
Transactions on Mass Data 

Analysis of Images and Signals 

Vol. 8, (2017) 3-16 

© 2017, ibai-publishing, 

ISSN: 1868-6451, 

ISBN: 978-3-942952-55-2 

 

 

 

Sustainable Markov Chain Models for 

Telemedicine 

Calin Ciufudean 

Stefan cel Mare University, 9 Universitatii str. 

720225, Suceava, Romania 

calin@eed.usv.ro 

 

Abstract. Communication systems are made of reliable components, both 

hardware and software, and therefore they may have only a few failures in 

exploitation. For an application field such as telemedicine this desiderate is a 

must. We model these systems dedicated to telemedicine with randomized pulse 

modulation data traffic using a finite Markov chains. Based on previous 

assumption telemedicine communication systems failures are considered, and 

therefore modelled using the rare event with a finite-state formalism. Our work 

is focused on improving the telemedicine systems` reliability using randomized 

pulse width modulation. 

Keywords: Telemedicine, Markov chains, pulse width modulation, rare events, 

discrete event systems 

1   Introduction 

To estimate patterns of telemedicine communication systems we deal with discrete 

event models of their reliability based on observed success/failure data as we noticed 

in practice. As noticed in literature, failures are rare events, in telemedicine 

communications [1-3], and therefore we assume that their occurrence probabilities are 

smaller by at least several orders of magnitude than probabilities of ordinary failure 

events. Therefore, the mean time to failure (MTTF) one of the most used reliability 

parameter, is a considerable number. User friendly representation and computations 

characterise the Markov chain for modelling and analysing rare events. The Markov 

chain provides also a direct measure of rarity using steady-states probabilities. Here 

we deal with a discrete-parameter, finite-state Markov chain [4, 5] used for 

representing both data communications failure (as transitions to a rare fail-state) and 

randomized pulse width modulation schemes of transmitter. We choose this approach 

as it offers few advantages, such as: the randomized modulation of switching reduces 

filtering equipment’s and allows an explicit time domain control, and is reported in 
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literature, randomized modulation is effective for dealing with narrow band 

constraints [6]. The remainder of this paper is as follows: Section 2 describes the 

basic principle of the proposed data transmitter and receiver, Section 3 deals with our 

approach for Markov chains modelling formalisms of randomized modulation 

availability. Section 4 analysis the sustainability of the proposed Markov model, 

while Section 5 exemplifies a randomized modulation modelled with periodic Markov 

chains, and proposes a new model of periodic Markov chain. Section 6, based on an 

illustrative example, analysis the reliability of this approach here entitled reliability 

Markov chain model (RMCM). Conclusion synthesizes the paper, the proposed model 

and display few development slopes. 

2   Proposed Data Structure 

Basically, a data transmitter involves generating a switching function f(t), which for 

example is equal to “1” when the switch is conducting and the “0” otherwise. This is 

schematically represented in Fig. 1. We assume that for value “1” there is some 

medical data to be transmitted; respectively there is one package (which includes 

several distinct diagnoses, images, medication etc., each one embedded in a sine 

wave) of data to be transmitted, as illustrated in Fig. 2. For verifying the correctness 

of the received data, the decoder counts the number of sine waves periods which fits 

the length of the pause. The resulted number, which must be a par multiple of the 

sinusoids (e.g, a par multiple is needed to verify if one sinusoid is missing due to 

perturbations), indicates the specific number and the sort of data inside the transmitted 

package, such as “n” medical analyses for patient John Doe. As shown in Fig. 2 the 

number of the codified pulses g(t) determines the switching function f(t) of the data 

transmitter [4]. Therefore, the data security is double checked and protected against 

electromagnetic interferences, as well against data loss or attenuation throughout 

passing reactive circuits. 

 

 

 

 

 

Fig.1 Schematic representation of the proposed switching transmitter 
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Fig.2. Switching functions of packages of data traffic in telemedicine 

 

It is stated in literature [4-8] that the average value or duty ratio D for f(t) usually 

determines the nominal output of a transmitter, as wave forms that are periodic have 

spectral components only at integer multiples of the fundamental frequency. We 

noticed that an effort was directed toward the optimization of deterministic PWM 

waveforms, and alternative in the form of randomized modulation for d.c./a.c. and 

a.c./a.c. conversion is based on schemes in which successive randomizations of the 

periodic segments of the switching pulse train are statistically independent and 

governed by probabilistic rules. These schemes are denoted in literature as stationary 

[3]. Next chapter describes an approach for the synthesis of this class of stationary 

randomized modulation schemes that enables explicit control of the time-domain 

performance of the data traffic applied in telemedicine. 

3   Estimating Switching Availability with Markov Chains 

Telemedicine data transmission process deals with the switching code system 

availability to design a randomized switching procedure that minimizes given criteria 

for spectral characteristic of f(t). For estimating the data transmission system 

availability, we introduce a failure state due to imperfect data coverage (denoted here 

by “c”) and repair (denoted here by “r”) [4]. To explain the impact of data imperfect 

coverage we consider the coding system in Fig. 3 which includes two identical 

switching codes device (SWCD). 

 

 

 

 

 

 
 
 

 

 
 

 

Fig.3 Example of perfect coverage data with two identical codes 
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insufficient, then data is incorrect with probability 1 – c (i.e. we may say that data fail 
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with probability 1 – c). The Markov chain for modelling data using SWCDi, where i = 

1, …, k, with k being a nonnegative integer is shown in Fig. 4, where parameters λ, μ, 

c, r denotes respectively the failure code rate, repair code rate, coverage data rate, and 

the successful data repair rate of SWCD. 

The first part of the horizontal transition rate with term 1 – c represents the data (e.g. 

code) failure due to imperfect coverage of an alternative SWCD. The second part, 

with the term 1 – r represents imprecise repair of SWCD. 

 

                                                             
Fig.4. Markov model for SWCDi 

 

The down/up arcs model the failure/repair of SWCDi. As we deal with rare events, 

we say that only one code fails at a time in a SWCDi. In Fig. 4 on state Ni the SWCDi 

is functioning with all Ni codes operational. The trajectory of our system, respectively 

the states of SWCDi changes from one of the ki working states to one of the Fki codes 

failure states due to imperfect coverage (1 - c), or due to imperfect repair (1 - r). We 

notice that perfect fault/repair coverage of the system reduces the Markov chain to 

one-dimension model. The solution of the Markov chain model given in Fig. 4, and 

implicitly the solution for system functionality is given by the probability that at least 

ki codes are correct at time t. The availability of SWCDi is determined using the 

following relation [20]: 
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where, Ai(t) = the availability of SWCDi at time t; Ni = the total number of codes in 

SWCDi; ki = required minimum number of operational codes in SWCDi. 
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After a Markov chain for SWCDi is built and desired probabilities Ai(t), i = 1, 2, … ,n 

are determined, the system`s availability (e.g. the switching code system) is given by 

the following relation: 

 

A(t) = max Ai(t)         (2) 

 

To optimize the data transmission is mandatory to minimize the discrete spectral 

components (denoted as narrow-band optimization), and to ensure minimization of 

signal power in a given frequency range (denoted as wide-band optimization) [21]. 

We assume that our Markov model goes through a sequence of n classes of states Ci, 

occupying a state in each class for an average time i, i = 1, ..., n.  

The time-average autocorrelation of the random process f(t) is defined as [6]: 

 

  dt)]t(f)t(f[E
w2

1
limR

w

wn
f  

                (3) 

 

where the expectation E[.] refers to the whole ensemble [.]. 

 

The Markov chain of class Ck, with the time-averaged autocorrelation (3) is scaled by 

k /



n

1i

i , where i the expected time is spent in the class Ci before a transition into 

the class Ci+1. We define the (n x n) state-transition matrix P with (k, i)th entry given 

by the probability that at the next transition the chain goes to state i, given that it is 

currently in state k. P is a stochastic matrix, so it has a single eigenvalue i = 1, with 

corresponding eigenvector 1n = [1 1 ... 1], and all other eigenvalues less than 1. In [1] 

it is proven that after a possible remembering of the states, the matrix P has a block-

cyclic form: 
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Let PP denote the product of submatrices of P: PP = Pn1 ... P23. P12, and let vi denote the 

vector of steady-state probabilities, conditional on the system being in class Ci. We 

have: 

              

    Pii Pv*V          (5) 

  

The time spent in class Ci (maintenance time) is: 
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Let To = 


n

1i
i and let Өi = diag (Vi*). If the first data string belongs to the class i, 

then the pulse i +  belongs to the class (i + m)/n, where m represents the number of 

transitions between data strings between moments i and i + . We have a case with 

average duration of some classes’ null, which means that these classes are avoided 

[20-22]. This construction deals with a simplified Markov chain model (we present 

this assumption, which we believe to be novel, in the next section). When we add the 

contribution of all classes to the average power spectrum (scaled by the relative 

average duration of each class) the result can be written as follows [4]: 
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Where T* is the greatest common divisor of all waveform duration, 1n is an n x 1 

vector of 1 and Ui is the vector of Fourier transforms of waveforms assigned to states 

in class Ci. The matrix Sc,i has a Toeplitz structure, with (k, i)th entry: 
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where k is a product of n matrices: k=Qk-1,k, …, Qk,k+1, and k,j=Qk,k+1, …, Qi-1,i .    

Where Q is a matrix n x n whose (k, i) entry is Qk,i(σ) = Pk,iδ(σ-τk). Also, the (k, i)th 

entry of Sd is given by relation: 
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Starting from the notion of truncated Markov chains with absorbing states [6], we 

propose a simplified model of Markov chains for random modulation. The proposed 

Markov chain X(m) has the states {m, m+1, …} aggregated into an absorbing class of 

states, with the transition matrix (m)T:       
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Since (m)P is irreducible for all m, it follows that X(m) constitutes an irreducible 

Markov chain for all m, where m is an absorbing class of states [m]. The n-step 

transition matrix (m)Tn is: 

 

           
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2
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m           (11) 

 

Where (m)Pn = (m)pij
n = pij(n). 

 

The transition probability between realizable classes of states is 1. The transition 

matrix probability also indicates the priorities between the states of the system. 

 

4 Framing the Sustainability of the Proposed Markov Model 

One of the most important parameters that control the performance of a modern 

system is its reliability. Reliability is measured by the fault exposure ratio (FER) [9-

11]. It represents the average detectability of the faults in the system. Other 

parameters that control FER are the size of the system and the execution speed of the 

control unit, which are both easily evaluated. We notice that, usually in the literature, 

the cell loss problem happens in communication networks, and we extend this issue to 

telemedicine systems, as they use electric energy, and are partially controlled by 

human operators.  Therefore often, the failure probability of an individual component 

is very small for a well-managed system such as these mentioned above. For instance, 

the fault probability of a system component for telemedicine is usually at the 

magnitude of 10-6 per hour, or less than 1% per year [12]. Based on this idea, our 

study focuses on these low probability issues mainly, and we may say that although 

not stated clearly, much of the literature implicitly applies the rule of rare event 

approximation. Although the applications of our approach are not limited to the 

discrete time case, we focus our discussion on discrete event models in this paper [13-

15]. We see the Markov model given in Fig.4 as a discrete time server that can service 

c cells during one-time unit. This server serves a queue with a capacity for k cells 

which is fed by an independent traffic source. The arrival process associated with a 

source has two states: active (ON) and idle (OFF), represented by 1 and 0 

respectively. In the active state, an arrival can occur with probability α (in the 

experiments, α is assumed to be 1). No arrivals occur while the source is in the idle 

state. Each of these ON-OFF sources behave as follows: while an arrival process is in 

state 0, there is a probability 1-p00 that will change to state 1 at the next time slot and 

a probability p00 that will remain in state 0. While an arrival process is at state 1, there 

is a probability 1-p11 that it will transit to the idle state at the next time slot and a 

probability p11 that it will remain in state 1. When the server is busy, a maximum of c 

cells will depart the system at each time slot. The system can be modelled as a 

discrete time Markov chain with state (xi, yi), where xi is the number of cells in the 

queue and yi is the number of arrival sources in the active state at the ith time slot. We 
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want to determine the steady state behaviour    ii
i

yxyx ,lim,




 . Let S denote the 

state space. Let T = [tn,m;k,l] be the transition matrix for this Markov chain, where 

tn,m;k,l = Prob[xi+1=k, yi+1=l | xi=n, yi=m]. Note that the dimension of this Markov chain 

is (k+c)·(n+1).  

In the literature the resources cell loss distribution PL can then be calculated as in 

[16]: 

                                 
   

 













S)m,n(

S)m,n(

L
my,nxPm

my,nxP0),kmn(max

P      (12) 

We notice that when the size of the model (either the buffers size, or the number of 

sources n, or the number of processing units Pi) becomes large, the computational 

cost is prohibitively high due to the size of the state space. We consider that such an 

approach cannot represent the resources cell loss distribution PL among the k tasks of 

the considered system. 

In order to achieve this goal, we propose a new approach for determining PL. We 

consider the next function: 

             

      
vc

n

u n

u
u

Lu t)
1n

1
n()1()t(P  


                          (13) 

Where: u = the task accomplished by the system; 

  t = time required for accomplishing the process; 

  cv= the coverage factor (e.g. the coverage probability) for the system supplied 

by n sources through the input buffers; 

 nα
u = is a function of probability α that the system receives in the uth task the 

resource number n. 

We mention that the graphical representation of the function PLu(t) given in the 

relation (13) allows to show the loss probability both for odd and even tasks 

according to the factor (-1)u, respectively by positive and negative inflexions of the 

network. 

The steps required to calculate the rational interpolants for PL, or PLui(t) are the 

following ones: 

1. Asymptotic analysis: we suppose that log PL ≈ Ө*k (k → ∞), respectively (n → 

∞). 

We calculate exponential decay rate Ө using the algorithm proposed in [12]. 

2. Determine the forms of transformation and the form of approximant sequence. 

We develop approximants for the function h(k) = log PL(k), respectively h(k) = log 

PLui(n) and will use an R(n+1),n sequence of rational interpolants since h(k) and h(n) are 

asymptotically linear [14-15]. 

3. Evaluate PL(k), respectively PLui(n) for small values of k, respectively n (thus 

the corresponding values of h(k) and h(n) are known) by solving the Markov chain or 

using other available analytic methods (including Henstock integrals). 

4. Calculate rational interpolants, R(n+1),n with increasing orders (n = 1, 2, …) and 

stop when the successive interpolants are sufficiently close to the range of k or ui of 

interest. 
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5   Illustrative Example 

In this section we deal with an illustrative model applicable for the data 

transmitter`s code depicted in Fig. 2 in order to generate a switching function where 

blocks of pulses have deterministic duty ratios: [0.75, 0.5, 0.25]. The periodic Markov 

chain shown in Fig. 3, with six states divided into three classes, is an example of a 

solution to this issue [6, 7]. A short cycle (duration 3/4) and a long cycle (duration 

5/4) are available in each of the four classes. According to the theoretical approach in 

the previous paragraph, we build a simplified Markov chain in Fig. 4. The Markov 

chains in Fig. 5, respectively in Fig. 6 have the same transition probabilities between 

states Si, i=1,.…, 6 of classes Cj, j=1,…, 3. One can observe that the Markov chain in 

Fig. 6 is more intuitive and tidy than the one in Fig. 5. The transition probabilities 

equal to 1 in Fig. 6 are conditioned by the existence of transition between the states of 

different classes. 

 

 

 

 
 

 

 

             
 

 

 
 

 

 
 

 

Fig.5 Classic Markov chain for modeling the switching example 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Fig.6. Proposed Markov chain for modeling the switching example 
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We analyze this Markov chain with the help of equation (4) and we compare the 

theoretical predictions with the estimates obtained in Monte Carlo simulations. The 

agreement between the two is quite satisfactory: the theoretical prediction for the 

impulse strength at f = 4 is 0.0035, and the estimated value is 0.0037. The Markov 

chain in Fig. 4 allows dealing with many more classes as graphical representation is 

simplified and can significantly improve the tractability of the optimization of the 

multi-state Markov chains. 

6   Reliability Estimation of our Model 

The Markov chain for estimating the reliability of our model has at least three states: 

starting-state S, working state W, and fail state F. State sequences are realizations of 

reliability Markov chain model (RMCM) [7-8], [22]. A realization from S to first 

occurrence of W represents a single successful execution cycle of data transmission. 

A transition from any state to F represents a failure of data transmission. The 

probabilities on arcs in RMCM are the values estimated for the usage profile and 

component reliabilities expected in practice [9]. We notice that if state i ϵ RMCM, 

and i ≠ F, has been visited ni times and exited without failure, then the probability of 

failure at state i is no greater than 1/(ni + 1). Let random variable nF be the number of 

visits to F in a randomly generated realization of n transitions starting in a state S.  Let 

λ=E(nF) be the mean value of the probability low of nF. Let P = [pij] denote the 

RMCM’s transition probability matrix. The RMCM have all states reachable from S 

by traces with nonzero probability and arcs from both F and W to S with PFS = PWS = 

1, so that a successful or unsuccessful path terminated in W, respectively in F state 

causes an  immediate restart in initial state S. RMCM’s steady-state probability 

distribution Π = [πS, …, πF] is the unique solution of  Π = ΠP where Σ Πi = 1 and   πi > 

0 is the limiting relative frequency of occurrence of state i as a count transition, e.g., 

recurrence time [4], [23, 24]. Adopting a Poisson law with parameter λ, developments 

in small number laws stress that P0(λ) is an approximation and compute an upper 

bound for measuring the distance between P0(λ) and the probability law L(nF). The 

total variation distance dTV [L(nF), P0(λ)] is defined as show in relation (14) for events 

A in the sample space [17], where P0(λ) is the Poisson distribution with parameter λ: 

          

         

             APAnLsupP,nLd 0FA0FTV         (14)   

 

Since Π F equals the limiting relative frequency of state F, for large n we have: 

 

                                                 
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
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We may approximate for large n, and rare state F: 

           

        
 

Fn
k

F
F e

!k

n
nL





                              (16) 

 

We observe that λ ≈ n.Π F is the approximate parameter for a full sequence of 

transition, not per transition. Since the mean sequence length is SSm  transitions, the 

expected count of transitions between visits to F is [4, 17], [25]:  

 

                                          FF
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FF
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F

S
SSSS m

m

m
mmEm 




                          (17)  

   

We exemplify this approach on the three state Markov chain (RMCM) given in Fig. 5. 

This RMCM corresponds to the Markov chain given in Fig. 4, where we added the 

fail state F associated to the states Ci, i = 1, 2, 3 associated to the classes in the 

Markov chain model for pulse width modulation scheme discussed in section 3. 

 

 

 

 

 

 

 
 

 
 

 

 
 

 

 
 

 

Fig.7. Five state RMCM associated to the Markov Chain in Fig.6 
 

By colligating the RMCM in Fig. 5 with the Markov chain in Fig. 6, we notice the 

transition probabilities for the ordinary usage-states given in Fig. 6 (pij) and the small 

probabilities PciF, i=1, 2, 3 in Fig. 7. Given that for highly reliable security 

communication systems we may have 0 ≤ PciF ≤ 10-3, and correspondingly 0 < ΠFi ≤ 

1,3.10-4, which allow us to presume that for PciF ≈ 10-4 the stationary distribution 

vector: 
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The vector of mean recurrence time is:  
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The vector of the expected number of occurrences of states between transitions to 

non-rare state S is: 

 

                               0005,0,9989.0,0005.1,0005.1,0009.3,1
S





                         (20) 

 

The vector of the expected number of occurrences of states between transitions to rare 

state F is:  

 

                        4

F

100003.0,0012.1,0009.1,0047.3,0009.1 



                      (21) 

 

The mean recurrence time of state S is mSS ≈ 9; therefore n = 9.104 transitions 

correspond to approximatively 104 average sequences from S back to S (e.g. we deal 

with reversible processes). The Poisson approximation of L(nF), see relation (11) for n 

= 9. 104 and λ = 9πF
. 104 stands pCF = 10-4 and the rare state F has steady-state 

probability πF≈ 1.43.10-5, and the upper bound 0,903.10-5, where k = 0, 1, 2, 3. The 

MTTF is mFF ≈ 9.104 for pCF = 10-4. 

7   Conclusion 

Our paper focuses on synthesizing results of randomized modulation with Markov 

chains, suitable for data transmitter, for example the ones used in telemedicine. 

Randomized modulation switching schemes governed by Markov chains applicable to 

d.c./a.c. or d.c./d.c. converters have been described.  

Our representation for complex periodic Markov chains we believed to be novel. We 

also believe that this new model offers a new perspective for the spectral 

characteristics and other associated waveforms in a converter to the probabilistic 

structure that governs the dithering of an underlying deterministic nominal switching 

pattern.  

Further research will continue to focus on minimization of one or multiple discrete 

harmonics. This approach corresponds to cases where the narrow-band characteristics 

corresponding to discrete harmonics are harmful, as for example in the telemedicine 

traffic security. We also discussed results in rare events for security communication 

system based on finite-state, discrete-parameter, recurrent Markov chain, here entitled 

reliability Markov chain model (RMCM). The chain provides a simple definition of 

failure as a rare event, respectively as a failure state F for which the steady-state Π F is 

orders of magnitude smaller than Π K for k ≠ F, usually states of RMCM. Poisson law 

distribution bounds the transitions to a rare-fail state F in arbitrarily large size 

RMCM. Further research will focus on improvement of the analytic capabilities of 

RMCM in the study of extreme values of rare events [26, 27] when failure is 

infrequent and mean time to failure (MTTF) is long. 
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