data mining terms.  

In an attempt to explore this idea of treating ambiguity as contexts of error in order 
to help understand errors in data mining tasks, one way is to study the ambiguous value 
patterns to examine if ambiguous value patterns may be more error-sensitive and more 
likely to lead to errors. If such ambiguous and error-sensitive value patterns can be 
identified in a systematic and effective way, they may become a form of contexts of 
error which can consequently provide meaningful clues about errors to help improve 
error preventive and corrective measures and knowledge discovery about the data as a 
whole. Some specific terms introduced in an error-sensitive pattern evaluation study 
can be adapted as a part of this context of error exploration when discussing binary 
classification scenarios [3], as illustrated in Figure 3.  

For example, the term ambiguous value range which describes a value range in 
which the attribute values of negative samples in green and positive samples in red co-
exist, colored in blue; the term attribute-error counter describes the number of misclas-
sified samples with their attribute values being within such an ambiguous value range 
of a specific attribute; and the term error-sensitive attribute describes an attribute that 
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is considered to be more prone to errors compared to others during a data mining and 
classification task, and its risk assessment is initially based on counting and ranking the 
attribute-error counter values amongst the involved attributes, and selecting the attrib-
ute with the highest count as the most error-sensitive attribute.  

Figure 3 – Ambiguity due to overlapped value ranges may constitute contexts of errors 

1.3 Transforming Confusion Matrices into Matrices of Contexts 

Based on the idea of contexts of errors by value range ambiguity in data classification, 
its error-sensitive attributes can then be incorporated into a confusion matrix transfor-
mation process as the lead attributes when used in constructing a multi-dimensional 
contextual model, and the application scope of this transformation process can subse-
quently be expanded from weakly supervised learning to contextual analysis for error 
and value pattern analysis [4].  

A confusion matrix is a simple and effective way to summarize classification results 
by tallying the category results in a tabular form, which makes result comparison easy 
between class label categories, especially for the binary classification scenarios used in 
this study (true negatives and true positives), and also for the error categories (false 
negatives and false positives) [5], as shown in Figure 4.  

Confusion matrices can be easily constructed based on categorized classification re-
sults and do not depend on any specific classification algorithm. In fact, standard data 
mining tools, such as WEKA and R, already include a confusion matrix as a built-in 
feature of their classifier packages. 

Because of these advantages, such a cross-category comparison can be viewed as a 
form of context for individual category statistics, in conjunction with other performance 
statistics such as accuracy and sensitivity, to provide some forms of contextual envi-
ronment as a part of the post-classification analysis, to help explore and evaluate po-
tential relationships between value patterns and classification results within their cate-
gorical, incremental and correlational context in a simple, visual and systematic way. 
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Figure 4 - Fawcett's illustration of a confusion matrix and performance metrics calculation 

The rest of this paper is organized as follows. Section 2 reviews some influential work 
that inspired this study. Section 3 outlines the key steps involved in this contextual 
analysis. Section 4 summarizes the experiments and results on selected datasets. Sec-
tion 5 discusses potential problems and issues. Finally, Section 6 concludes this context 
evaluation for errors and value patterns and outlines a plan for future exploration. 

2 Related Work 

The primary focus of ambiguous value pattern analysis in the field of data mining and 
classification has been on algorithm and application development, such as the various 
enhancements to the k-NN algorithm, the SVM algorithm and neural networks. Their 
related theories are mostly based on statistics, such as entropy and information theory 
[6,7], prior and posterior probability [8,9], and uncertainty theories [10,11]. 

On the other hand, research on context in terms of data mining has mainly focused 
on external factors, such as domain context in relation to personal and medical history 
when analyzing diagnostic data, location context in relation to geographical and altitude 
area,  user context in relation to the user and the team conducting the research and their 
profile and query history [12-14]. These external contexts are defined and utilized to 
sense and collate, to integrate and reason about the circumstantial and correlated infor-
mation on who, when, where, what and why in terms of ontology and in relation to the 
datasets in order to select and reach optimized decisions.  

Several studies have investigated the extraction of finer-grained information from 
within the data as a form of internal context to help identify useful value patterns in 
data mining tasks, but the scale and number of these research studies is limited.  One 
recent example is research into management fraud by adding categorical context based 
on creating industry-representative centroid models, and adding temporal context based 
on the quarterly breakdown of financial indicators and data, to improve the detection 
of fraud patterns when examining the publicly available data of large corporations [1,2]. 
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A confusion matrix is a simple and effective way to summarize and compare classi-
fication results and has recently been used in attribute selection model development and 
error detection [15-17], but it is predominately used to highlight the basic numerical 
variation between result categories at their face values rather than to explore further 
into the hierarchical differential in value patterns categorized by each matrix cell, to 
identify and evaluate potentially contextual information represented by such value pat-
terns between categories in an integrated and implicit way.  

There has been criticism of the confusion matrix over its inadequacy in dealing with 
imbalanced class labels and cost sensitive classification issues. For example, in the case 
of medical diagnostic data classification, if errors such as false negatives are fewer than 
false positives, the cost can be far more expensive and the associated risk can be far 
more serious; therefore, more advanced measures for performance results, such as the 
receiver operating characteristic (ROC) curve and F-score should be considered more 
favorably [5,18,19]. While agreeing with the criticism, this study takes a pragmatic ap-
proach to making use of a confusion matrix because of its simplicity and its capability 
of accommodating and visualizing more forms of context in a single place. 

3 Context Exploration for Error and Value Pattern Analysis 

3.1 Post-Classification Analysis and Context Identification 

This study of contextual analysis starts as a part of the post-classification analysis pro-
cess, while the underlying classification platform can be based on any classification 
algorithm, e.g. decision tree, neural network or naive Bayes, as illustrated in Figure 5.  

Figure 5 - Post-classification analysis is utilized to construct matrices of contexts 
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3.2 Evaluate Context of Ambiguity and Error-Sensitive Value Patterns 

Key steps in evaluating error-sensitive attributes include: 

1. Calculate ambiguous value ranges and attribute-error counter values
For each involved attribute

      For each correctly classified sample 
    find negative samples’ min & max value and their mean value; 
    find positive samples’ min & max value and their mean value; 
    compare these values to determine the ambiguous value ranges; 

      For each misclassified sample 
    if the attribute value is within its attribute’s ambiguous value range 

   then increase its attribute’s attribute-error counter by one; 
2. Sort the attribute-error counter values in descending order to highlight the most

ambiguous and error-sensitive attributes in the top-ranking positions

This is a kind of reverse-engineering process to evaluate which attribute and which 
value range is more likely to be associated with errors, and the identified error-sensitive 
attributes can be highlighted and prioritized to be key lead attributes in constructing 
matrices of contexts for error and value pattern analysis as the next step.  

3.3 Transform a Confusion Matrix into a Matrix of Categorical, Incremental 
and Correlational Context 

Key steps in this transformation process include: 

1. Evaluate initial classification result and its confusion matrix
2. Define a list of lead attributes by reviewing/comparing the error-sensitive attrib-

utes and the significant attributes returned by gain ratio and info gain evaluator
3. Select a lead attribute and redistribute its data records with standardized values

into categorized subsets according to their confusion matrix result categories
4. For each categorized subset sorted by the current lead attribute

    Extract the median record from each decile to simulate ten value growth 
stages in a vertical way within its categorized cell as incremental context; 

    Start from the current lead attribute and for its ten growth stages, connect and 
plot lines across other attributes accordingly as correlational context; 

    Evaluate these incremental and correlational contexts in the form of line and 
value patterns between matrix categories as categorical context; 

5. Select the next lead attribute from the rotation list determined in Step 2 and
repeat Steps 3 & 4 to construct more contextual models for further analysis

If significant patterns can be observed between matrix categories for a lead attribute, 
it can be an indication that some specific characteristics of this lead attribute and value 
patterns may have a greater influence or association with the underlying result catego-
ries, and may provide additional clues for domain experts and researchers to conduct 
exploration with new focus and more context to understand the patterns and data better. 

338



4 Experiments and Analysis 

4.1 Utilization of Existing Classification Models and Results 

Experiments are conducted on ten UCI datasets [20], and WEKA’s [21] C4.5/J48 deci-
sion tree is the classification algorithm used in the experiments with a standard config-
uration, but other classifiers can also be used. WEKA’s gain ratio and information gain 
evaluators for attribute ranking are also used for comparison in the experiments.  

In the experiment with the Pima Indians Diabetes dataset which has eight attributes 
and 768 records, the initial classification result and confusion matrix are shown in the 
left-hand column of Table 1. The top-3 ranked error-sensitive attributes by attribute-
error counter, together with the top-3 most significant attributes by gain ratio and in-
formation gain evaluator are shown in a comparison child-table within the right-hand 
column of Table 1. Because the top-3 attributes ranked by these three different methods 
are the same, it can be an indication that the most ambiguous and error-sensitive attrib-
utes may also be the most deterministic and significant attributes in this specific dataset. 

Table 1 - Classification result for Pima diabetes dataset and options for lead attributes 

Correctly Classified 567 at 73.83 % 
Incorrectly Classified 201 at 26.17 % 

== Confusion Matrix == 
   a      b   <-- classified as 
 407   93 |   a = negative 
 108 160 |   b = positive 

Attribute-error 
counter 

Gain ratio Info gain 

plas (83) plas (0.10) plas (0.19) 

mass (70) mass (0.09) mass (0.07) 

age (31) age (0.07) age (0.07) 

4.2 Constructing Contexts for “plas” as the Lead Attribute in the Pima 
Indians Diabetes Dataset  

After normalizing original attribute values to the standardized range of [0, 100], these 
768 data records are redistributed into four data subsets according to their confusion 
matrix result categories - 407 in the true negative subset, 160 in the true positive subset, 
108 in the false positive subset and 93 in the false negative subset. The attribute “plas” 
is selected as the first lead attribute because it is ranked as the most ambiguous and 
error-sensitive attribute in this experiment. Ten key value growth stages based on sorted 
deciles, together with values of other attributes from the same ten related instance rec-
ords, are extracted to prepare for the construction of the incremental and correlational 
context accordingly, as shown in Table 2.  

When positioning the lead attribute in the first column and connecting and plotting 
the values across other attributes from their corresponding records horizontally, the ups 
and downs of the line patterns shown in the graphs can represent how these attributes 
correlate and “work together” with the lead attribute “plas” along its incremental 
growth path. Some interesting plotting patterns can be observed amongst the four ma-
trix categories as shown in Table 3, and they help visualize this multi-contextual model 
from a high-level perspective and specific patterns of interests for further analysis.  
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Table 2 - Establishing categorical and incremental context for “plas” as the lead attribute 

Table 3 - Matrix of incremental, correlational and categorical context for "plas" as the lead attribute 

One distinctive pattern is that the majority of the “plas” values in the true negative 
category are bounded in the middle range between the normalized median value of 37 
and 70, and the sample values are distributed rather evenly between these four deciles. 
As the “plas” value increases, the values of the other attributes vary rather uniformly 
and most are confined within a narrow value range. In contrast, the “plas” values in the 
true positive category start from a higher point of 55 and scatter in a wider value range 
up to 97, and the values of other related attributes, e.g. “mass”, “age” and “pedigree”, 
also fluctuate in a wider value range with higher starting points. For the two error cat-
egories, false positives and false negatives, they share similar bigger value variation 
patterns with the true positive category.  
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So, at a glance, the true negative samples show more uniformity than the true posi-
tive samples and the categories of error samples, a distinctive pattern which is common 
for all ten UCI datasets selected for the experiments, a kind of close reflection of what 
Aristotle stated in his work on Nicomachean Ethics, "it is possible to fail in many ways 
(for evil belongs to the class of the unlimited ... and good to that of the limited), while 
to succeed is possible only in one way".  

While it is true to argue that this visual evaluation is too simplistic and does not 
reveal anything substantial, it does illustrate certain contextual differences between re-
sult categories and demonstrates one systematic way to construct an indicative contex-
tual model as an overview. It may seem to be a naïve way to construct contexts, but it 
can be one way to explore within the data themselves to examine errors and value pat-
terns closely and internally, to link and correlate such internal patterns in a more hier-
archical and contextual way. It is not about challenging the established views, but ra-
ther, it is about encouraging more thoughts by constructing and reviewing patterns from 
different perspectives and in a systematic, complementary and contextual way.  

4.3 Constructing Contexts for Other Lead Attributes in the Pima Diabetes 
Dataset 

When applying this contextual evaluation to other attributes, it may help to create a 
fuller picture of the overall contexts for the involved attributes in a high-level compar-
ative view, and help prepare the groundwork for a later comparison and consolidation 
of their individual context evaluation with additional information and area of focus.  

Table 4 - Matrix of incremental, correlational and categorical context for "mass" as the lead attribute 
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The attribute “mass” is selected as the next lead attribute in this experiment and its 
incremental and correlational context are first prepared in a confusion matrix structure 
similar to that shown in Table 2 but with “mass” in the left-hand starting column. After 
this, lines from the “mass” column are connected and plotted across values of other 
attributes of the relevant sample records at each key growth stage and in each category 
cell to illustrate a contextual model for the attribute “mass", as shown in Table 4. 

One distinctive pattern for “mass” as the lead attribute is that for most true negative 
samples, the values of all attributes are within their lower six deciles and have small 
variation margins along the value growth path of “mass”, and the false negative samples 
have similar patterns except some “plas” and “pres” values are above the sixth decile. 
In contrast, the true positive and false positive samples have many values above the 
sixth decile and have bigger variation margins along the value growth path of “mass”.  

On completion of multi-contextual models for selected lead attributes, such contex-
tual analysis on errors and value patterns can be performed between attributes, to pro-
vide high-level guidance for further attribute cluster and covariance analysis based on 
specified patterns identified from the models. For example, when comparing the con-
textual models between “plas” as the lead attribute in Table 3 and “mass” as the lead 
attribute in Table 4, the context comparison of true negative samples shows that when 
“mass” is the lead, it has the incremental range [29~62] and its associated “plas” attrib-
ute has the value range [42~67]; and when “plas” is the lead, it has the incremental 
range [37~70] and its associated “mass” has the value range [33~59], which is a much 
smaller variation margin compared to the other attributes. This close-coupled pattern 
can be an indication of a close association between “plas” and “mass”, as proved by the 
gain ratio and information gain evaluator shown in Table 1.  

Context construction and evaluation of the other attributes of this Pima diabetes da-
taset also present similar patterns, however these results are not included in this paper 
due to size constraints, but they all indicate that true negative and healthy samples share 
more consistent and predictable value patterns within their incremental and correla-
tional context. Meanwhile, true positives and errors, meaning the unhealthy and error-
prone samples, have more inconsistent and unpredictable value patterns, echoing the 
results from “plas” as the lead attribute.   

This again demonstrates how contextual analysis may become meaningful and use-
ful in connecting and comparing attributes and patterns for a better understanding.  

4.4 Context Construction for Other Datasets 

Other interesting patterns have been observed in experiments with nine other UCI da-
tasets. One such example is the Page Blocks dataset, its attributes showing in different 
raking orders between the attribute-error counter, gain ratio and information gain eval-
uator, as shown in the child table in the right-hand column of Table 5. 

To illustrate a different way to construct a matrix of contexts for comparison, the 
most significant attribute “length” ranked by the gain ratio evaluator has been selected 
as the lead for context construction as demonstration instead of the most ambiguous 
and error-sensitive attribute “mean_tr” ranked by attribute-error, as shown in Table 6.  
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Table 5 - Classification result for the Page Blocks dataset and options for lead attributes 

Correctly Classified 5321 at 97.22% 
Incorrectly Classified 152 at 2.78% 

=== Confusion Matrix === 
    a    b   <-- classified as 

 4844   69 |    a = text 
    83 477 |    b = non_text 

Attribute-error 
counter 

Gain ratio Info gain 

mean_tr (89) length (0.30) height (0.24) 

p_black (43) height (0.15) mean_tr (0.18) 

eccen (29) mean_tr (0.14) wb_trans (0.15) 

Table 6 - Matrix of incremental, correlational and categorical context for "length" as the lead attribute 

One obvious resulted pattern is the contextual difference between the true positive 
samples (text) and the other categories. The true positive samples show close-coupled 
lines between “length” and the other attributes, especially the consistent and narrow 
value range for the “p_black” (percentage of black pixels within the block) and the 
“p_and” (percentage of black pixels after the application of the Run Length Smoothing 
Algorithm) attribute in high deciles, which is a strong hint of black and regular text 
blocks, which in turn, becomes a sign of correlation between the true positive (text) 
category and those long and black regular text blocks.  

On the other hand, the non-text and error samples show widely fluctuating line pat-
terns, especially the large value margin in attributes “p_black” and “p_and”, hinting at 
a large variation in color pigment and text font-size, therefore they are more likely cor-
related with colorful and rich format graphics or Hyper Markup text blocks, and these 
Hyper Markup text blocks can be a source of confusion and misclassification for the 
classifier to determine if a page block is really in the format of text or not, which is 
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another reflection of what Aristotle stated in his work on Nicomachean Ethics about 
the many possible ways to fail and only few ways succeed. 

Such comparison indicates that inviting field experts with domain knowledge to join 
the exploration of contexts can be a more productive way to conduct academic research 
on domain-specific contexts and patterns, and this indication may seem like an echo of 
the participation of experienced financial auditors in the mentioned management fraud 
research [1]. Having the right context and interpretation can be more important than 
making a quick claim, as philosophized in “The Blind Men and the Elephant” parable. 

5 Discussion of Potential Issues 

Simplicity can sometimes mean naivety and liability. Using an overlapped value range 
between class labels of an attribute as its ambiguous value range is an example of over-
simplification even in a binary classification scenario. Context construction by the cou-
pling of incremental sampling by a lead attribute with cross-attribute plotting under the 
confusion matrix structure may sound trivial, and its representation of incremental, cor-
relational and categorical context may look inconsequential.  

On the other hand, the focus of this study is not about breaking and winning in com-
plexity, it is about exploring ways to identify internal contexts from within the data, 
and sorting and connecting data elements to gain more understanding about errors and 
data within context and to start such contextual analysis with simplicity and practicality, 
the inclusion of ROC curve, F-score and other techniques will be considered next. 

A more specific issue concerns the suitability and adequacy of using ten sorted dec-
iles to represent ten value growth stages of a lead attribute. Although this is not a rigid 
method of data sampling and its value growth representation can be over-optimistic, an 
initial value path can still be established by using deciles as a basic form of systematic 
sampling in terms of incremental context in an early stage of a study for an overview. 

Another serious issue is the use of the min-max normalization method. Its applica-
tion and results can be impacted by distorted value conversion and outlier values at both 
min and max ends, and the use of median records from each decile is one attempt to 
reduce such an impact.  

There is no doubt that there is a long list of other problems and issues in relation to 
this study. On the other hand, these problems and issues can also become the contexts 
of further discussion and improvement.  

6  Conclusion 

This context construction process can be considered as an attempt to outline and con-
struct internal context from within the data and its classification result. The ambiguous 
and error-sensitive value patterns can be examined as contexts of error at an attribute 
level, and the matrix of contexts can be analyzed as a multi-dimensional contextual 
model for class labels and errors from various perspectives, starting with an incremen-
tal, correlational and categorical context. 
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  The next development may include the ROC curve and F-score with an enhanced 
data sampling method as a part of the context and with a dynamic selection capability, 
so context construction can be localized into problematic value patterns across multiple 
attributes with more accurate measures for a better understanding of the data and errors. 

References 

1. Whiting, D.G., Hansen, J.V., McDonald, J.B., Albrecht, C. and Albrecht, W.S. Machine
Learning Methods for Detecting Patterns of Management Fraud. Computational Intelligence
28, No. 4, pp.505-527 (2012).

2. Segal, T. Enron Scandal: The Fall of a Wall Street Darling. Retrieved from https://www.in-
vestopedia.com/updates/enron-scandal-summary.

3. Wu, W. and Zhang, S. Evaluation of Error-Sensitive Attributes. Pacific-Asia Conference on
Knowledge Discovery and Data Mining 2013, International Workshops on Trends and Ap-
plications in Knowledge Discovery and Data Mining, pp. 283-294. Springer, Berlin, Heidel-
berg (2013).

4. Wu, W. Weakly Supervised Learning by a Confusion Matrix of Contexts. Paper accepted
for Presentation to Pacific-Asia Conference on Knowledge Discovery and Data Mining
2019, International Workshop on Weakly Supervised Learning: Progress and Future (2019).

5. Fawcett, T. An introduction to ROC analysis. Pattern recognition letters, 27(8), pp.861-874
(2006).

6. Shannon, C.E. A Mathematical Theory of Communication. The Bell System Technical Jour-
nal, vol. 27, pp. 379–423 (1948).

7. Quinlan, J.R. C4.5: Programs for Machine Learning. Morgan Kaufmann (1993).
8. Trappenberg, T.P., Back, A.D. and Amari, S.I. A Performance Measure for Classification

with Ambiguous Data. BSIS Technical Report (1999).
9. Provost, F. and Fawcett, T. Robust Classification for Imprecise Environments. Machine

Learning, 42(3), pp.203-231 (2001).
10. Ligeiro, R. and Mendes, R.V. Detecting and Quantifying Ambiguity: A Neural Network

Approach. Soft Computing, 22(8), pp.2695-2703 (2018).
11. Klibanoff, P., Marinacci, M. and Mukerji, S. A Smooth Model of Decision Making under

Ambiguity. Econometrica, 73(6), pp.1849-1892 (2005).
12. Singh, S., Vajirkar, P. and Lee, Y. Context-Based Data Mining Using Ontologies. In Inter-

national Conference on Conceptual Modeling, pp. 405-418. Springer, Berlin, Heidelberg
(2003).

13. Salim, F.D., Krishnaswamy, S., Loke, S.W. and Rakotonirainy, A. Context-Aware Ubiqui-
tous Data Mining Based Agent Model for Intersection Safety. In International Conference
on Embedded and Ubiquitous Computing, pp. 61-70. Springer, Berlin, Heidelberg. (2005).

14. Xiang, L. Context-Aware Data Mining Methodology for Supply Chain Finance Cooperative
Systems. In 2009 Fifth International Conference on Autonomic and Autonomous Systems,
pp. 301-306. (2009).

15. Kohavi, R., and Provost, F. On Applied Research in Machine Learning. In Editorial for the
Special Issue on Applications of Machine Learning and the Knowledge Discovery Process,
Columbia University, New York, volume 30 (1998).

16. Visa, S., Ramsay, B., Ralescu, A.L. and Van der Knaap, E. Confusion Matrix-based Feature
Selection. In MAICS, pp. 120-127 (2011).

17. Patel, K., Bancroft, N., Drucker, S.M., Fogarty, J., Ko, A.J. and Landay, J. Gestalt: Inte-
grated Support for Implementation and Analysis in Machine Learning. In Proceedings of the

345



23nd annual ACM symposium on User interface software and technology, pp. 37-46. ACM 
(2010). 

18. Provost, F.J., Fawcett, T. and Kohavi, R. The Case Against Accuracy Estimation for Com-
paring Induction Algorithms. In ICML, vol. 98, pp. 445-453 (1998).

19. Sokolova, M., Japkowicz, N. and Szpakowicz, S. Beyond Accuracy, F-score and ROC: A
Family of Discriminant Measures for Performance Evaluation. In Australasian Joint Con-
ference on Artificial Intelligence, pp. 1015-1021. Springer, Berlin, Heidelberg. (2006).

20. Bache, K., Lichman, M. UCI Machine Learning Repository [http://archive.ics.uci.edu/ml].
University of California, School of Information and Computer Science, Irvine, CA (2013).

21. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. The WEKA
Data Mining Software: An Update. SIGKDD Explorations, Volume 11, Issue 1 (2009).

346



346 

Autors Index 

Alam Talukder 303 
Ahn Hyun  58 
Allami Ali  146 
Alobaidi Isam  146 
Alobaidi Isam  176 
Apanowicz Cas  317 
Ashraf Nahian  201 
Bäck Thomas  161 
Banerjee Rohini 229 
Banerjee Rajarshi  303 
Beltran Jorge 242 
Chen Bernard 242 
Chipolla Kristen  242 
Choudhary Meenakshi  1 
Chowdhury  Farhan Ahmed 13 
Chowdhury Farhan Ahmed 201 
Däubener Sina  161 
Deng Deyu  13 
Deng Deyu 118 
Eloe Nathan  176 
ElRafey Amr  278 
 Greco Ciro 216 
Fathima Arshia  290 
Gounaris Anastasios  103 
Gulyani Bharat B.  290 
Gwalani Harsha  303 
Haque Riddho Ridwanul  201 
Hassan Atif  229 
Huang Tongwen  43 
Islam Md. Ashraful  201 
Janssens Olivier  191 
 Jones David 242 
Kim Kwanghoon Pio 58 



347 

Koesmarno Hari  263 
Krause Peter  161 
Lanoye Lieve  191 
Leopold Jennifer  146 
Leopold Jennifer  176 
Leung Carson K.  13 
Leung Carson K. 118 
Leung Carson K.  201 
Liu Xin  28 
Liu Guanjun 88 
Loparo Kenneth  251 
Lucasa Lucas  216 
Ma Jiaxing Jason  201 
Mai Jiaxing Jason  118 
Mazaev Tamir  191 
Mikler Armin R.  303 
Mitra Pabitra  229 
Mitra Pralay  229 
Myachin Alexey  133 
Naskos Athanasios 103 
O Neill II Martin  303 
Park Minjae 58 
Pavoni Mattia  216 
Perner Petra  221 
Pham Dinh-Lam  58 
Polonioli Andrea  216 
Qazanfari Kazem 75 
Rezaei Shahbaz  28 
Rizvee Redwan Ahmed  13 
Rizvee Redwan Ahmed 118 
Schmitt Sebastian  161 
Shahin Md Shahadat Hossain 118 
Slezak Dominik  317 
Souza Joglas  13 
Stencel Krzysztof 317 
Sun Yingcheng  251 



348 

Tagliabue Jacopo 216 
Tunc Mustafa 242 
Umanna  Dewan 13 
Van Gheel Dirk  191 
Van Hoecke Sofie  191 
Venkanna U.  1 
Vivek Tiwari 1 
Wang Hao  161 
Wodi Bryan H.  201 
Wojtusiak Janusz  278 
Wu Han 88 
Wu William  332 
Youssef Abdou 75 
Zdravevski Eftim  317 
Zhang Junlin  43 
Zhang Zhiqi  43 

 



Announcement 
 
 

World Congress DSA 2020 
The Frontiers in Intelligent Data and Signal Analysis 

July 12 - 23, 2020, New York, USA 
 

www.worldcongressdsa.com 

 

We are inviting you to our fourth World congress on the Frontiers of 
Signal and Image Analysis DSA 2020 to New York, Germany. 

This congress will feature three events: 

• the 16th International Conference on Machine Learning and 
Data Mining MLDM (www.mldm.de),  

• the 20th Industrial Conference on Data Mining ICDM 
(www.data-mining-forum.de),  

• and the 15th International Conference on Mass Data Analysis 
of Signals and Images in Artificial Intelligence&Pattern 
Recognition MDA-AI&PR (www.mda-signals.de).  

Workshops and Tutorial will also be given. 

Come to join us to the most exciting event on Intelligent Data and 
Signal Analysis.  

Sincerely your, 
Prof. Dr. Petra Perner  

 
 

   

www.mldm.de www.data-mining-forum.de www.mda-signals.de 
 

 



 

 

Journals by ibai-publishing 

The journals are free on-line journals but having in parallel hardcopies of the journals. 
The free on-line access to the content of the paper should ensure fast and easy access 
to new research developments for researchers all over the world. The hardcopy of the 
journal can be purchased by individuals, companies, and libraries.  

 
Transactions on Machine Learning and Data Mining 

(ISSN: 1865-6781) 

 

The International Journal "Transactions on Machine 
Learning and Data Mining" is a periodical 
appearing twice a year. The journal focuses on 
novel theoretical work for particular topics in Data 
Mining and applications on Data Mining. 
 
Net Price (per issue): EURO 100  
Germany (per issue): EURO 107 (incl. 7% VAT) 
 
Submission for the journal should be send to: 
info@ibai-publishing.org 

 

For more information visited: www.ibai-publishing.org/journal/mldm/about.html 

Transactions on Case-Based Reasoning  
(ISSN:1867-366X) 

The International Journal “Transactions on Case-
Based Reasoning" is a periodical appearing once a 
year. 

 
Net Price (per issue): EURO 100  
Germany (per issue): EURO 107 (incl. 7% VAT) 
 
Submission for the journal should be send to: 
info@ibai-publishing.org 

 
For more information visited: www.ibai-publishing.org/journal/cbr/about.html 



 

 

 

Transactions on Mass-Data Analysis of Images and Signals  
(ISSN:1868-6451) 

  
 

The International Journal "Transactions on Mass-
Data Analysis of Images and Signals" is a periodical 
appearing once a year. 
The automatic analysis of images and signals in 
medicine, biotechnology, and chemistry is a 
challenging and demanding field. Signal-producing 
procedures by microscopes, spectrometers and other 
sensors have found their way into wide fields of 
medicine, biotechnology, economy and 
environmental analysis. With this arises the problem 
of the automatic mass analysis of signal information. 
Signal-interpreting systems which generate 
automatically the desired target statements from the 
signals are therefore of compelling necessity. The 
continuation of mass analyses on the basis of the 
classical procedures leads to investments of 
proportions that are not feasible. New procedures and 
system architectures are therefore required. 
 
Net Price (per issue): EURO 100  
Germany (per issue): EURO 107 (incl. 7% VAT) 
 
Submission for the journal should be send to: 
info@ibai-publishing.org 

For more information visited: www.ibai-publishing.org/journal/massdata/about.php 
 


	Cover-ICDM-2019-Long-Papers.pdf
	ICDM20140000_0_umschlag_postericdm2014

	Title_icdm_2018
	SP_ICDM20160000_II_preface
	PC
	Content-2
	Table of Content

	Proc-ICDM-LongPaper-5
	Proc-ICDM-LongPaper-4
	Proc-ICDM-LongPaper-3.pdf
	Proc-ICDM-LongPaper-2.pdf
	Proc-ICDM-LongPaper
	ICDM_2019_paper_12
	ICDM_2019_paper_15
	ICDM_2019_paper_16
	ICDM_2019_paper_20
	ICDM_2019_paper_21
	ICDM_2019_paper_24
	ICDM_2019_paper_27
	ICDM_2019_paper_31
	ICDM_2019_paper_32
	ICDM_2019_paper_33
	ICDM_2019_paper_34
	ICDM_2019_paper_35
	1 Introduction
	1 Introduction
	2 Related Work
	2 Related Work
	2.1 Game Data Mining
	2.1 Game Data Mining
	2.2 Data Mining Techniques Used in Predictive Analytics
	2.2 Data Mining Techniques Used in Predictive Analytics
	2.3 Discriminative Subgraph Mining
	2.3 Discriminative Subgraph Mining

	3 Methodology: Discriminative Subgraph Mining
	3 Methodology: Discriminative Subgraph Mining
	Fig. 1. Algorithm for FindDiscriminativeGraph
	Fig. 1. Algorithm for FindDiscriminativeGraph
	Fig. 2. Algorithm for CreateDiscriminativeGraph
	Fig. 2. Algorithm for CreateDiscriminativeGraph
	Fig. 3. Algorithm for RelaxedCreateDiscriminativeGraph
	Fig. 3. Algorithm for RelaxedCreateDiscriminativeGraph

	4 Experiment and Results
	4 Experiment and Results
	4.1 Experimental Setup
	4.1 Experimental Setup
	4.2 Experimental Results
	4.2 Experimental Results

	5 Summary and Conclusions
	5 Summary and Conclusions
	6 Future Work
	6 Future Work
	We plan to test our discriminative subgraph mining approach on other types of RTS games. If we have the success that we had with Interloper, we hope to establish a mapping between action types and assets in this genre of games so that a more generaliz...
	We plan to test our discriminative subgraph mining approach on other types of RTS games. If we have the success that we had with Interloper, we hope to establish a mapping between action types and assets in this genre of games so that a more generaliz...

	References
	References
	References

	ICDM_2019_paper_40
	ICDM_2019_paper_45


	ICDM_2019_paper_10
	Proc-ICDM-LongPaper-2
	Petra Perner
	1 Marketing in the Web 2.0
	2 Predictive Behavioral Targeting
	3 Fully automatic Predictive Targeting and modelling real-time  on-line behavior
	3.1 Function



	Proc-ICDM-LongPaper-2
	Petra Perner
	3 Fully automatic Predictive Targeting and modelling real-time  on-line behavior
	3.2 Architecture
	3.3 Data flows and database
	3.4 Modelling Aspects
	3.5 Challenges and critical success factors

	4 Results
	References


	Proc-ICDM-LongPaper-2
	Sammelmappe1
	ICDM_2019_paper_58_4


	Proc-ICDM-LongPaper-2
	Sammelmappe1
	ICDM_2019_paper_66
	ICDM_2019_paper_49


	Proc-ICDM-LongPaper-2
	Sammelmappe1
	ICDM2019_62


	Proc-ICDM-LongPaper-2
	Proc-ICDM-LongPaper-2.pdf
	Sammelmappe1
	manuscript56-pdf


	Proc-ICDM-LongPaper-2
	Proc-ICDM-LongPaper-2
	Sammelmappe1
	ICDM_2019_paper_43
	1 Introduction
	2 Materials and Methods
	2.1 Dataset Pre-processing
	2.2 Model Performance Measures

	3 Results and Discussion
	3.1 Model Selection for Primary Settler Performance Forecast
	3.2 Model Selection for Secondary Settler Performance Forecast
	3.3 Model Selection for Global Plant Performance Forecast

	4 Conclusion
	Acknowledgments

	References

	Paper55_BW


	Proc-ICDM-LongPaper-2
	Proc-ICDM-LongPaper-2
	Sammelmappe1
	paper59




	Paper_ID_14_ICDM_2019

	Autorenindex
	ICDM20140046_Announcement 2015_zu_prüfen
	ICDM20140045_Journals_wie immer



