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Abstract. In the rapidly expanding fields of cellular and molecular biology, 
fluorescence illumination and observation is becoming one of the techniques of 
choice to study the localization and dynamics of proteins, organelles, and other 
cellular compartments, as well as a tracer of intracellular protein trafficking. 
The automatic analysis of these images and signals in medicine, biotechnology, 
and chemistry is a challenging and demanding field.  
In this paper we present our newly developed methods and techniques for the 
analysis of microscopic cell images. We present methods for static 2-D image 
analysis and dynamic 3-D image analysis. 
We start we a description of the challenges and requirements to the systems. 
Then we move further with a description of any processing unit in the full im-
age analysis chain. We start with image segmentation followed by feature ex-
traction, image mining, and image interpretation. Our new method for meta 
learning of image segmentation is described. Automatic and symbolic feature 
extraction is described as well as our novel texture descriptor that is effective 
for the description of the texture on cells. The image mining methods for learn-
ing the interpretation knowledge is described by a supervised method based on 
decision tree induction and an unsupervised method by conceptual clustering. 
Finally, we give a brief overview of our novel method for live cell tracking. We 
show on results the extraordinary performance of the methods. 
At the end of the paper we give a summary of our expert opinion on microscop-
ic image analysis for cellular and molecular biology. Finally, we summarize our 
work in the conclusion section. 

Keywords: Automation and Standardization of Visual Inspection Tasks; High-
Content Analysis of Images HCA; Cellular and Molecular Image Analysis and 
Interpretation; Image-Mining, Systems for Knowledge Discovery and Interpre-
tation; Microscopic Cell Image Analysis 



28 Petra Perner 

1 Introduction 

In the rapidly expanding fields of cellular and molecular biology, fluorescence illumi-
nation and observation is becoming one of the techniques of choice to study the local-
ization and dynamics of proteins, organelles, and other cellular compartments, as well 
as a tracer of intracellular protein trafficking. Quantitative imaging of fluorescent 
proteins and patterns is accomplished with a variety of techniques, including wide-
field, confocal and multiphoton microscopy, ultrafast low-light level digital cameras 
and multitasking laser control systems. These microscopic images can be of 2-
dimensional or 3-dimensional nature, or even videos recording the life cycle of a cell. 
Currently the interpretation of the resulting pattern in these digital images is usually 
done manually. However, the huge amount of data created and the growing use of 
these techniques in industry for pharmacological aspects or diagnostic purposes in 
medicine require automatic image interpretation procedures. These image interpreta-
tion procedures should allow to interpret these images automatically, and also to de-
tect automatically new knowledge to study the cellular and molecular processes. The 
continuation of mass image analyses on the basis of the classical procedures leads to 
investments of proportions that are not feasible. New procedures based on image min-
ing and case-based reasoning are therefore required.  

We are developing methods that allow the automatic analysis of these images 
for the discovery of patterns, new knowledge and relations. The present work is 
applied to 2-dimensional microscopic fluorescent image and to 3-d-image analysis 
(video analysis). The aim of our work is to provide the system with image-analysis, 
feature-extraction and knowledge-discovery functions that are suited for mining a 
set of microscopic cell images for the automatic detection of image-interpretation 
knowledge and then applying this knowledge within the same system for automatic 
image interpretation of the HEp-2 cell images. At the end, the system can work on-
line in a pharmaceutical drug discovery process or in a medical and biological 
laboratory process and automatically interpret the patterns on the cells in the image 
and calculate quantitative information about the cell pattern. It can also track the 
cells in the microscopic images and calculate features about the dynamics of the 
cells. The developed processing functions should make the system flexible enough 
to deal with different kinds of cell-images and different image qualities and require 
a minimal number of interactions with the user for knowledge mining. The image-
interpretation process is running fully automatically, based on the image-analysis 
and feature-extraction procedures developed for this kind of image analysis and the 
learned interpretation knowledge by the developed knowledge-mining procedures. 

In Section 2 of the paper we describe the challenges and the requirements to the 
system. The architecture of the system is described in Section 3. The architecture is 
two divided. It has facilities for image mining and learning the interpretation 
knowledge and for automatic image interpretation and object tracking. Section 4 is 
dealing with image segmentation. A novel case-based reasoning image segmenta-
tion unit based on meta-learning and thresholding is presented as well as a case-
based object recognition unit. Section 5 describes the features that are used to de-
scribe the appearances of the cells. A novel texture descriptor based on random sets 
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is presented. The image mining facilities and the methods used for image mining are 
described. Our decision tree induction, case-based reasoning, and conceptual cluster-
ing methods are described. Section 6 gives results when applying the system to Hep-2 
cell pattern recognition for the recognition of 32 pattern. Section 7 describes our nov-
el cell tracking algorithm and presents that feature that are calculated to describe the 
moving cells. Section 8 gives results for cell tracking. In Section 9 we give expert 
opinion on the recent architecture and methods. Finally, we give conclusions in Sec-
tion 10. 

2 Challenges and Requirements to the Systems 

Application-oriented systems that can only solve one specific task are very costly and 
it takes time to develop them. The success of automatic image-interpretation systems 
can only be guaranteed when the development effort is as low as possible and when 
they can be adapted quickly to different needs and tasks. It is preferable that the au-
tomatic system not only calculates image features from the images but also maps the 
measurements to the desired information the user wants to obtain with his experiment. 
This views High-Content Image Analysis as a pattern recognition and image interpre-
tation problem rather than as an image measurement problem where all possible im-
age features are extracted from the images for further analysis. The pattern or the final 
information, such as e.g. “do the bacteria co-localize with the lysosomes”, is the cen-
tral focus of the image analysis and the system should provide all functions that are 
necessary to achieve this result. 

That requires developing systems that can run on a class of applications such as 
microscopic fluorescent images. Such systems should have functions that are able to: 

• Automatically detect single cells in the image regardless of the image quality with 
high accuracy, robustness and flexibility; 

• Automatically describe the properties of the cell nucleus and the cytoplasm by 
image features (numerical and symbolical); 

• Automatically interpret the images into cell patterns or other decisions (prediction); 
• Automatically detect new knowledge from image data and apply it to automatic 

interpretation; 

The challenges are: 

• New strategies are necessary that are able to adapt the system to changing envi-
ronmental conditions during image capture, user needs and process requirements; 

• Introduction of Case-Based-Reasoning (CBR) strategies and Data-Mining strate-
gies [1] into image-interpretation systems on both the low-level and high-level to 
satisfy these requirements. 
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3 The Architecture 

Our answer to this problem is a system architecture [2] named Cell Interpret (Figure 
1) that is comprised of two main parts:  

• The on-line part that is comprised of the image analysis and the image interpreta-
tion part;  

• The off-line part that is comprised of the database and the data mining and 
knowledge discovery part; 

These two units communicate over a database of image descriptions, which is cre-
ated in the frame of the image-processing unit. This database is the basis for the im-
age-mining unit. 

The on-line part can automatically detect objects, extract image features from the 
objects and classify the recognized objects into the respective classes based on the 
prior stored decision rules. The interface between the off-line and the on-line part is 
the database where images and calculated image features are stored. The off-line part 
can mine the images for a prediction model or discover new groups of objects, fea-
tures or relations. These similar groups can be used for learning the classification 
model or just for understanding the domain. In the later case the discovered infor-
mation is displayed on the terminal of the system to the user. Once a new prediction 
model has been learnt the rules are inputted into the image interpretation part for fur-
ther automatic interpretation after approval of the user. Besides that, there is an ar-
chiving and management part that controls the whole system and stores information 
for long-term archiving.  

 
Fig. 1. Architecture of Cell Interpret. 

Images can be processed automatically or semi-automatically. In the first case, a 
set of images specified by the expert is automatically segmented into background and 
objects of interest and the feature extraction procedures installed in the image analysis 
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system are used for each object to automatically calculate all features. All features are 
extracted regardless of their applicability for the specific application. This requires 
executing feature subset selection methods later on. For semi-automatic processing, 
an image from the image archive is selected by the expert and then is it displayed on 
the monitor. To perform image processing an expert communicates with a computer. 
In this mode he has the option to calculate features based on the feature extraction 
procedures and/or record symbolic features based on his expert knowledge. This pro-
cedure ensures that also complicated image features, which are difficult to name, 
articulate or develop automatic feature extraction procedures, can also be taken into 
account and further evaluated by image mining. After the feature has been established 
by evaluating the acquired data base, the proper automatic feature extraction proce-
dure can be developed and included into the system and made available for High-
Content Analysis. The intelligence of the system will therefore incrementally im-
prove. 

4 Case-Based Image Segmentation 

Image segmentation is a process of dividing an image into a number of different re-
gions such that each region is homogeneous with respect to a given property, but the 
union of any two adjacent regions is not. Image thresholding is a well-known tech-
nique for image segmentation. Because of its wide applicability to many areas of 
digital image processing, a large number of thresholding methods have been proposed 
over the years [3-5]. Image thresholding has low computational complexity, which 
makes it an attractive method, but does not take into account spatial information and 
is mostly suitable for images where the gray-levels constitute well defined peaks, 
separated by not too broad and flat valleys. Another common approach to image seg-
mentation is based on feature space clustering, which has sometimes been regarded as 
the multidimensional extension of the concept of thresholding. Clustering schemes 
using different kinds of features (multi-spectral information, mean/variation of gray-
level, texture, color) have been suggested [6-8]. This approach can be successfully 
used if each perceived region of the image constitutes an individual cluster in the 
feature space. This requires a careful selection of the proper features, which depends 
on image domain. 

Segmentation can also be accomplished by using region-based methods, or edge-
detection-based methods, or methods based on a combination of those two approaches 
[9-11]. Region-based methods imply the selection of suitable seeds from which to 
perform a growing process. In general, region-merging and region splitting are ac-
complished to obtain a meaningful number of homogeneous regions. Seed selection 
and homogeneity criterion play a critical role for the quality of the obtained results. 
Edge-detection-based methods follow the way in which human observers perceive 
objects, as they take into account the difference in contrast between adjacent regions. 
Edge detection does not work well if the image is not well contrasted, or in the pres-
ence of ill-defined or too many edges. 
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Watershed-based segmentation [12] exploits both region-based and edge-detection-
based methods. The basic idea of watershed-based segmentation is to identify in the 
gray-level image a suitable set of seeds from which to perform a growing process. If 
the main feature taken into account is gray-level distribution, the seeds are mostly 
detected as the sets of pixels with locally minimal gray-level (called regional mini-
ma). The growing process groups each seed with all pixels that are closer to that seed 
than to any other seed, provided that a certain homogeneity in gray-level is satisfied. 
Thus, watershed-based segmentation limits the drawbacks of region-based and edge-
detection-based methods.  

To overcome the drawbacks of the algorithms mentioned above, learning methods 
are applied to image segmentation. These learning methods are applied to learn the 
mapping between image features and semantically meaningful parts, to learn the pa-
rameters of the segmentation algorithm or to learn the mapping between rank perfor-
mance of the segmentation algorithm and the image features. There are statistical 
learning methods, machine learning methods, neural-net-based learning methods, and 
learning methods using a combination of different techniques. The main drawbacks of 
these methods are:  

1. The need of a sufficiently large training set, and  
2. The need of training again the whole model, when new data come in.  

Therefore, it seems to be useful to use Case-based Reasoning (CBR) for a flexible 
image segmentation system, since CBR can be used as a reasoning approach as well 
as an incremental knowledge-acquisition approach. We propose a novel image-
segmentation scheme based on case-based reasoning. We use CBR for meta-
learning of the segmentation parameters (see Section 4.1) and for case-based object 
recognition (see Section 4.2). 

4.1 CBR Meta Learning for Image Segmentation 

The case-based reasoning unit for meta learning of image segmentation parameters 
[13] consists of a case base in which formerly processed cases are stored. A case is 
comprised of image information, non-image information (e.g. image-acquisition pa-
rameters, object characteristics and so on), and image-segmentation parameters. The 
task is now to find the best segmentation for the current image by looking up the case 
base for similar cases. Similarity determination is done based on non-image infor-
mation and image information. The evaluation unit will take the case with the highest 
similarity score for further processing. In case there are two or more cases with the 
same similarity score, the case appearing first will be taken. After the closest case has 
been chosen, the image-segmentation parameters associated with the selected case 
will be given to the image-segmentation unit and the current image will be segmented 
(Figure 2). It is assumed that images having similar image characteristics will show 
similar good segmentation results when the same segmentation parameters are applied 
to these images. The image segmentation algorithm is in our case a histogram-based 
image-segmentation algorithm [13] and a watershed-based image-segmentation algo-
rithm [14]. 
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Fig. 2. CBR Image Segmentation Unit. 

The result of the segmentation process can be observed by the user or an automatic 
evaluation procedure. When the evaluation is done by the user, he compares the origi-
nal image with the labeled image on display. If he detects deviations of the marked 
areas in the segmented image from the object area in the original image, which should 
be labeled, then he will evaluate the result as incorrect and case-base management 
will start. This will also be done if no similar case is available in the case-base. The 
proposed method is close to the critique-modify framework described by Grimnes et 
al. [15]. The evaluation procedure can also be done automatically. However, the 
drawback is that there is no general procedure available. It can only be done in a do-
main-dependent fashion. Once the chosen evaluation procedure observes a bad result, 
the respective case is tagged as bad case. The tag describes the critique in more detail.  

In an off-line phase, the best segmentation parameters for the image are determined 
by an optimization procedure and the attributes, which are necessary for similarity 
determination, are calculated from the image. Both, the segmentation parameters and 
the attributes calculated from the image, are stored into the case-base as a new case. 
In addition to that the non-image information is extracted from the file header and 
stored together with the other information in the case-base. During storage, case gen-
eralization will be done to ensure that the case base will not become too large. 

4.2 Case-based Object Recognition 

We propose our case-based object recognition method to recognize objects by their 
shape. In contrast to traditional object recognition methods [16] our method is com-
prised of a case mining part and the object recognition part [17]. The case mining part 



34 Petra Perner 

 

can learn the desired contour of the object and the number of contours necessary for 
recognizing a particular class of objects. The learnt contours make up the case base 
and are the basis for the case-based object-recognition method. The objects in the 
image may be occluded, touching, or overlapping. It can also happen that only part of 
the object appears in the image.  

A case-based object-recognition method uses cases that generalize the original ob-
jects and matches them against the objects in the image, see Figure 3. During this 
procedure a score is calculated that describes the quality of the fit between the object 
and the case. The case can be an object model which describes the inner appearance 
of the object as well as its contour. In our case the appearance of the whole object can 
be very diverse. The shape seems to be the feature that generalizes the objects. There-
fore, we decided to use contour models. We do not use the gray values of the model, 
but instead use the object’s edges. For the score of the match between the contour of 
the object and the case we use a similarity measure based on the scalar product. It 
measures the average angle between the vectors of the template and the object. 

The acquisition of the case is done semi-automatically. Prototypical images are 
shown to an expert. The expert manually traces the contour of the object with the help 
of the cursor of the computer. Afterwards the number of contour points is reduced for 
data-reduction purposes by interpolating the marked contour by a first-order polynom. 
The marked object shapes are then aligned by the Procrustes Algorithm [18]. From 
the sample points the direction vector is calculated. From a set of shapes general 
groups of shapes are learnt by conceptual clustering which is a hierarchical incremen-
tal clustering method [19]. The prototype of each cluster is calculated by estimating 
the mean shape [19] of the set of shapes in the cluster and is taken as a case model. 
 

 
 

 
 
 
 
 
 
 

 
 
 

 
 

 
 

Fig. 3. Principle of case-based object-recognition architecture. 
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5 Automatic and Symbolic Feature Extraction 

The system can now, based on the feature-extraction filter data base (Figure 4) in-
stalled in the system, calculate image features for the labeled objects. These features 
are composed of statistical gray-level features, the object contour, square, diameter, 
shape [20] and a novel texture feature based on random sets [21] that is flexible 
enough to describe different textures of cells.  

The novel texture-feature descriptor is flexible enough to describe different tex-
tures inside the cells that reflect the appearance or location of subcellular particle`s 
(vesicles, bacteria moving into the cells, or chromosomes etc.). The texture descriptor 
is based on Random Sets that were invented by Matheron [22]. An in-depth descrip-
tion of the theory can be found in Stoyan, et al.  [23]. The Boolean model allows to 
model and simulate a huge variety of textures e.g. for crystals, leaves, etc. The texture 
model X is obtained by taking various realizations of compact random sets, implant-
ing them in Poisson points in Rn, and taking the supremum. The functional moment 
𝑄𝑄(𝐵𝐵) of X, after Booleanization, is calculated as:  

 
 PB⊂Xc=QB=exp−θMes(X⨁B)∀B∈k                            (1) 

 
K where 𝐾𝐾 is the set of the compact random set of Rn, θ the density of the process 
and Mes (X'⨁X̌) is an average measure that characterizes the geometric properties of 
the remaining set of objects after dilation. Formula (1) is the fundamental formula of 
the model. It completely characterizes the texture model. 𝑄𝑄(𝐵𝐵) does not depend on 
the location of B, i.e., it is stationary. One can also provide that it is ergodic so that we 
can peak the measure for a specific portion of the space without referring to the par-
ticular portion of the space. 
 Formula 25 show us that the texture model depends on two parameters: 

•  The density θ of the process and 
•  a measure ¯Mes(X⨁B ̌) that characterizes the objects. In the one-dimensional 

space, it is the average length of the lines and in the two-dimensional space ¯Mes 
(X⨁B ̌ )  is the average measure of the area and the perimeter of the objects under 
the assumption of convex shapes.  

We consider the two-dimensional case and develop a proper texture descriptor. Sup-
pose now that we have a texture image with 8 bit gray levels. Then we can consider 
the texture image as the superposition of various Boolean models, each of them hav-
ing a different gray level value on the scale from 0 to 255 for the objects within the bit 
plane. To reduce the dimensionality of the resulting feature vector, the gray levels 
ranging from 0 to 255 are now quantized into S intervals t. Each image f(x,y) is clas-
sified according to the gray level into t classes, with t=0,1,2,..,S. For each class a 
binary image is calculated containing the value “1” for pixels with a gray level value 
falling into the gray level interval of class t and value “0” for all other pixels. The 
resulting bit plane f (x,y,t) can now be considered as a realization of the Boolean 
model. The quantization of the gray level into S intervals was done at equal distances. 
In the following, we call the image f(x,y,t) a class image.  In the class image we can 
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see a lot of different objects. These objects get labeled with the contour-following 
method [20]. Afterwards, features from the bit-plane and from these objects are calcu-
lated. Since it does not make sense to consider the features of every single object due 
to the curse of dimensionality, we calculate the mean and standard deviation for each 
feature that characterizes the objects such as the area and the contour. In addition to 
that, we calculate the number of objects and the areal density in the class image. 

 
Fig. 4. Feature Filter Data Base. 

The list of features and their calculation are shown in Table 1. The first one is 
the areal density of the class image t which is the number of pixels in the class 
image, labeled by “1”, divided by the area of the image. If all pixels of an image 
are labeled by “1”, then the density is one. If no pixel in an image is labeled, then 
the density is zero. From the objects in the class image t, the area, a simple shape 
factor, and the length of the contour are calculated. Per the model, not a single 
feature of each object is taken for classification due to the curse of dimensionality, 
but the mean and the standard deviation of each feature are calculated over all the 
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objects in the class image t. We also calculate the frequency of the object size in each 
class image t.  

Depending on the number of slices S we get a feature set of 42(S=6), 84(S=12), 
112(S=16) features. 

Table 1. Texture Features based on Random Set. 

Description Name Type Formula 
Area in class 

image t 
Area_t num Areat

= �Areat = Areat + 1  if f(x, y, t) = 1 
Areat =  Areat        if f(x, y, t) + 0  

 
Density in class 

image t 
Dens_t num Dens

= �Denst = Denst + 1  if f(x, y, t) = 1 
Denst =  Denst        if f(x, y, t) + 0  

 
with  

A = �Area𝑡𝑡

𝑠𝑠

𝑡𝑡=1

 

 
Number of ob-

jects 
Count_t num n(t) 

Mean area of 
objects in class 

image t 

Area 
Mean_t 

num 
𝐴𝐴(𝑡𝑡) =

1
𝑛𝑛(𝑡𝑡)

�𝐴𝐴𝑖𝑖(𝑡𝑡)
𝑛𝑛(𝑡𝑡)

i=1

 

 
Standard devia-

tion of the contour 
length of objects in 

class image t 

Cont Std 
Dev_t 

num 

𝑆𝑆(𝑡𝑡) = � 1
𝑛𝑛(𝑡𝑡)

 �(𝑢𝑢𝑖𝑖(𝑡𝑡) − 𝐴𝐴(𝑡𝑡))2
𝑛𝑛(𝑡𝑡)

𝑖𝑖=1

 

 
The contour length of a single object is 𝑢𝑢 = 𝑙𝑙 + √2 · 𝑚𝑚 with l being the number of 

contour pixels having odd chain coding numbers and m being the number of contour 
pixels having even chain coding numbers. 

Mean contour 
length of objects in 

class image t 

Cont 
Mean_t 

num 
𝑢𝑢(𝑡𝑡) =

1
𝑛𝑛(𝑡𝑡)

�𝑢𝑢𝑖𝑖(𝑡𝑡)
𝑛𝑛(𝑡𝑡)

𝑖𝑖=1

 

 
Standard devia-

tion of the contour 
length of objects in 

class image t 

Cont Std 
Dev_t 

num 
𝑆𝑆(𝑡𝑡) = �

1
𝑛𝑛(𝑡𝑡)

�(𝑢𝑢𝑖𝑖(𝑡𝑡) − 𝑢𝑢(𝑡𝑡))2
𝑛𝑛(𝑡𝑡)

𝑖𝑖=1

 

 
 

The system evaluates or calculates image features and stores their values in a data-
base of image features. Each entry in the database presents features of the object of 
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interest. These features can be numerical (calculated on the image) and symbolical 
(determined by the expert as a result of image reading by the expert). In the latter case 
the expert evaluates object features according to the attribute list, which has to be 
specified in advance for object description or is based on a visual ontology available 
for visual content description. Then the user feeds these values into the database. 
When the expert has evaluated a sufficient number of images, the resulting database 
can be used for the image-mining process. 

6 Image Mining and Knowledge Discovery 

The image mining part should allow extracting knowledge or making observations 
from different perspectives. Therefore, we have included methods for predictions and 
methods for knowledge discovery [1]. Knowledge discovery methods allow us to 
summarize data into groups and patterns or observe relations among groups. Usually 
they are prior to prediction. We prefer conceptual clustering [1] for this task since the 
discovery process is incremental and therefore fits perfectly to case-based reasoning 
and decision tree induction as prediction methods. 

6.1 Decision Tree Induction 

Decision tree induction allows one to learn from a set of data samples a set of rules 
and basic features necessary for decision-making in a specified diagnostic task, see 
Figure 5. The induction process does not only act as a knowledge discovery process, 
it also works as a feature selector, discovering a subset of features that is the most 
relevant to the problem solution. Decision trees partition decision space recursively 
into sub-regions based on the sample set. In this way the decision trees recursively 
break down the complexity of the decision space. The outcome has a format which 
naturally presents a cognitive strategy that can be used for the human decision-
making process. For any tree all paths lead to a terminal node, corresponding to a 
decision rule that is a conjunction (AND) of various tests. If there are multiple paths 
for a given class, then the paths represent disjunctions (ORs). The developed tool 
allows choosing different kinds of methods for feature selection, feature discretiza-
tion, pruning of the decision tree and evaluation of the error rate. It provides an entro-
py-based measure, a gini-index, gain-ratio and chi square method for feature selection 
[1]. 
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Fig. 5. Basic Principle of Decision Tree Induction. 

The following methods for feature discretization are provided: cut-point strategy, 
chi-merge discretization, minimum description length, histogram-based discretization 
method and lvq-based method [1]. These methods allow one to make discretization of 
the feature values into two and more intervals during the process of decision-tree 
building. Depending on the chosen method for attribute discretization, the result will 
be a binary or n-ary tree, which will lead to more accurate and compact trees. The tool 
allows one to choose between cost-complexity pruning, error-reduction-based meth-
ods and pruning by confidence-interval prediction. The tool also provides functions 
for outlier detections. To evaluate the obtained error rate one can choose test-and-train 
and n-fold cross validation. Missed values can be handled by different strategies [1]. 

The user selects the preferred method for each step of the decision tree induction 
process. After that the induction experiment can start on the acquired database. A 
resulting decision tree will be displayed to the user. He/she can evaluate the tree by 
checking the features used in each node of the tree and comparing them with his/her 
domain knowledge. Once the diagnosis knowledge has been learnt, the rules are pro-
vided either in txt-format or XML format for further use in the image interpretation 
part or the expert can use the diagnosis component of the tool for interactive work. It 
has a user-friendly interface and is set up in such a way that non-computer specialists 
can handle it very easily. 

6.2 Case-based Reasoning for Image Interpretation 

It is difficult to apply decision trees in domains where generalized knowledge is lack-
ing. But often there is a need for a prediction system, even though there is not enough 
generalized knowledge. Such a system should  

1. Solve problems using the already stored knowledge and  

Class SepalLeng SepalWi PetalLen PetalWi

Setosa 5,1 3,5 1,4 0,2

Setosa 4,9 3,0 1,4 0,2

Setosa 4,7 3,2 1,3 0,2

Setosa 4,6 3,1 1,5 0,2

Setosa 5,0 3,6 1,4 0,2

Versicolor 7,0 3,2 4,7 1,4

Versicolor 6,4 3,2 4,5 1,5

Versicolor 6,9 3,1 4,9 1,5

Versicolor 5,5 2,3 4,0 1,3

... ... ... ... ...

Decision Tree 
Induction

---
150 DS

PETALLEN

<=2.45
50 DS

[Setosa  ]

>2.45
100 DS

PETALLEN

<=4.9
54 DS

PETALWI

<=1.65
47 DS

[Versicol]

>1.65
7 DS

[Virginic]

>4.9
46 DS

[Virginic]

ResultAttribute-Value Pair Representation Data Mining
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2. Capture new knowledge, making it immediately available to solve the next prob-
lem.  

To accomplish these tasks case-based reasoning is useful. Case-based reasoning 
explicitly uses past cases from the domain expert´s successful or failing experi-
ence. Therefore, case-based reasoning can be seen as a method for problem-solving 
as well as a method to capture new experience in an incremental fashion and make 
it immediately available for problem-solving. It can be seen as a learning and 
knowledge-discovery approach, since it can capture from new experience some 
general knowledge such as case classes, prototypes and some higher-level con-
cepts. We find these methods especially applicable for inspection and diagnosis 
tasks. In the case of these applications people store prototypical images into a digi-
tal image catalogue rather than a large set of different images [22]. 

We have developed a unit for Cell Interpret that can perform similarity determina-
tion between cases, as well as prototype selection [23] and feature weighting [24]. We 
call 𝑥𝑥𝑛𝑛 ∈ {𝑥𝑥1, 𝑥𝑥2 , … , 𝑥𝑥𝑛𝑛} a nearest-neighbor to x  if 
min 𝑑𝑑(𝑥𝑥𝑖𝑖 , 𝑥𝑥) = 𝑑𝑑(𝑥𝑥𝑛𝑛

, , 𝑥𝑥), where i= 1,2, … ,𝑛𝑛. The instance 𝑥𝑥 is classified into catego-
ry C𝑛𝑛, if 𝑥𝑥𝑛𝑛 is the nearest neighbor to 𝑥𝑥 and 𝑥𝑥𝑛𝑛 belongs to class  C𝑛𝑛. In the case of the 
k-nearest neighbor we require k-samples of the same class to fulfill the decision rule. 
As a distance measure we use the Euclidean distance. Prototype Selection from a set 
of samples is done by Chang`s Algorithm [23]. Suppose a training set 𝑇𝑇 is given as 
𝑇𝑇 = {𝑡𝑡1, … , 𝑡𝑡𝑚𝑚}. The idea of the algorithm is as follows: We start with every point in 
𝑇𝑇 as a prototype. We then successively merge any two closest prototypes p1and p2 of 
the same class by a new prototype p, if the merging will not downgrade the classifica-
tion of its patterns in 𝑇𝑇. The new prototype p may simply be the average vector of p1 
and p2. We continue the merging process until the number of incorrect classifications 
of the patterns in 𝑇𝑇 starts to increase.  

The wrapper approach is used for selecting a feature subset from the whole set 
of features. This approach conducts a search for a good feature subset by using the 
k-NN classifier itself as an evaluation function. The 1-fold cross-validation method 
is used for estimating the classification accuracy and the best-first search strategy 
is used for the search over the state space of possible feature combination.  The 
algorithm terminates if we have not found an improved accuracy over the last k 
search states. The feature combination that gave the best classification accuracy is 
the remaining feature subset. After we have found the best feature subset for our 
problem, we try to further improve our classifier by applying a feature-weighting 
technique. 

The weights of each feature W1are changed by a constant value 𝛿𝛿: 𝑤𝑤𝑖𝑖: = 𝑤𝑤𝑖𝑖 ± δ. 
If the new weight causes an improvement of the classification accuracy, the weight 
will be updated accordingly; if not, the weight will remain as it is. After the last 
weight has been tested the constant 𝛿𝛿 will be divided into half and the procedure 
repeats. The procedure terminates if the difference between the classification accu-
racy of two iterations is less than a predefined threshold.  
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6.3 Conceptual Clustering 

The intention of clustering as another image mining function is to find groups of simi-
lar cases among the data according to the observation. This can be done based on one 
feature or a feature combination. The resulting groups give an idea how data fit to-
gether and how they can be classified into interesting categories. Classical clustering 
methods only create clusters but do not explain why a cluster has been established. 
Conceptual clustering methods build clusters and explain why a set of objects confirm 
a cluster. Thus, conceptual clustering is a type of learning by observation and it is a 
way of summarizing data in an understandable manner [1]. In contrast to hierarchical 
clustering methods, conceptual clustering methods build the classification hierarchy 
not only based on merging two groups. The algorithmic properties are flexible enough 
to dynamically fit the hierarchy to the data. This allows incremental incorporation of 
new instances into the existing hierarchy and updating this hierarchy according to the 
new instance. 

A concept hierarchy is a directed graph in which the root node represents the set of 
all input instances and the terminal nodes represent individual instances. Internal 
nodes stand for sets of instances attached to the nodes and represent a super-concept. 
The super-concept can be represented by a generalized representation of this set of 
instances such as the prototype, the medium or a user selected instance. Therefore a 
concept C, called a class, in the concept hierarchy is represented by an abstract con-
cept description and a list of pointers to each child concept M(C)={C1, C2, ..., Ci, ..., 
Cn}, where Ci is the child concept, called subclass of concept C. 

Our conceptual clustering algorithm presented here is based on similarities, be-
cause we do not consider logical but numerical concepts [19]. The output of our algo-
rithm for applying eight exemplary shape cases of fungal strain Ulocladium Botrytis 
is shown in (Figure 6). On top level the root node is shown which comprises the set of 
all input cases. Successively the tree is partitioned into nodes until each input case 
forms its own cluster. The main advantage of our conceptual clustering algorithm is 
that it brings along a concept description. Thus, in comparison to agglomerative clus-
tering methods, it is easy to understand why a set of cases forms a cluster. During the 
clustering process the representative case, and also the variances and maximum dis-
tances in relation to this representative case, are calculated, since they are part of the 
concept description. The algorithm is of incremental fashion, because it is possible to 
incorporate new cases into the existing learnt hierarchy. 
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Fig. 6. Output of the Conceptual Clustering Algorithm for 2-D Shapes obtained from Fungal 

Spores. 

7 Results for Static 2D Image Analysis 

The kinds of cells that are considered in this application are HEp-2 cells, which are 
used for the identification of Antinuclear Autoantibodies (ANA). ANA testing for the 
assessment of systemic and organ-specific autoimmune diseases has increased pro-
gressively since immunofluorescence techniques were first used to demonstrate anti-
nuclear antibodies in 1957. HEp-2 cells allow for recognition of over 30 different 
nuclear and cytoplasmic patterns, which are given by upwards of 100 different auto-
antibodies. The identification of the patterns has up to now been done manually by a 
human inspecting the slides with the help of a microscope. The lacking automation of 
this technique has resulted in the development of alternative techniques based on 
chemical reactions, which do not have the discrimination power of the ANA testing. 
An automatic system would pave the way for a wider use of ANA testing. Prototypi-
cal images of HEp-2 cell patterns for six different classes are shown in Figure 7. The 
images were taken by an image-acquisition unit consisting of a microscope 
AXIOSKOP from Carl Zeiss Jena, coupled with a video camera. 

In a knowledge-acquisition process [25] with a human operator, using an interview 
technique and a repertory grid method, we acquired the knowledge of this operator, 
while classifying the different cell types. Some of this knowledge is shown in Table 2. 
The symbolic terms show that a mixture of different image information is necessary 
for classification. The operator uses the intensity as well as some texture information. 
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In addition, the appearances of the cell parts within the cells are of importance, like 
“dark nuclei”, which also requires spatial information.  
 

 
Fig. 7. Prototypical Images of Six Classes. 

Table 2. Some knowledge about the class description given by a human operator. 

Class Class Name Description 
Homogeneous 
nuclei fluores-

cence 

Class_1 Smooth and uniform fluorescence of the 
nuclei. 

Nuclei appear sometimes dark. 
The chromosome fluorescence is from 

weak  to very intense 
Fine speckled 
nuclei fluores-

cence 

Class_2 Dense fine speckled fluorescence 

... ... ... 
Nuclei fluores-

cence 
Class_9 Nuclei are weakly homogenous or fine-

grained and can hardly be discerned from 
the background 

 
Each image is processed by the image-analysis procedure described in the previous 

section. The color image is transformed into a gray-level image. The image is normal-
ized to the mean and standard gray level calculated from all images to avoid invari-
ance caused by the inter-slice staining variations. Automatic thresholding has been 
performed by the algorithm described in Section 4.1. For the objects in each slice, 
features based on the texture descriptor described in Section 5 are calculated for clas-
sification [26]. The first one is a simple Boolean feature which expresses the occur-
rence or non-occurrence of objects in the slice image. Then the number of objects in 
the slice image is calculated. From the objects, the area, a shape factor, and the length 

Class 1 Class 2 Class 3

Class 4 Class 5 Class 6
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of the contour are calculated. The mean value for each feature is calculated over all 
the objects in the slice image. This is done in order to reduce the dimension of the 
feature vector. Since the quantization of the gray level was done in equal steps and 
without considering the real nature, we also calculated for each class the mean 
value of the gray level and the variance of the gray level. A total of 192 features 
were calculated that make up a very intelligent structure and texture descriptor for 
cells [26]. The data base created from 7-10 images per class which made up 30 
cells per class is given to our decision tree unit. This unit learns the classification 
knowledge based on decision tree induction. Finally, the system was evaluated 
based on cross validation. The final result is shown in Table 2. The overall classifi-
cation accuracy is 92.73%. The class specific classification accuracy [1] is shown 
for each class in Table 3 on the right side of the table and the classification quality 
for each class in the bottom line of the table. In most of the classes we achieved 
good classification accuracy. There are only few classes where the classification 
accuracy is not as good as the other ones. It is interesting to note that in case of 
class_5 four cases got misclassified as class_14 “U1-RNP” but when checking 
with the expert it tended out that the classifier put these samples in the right class. 
The case was that the expert mislabeled the cases as class_5 while the automatic 
system recognized that these samples belong not to class_5 but to class_14. This 
example shows nicely that an automatic system can lead to standardization of cell 
image classification. It provides objective results, it works constantly without get-
ting tired and the results are reproducible. 

The computation time of an image for the Hep-2 application is 20 seconds by an 
image size of 1600x1200. This computation time is fast enough for the considered 
application and for most other applications. Users who like to have a faster compu-
tation time can easily speed up the computation time by parallelization. Paralleliza-
tion can be done in the simplest case by using more than one computer. In the 
hardest case, the whole algorithm can be set up in parallel fashion. 

The methods developed within the framework Cell Interpret have been applied 
to many different applications of microscopic cell images including Hep-2 cell, 
Hela-cells and Malaria diagnosis. They showed to be flexible enough for different 
kind of cell images diagnosis tasks and they efficiently enabled the mining of the 
relevant knowledge for the development of an automatic image interpretation sys-
tem. The Hep-PAD version developed based on Cell Interpret has been licensed to 
qualified industries and is meanwhile a commercial application in usage at differ-
ent medical laboratories e.g. by Prof. Landenberg from the University Clinic in 
Mainz/Germany. We are currently further developing the framework of Cell Inter-
pret to video microscopy and developing more feature extraction and image mining 
procedure that can further support the image mining process. 
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Table 3. Results for Hep-2 Pattern Analysis. 

 

8 Live Cell Tracking 

Live Cell Tracking is another important task in cellular and molecular biology as well 
as in drug discovery. Here we briefly present our novel algorithm for life cell tracking 
[41] and the features we calculate to describe the cell movement. 

The flowchart of the algorithm is given in Figure 8. 
At first, the image gets threshold by Otsu`s well-known segmentation procedure. Af-
terwards the morphological filter opening by a 3x3 window is applied to close the 
contour and the inner holes. Fragmented cells at the image borders as well as small 
remaining objects of a size of ten pixels are deleted. The cells at the image borders are 
only tracked when they fully appear inside the image. Around the object is drawn the 
convex hull and remaining holes or open areas inside the cell area are closed by the 
operation flat-fill. The resulting images after these operations are shown in Figure 3 
for five time frames (see Figure 9). This resulting area is taken as the cell area and the 
area with its grey levels is temporarily stored as template in the data base.  

Then the center of gravity of the object is determined and the search window is 
tentatively spanned around the object. A raw estimation of the cell’s movement direc-
tion is calculated by the mean-shift filter over 3 frames. In the resulting direction is 
started the search for similar cells. Cells fragmented by the window border are not 
considered for further calculation. Each cell inside the window is compared by the 
similarity measure to the respective template of the cell under consideration. Before 
the similarity is determined the cells are aligned, so that they have the same orienta-
tion. The cell having the highest similarity score to the template is labeled as the same  

Example: Result LDS6 and DM4  
  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15   Class Specific Quality 
  AmaCent Actin AMA Who Centromer CoarseSp Homogen Jo-1 Nucleolaer PMSCL SCL70 Speckled SS-A SS-B U1-RNP Vimentin Sum CSQ 
AmaCent 6                             6 100,00% 

Actin   7                           7 100,00% 

AMA Who     7                         7 100,00% 
Centromer       7                       7 100,00% 

CoarseSp         5           2         7 71,43% 
Homogen           8                   8 100,00% 

Jo-1             6                 6 100,00% 
Nucleolaer               7               7 100,00% 

PMSCL                 7             7 100,00% 

SCL70                   8           8 100,00% 
Speckled                     6         6 100,00% 

SS-A             1         7       8 87,50% 
SS-B                         7     7 100,00% 

U1-RNP         4           1     7   12 58,33% 

Vimentin                             7 7 100,00% 
Sum 6 7 7 7 9 8 7 7 7 8 9 7 7 7 7 110   

Cl. Qual. 100,00% 100,00% 100,00% 100,00% 55,56% 100,00% 85,71% 100,00% 100,00% 100,00% 66,67% 100,00% 100,00% 100,00% 100,00%   94,48% 
Classification Quality                 

                  
Total Number of 
samples     110  110             
Correct classied 
samples     102  106             

Correctness     92,73%  96,36%             

Error rate     7,27%  3,64%        
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Fig. 8. Flowchart of the algorithm 
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Fig. 9. Image after Threshold and Morphological Filtering 
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Fig. 10. Cells used for comparison 

cell moved to the position x,y in the image t+1. The template is updated with the de-
tected cell area for the comparison in the next time frame (see Figure 10). The posi-
tion of the detected cell is stored into the data base under the label of the template. 
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Mitotic cells are detected by classifying each cell based on the texture descriptor giv-
en in Perner and Attig [17] and a learnt decision tree classifier. 

Let CBtB be the cell at time-point t and CBt+1B the same cell at time point t+1.  Then the 
rule for labeling a cell as “disappeared” is: IF CBtB has no CBt+1B THEN Disappearing 
Cell.  

9 Results of Tracking Algorithm and Measures from the Path 

Results in Figure11 a-e show the tracking path of six different cells. We compared the 
manually determined path of a cell from an operator of the High-Content Screening 
Process-line with the automatic determined path by the tool IBaI-Track for 10 videos 
with 117 frames each. If both methods gave the same path we evaluated it as positive 
otherwise as negative. We observed a correspondence between these two descriptions 
of 98.2 %. That is a very good tracking result and means the method can nearly track 
all cells accurately. The computation time for a sequence of 117 images of 674x516 
pixels each and on average 80 cells per image is 11 minutes 42 seconds on PC with 
1.8 GHz.  

 

Fig. 11. Trajectory examples 

The output of the cell-tracking algorithm is a tuple of coordinates for each cell that 
describes that path of the cell (see Fig. 11a-11e and Fig. 12). Biologists want to study 
the kinetics of the cells. Therefore, we have to extract features from this path that 
describe the motility and velocity of a cell. Table 4 shows features that are used to 
describe the path of a cell. These features (see table 5) are provided in a table to the 
biologist for further study. Please note, one image contains many cells. As result, we 
obtain a bunch of numerical values for one image that is hard to overlook for a hu-
man. More high-level descriptions are necessary that summarize these features and 
their feature values in a more compact information about the kinetics of the cells in 
one image. Recently, biologist use statistical tools to study these features. More com-
plex image mining methods such as decision tree induction and conceptual clustering 
can be of help in order to bring out the higher-level descriptions. 
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Fig. 6e Tracking 
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Fig. 12. Path of a Cell marked with coordinate points 

Table 4. Measures for motility and velocity of a cell 
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Table 5. Output from the Celltracking Tool 

Cell Number Total Distance 

traveled 

Maximum 
distance trav-
eled 

… … … … Mean squared 
displacement 

Cell_1 500 200 … … … … 50 

… … … … … … …  

Cell_n Xn1 Xn2 … … … … Xn12 

10 Expert Opinion 

Recent developments are highly application oriented. Often the system works only in 
a semi-automatic modus [27,28] that puts a lot of work to the user using the system. 
Standard image processing methods are applied to specific tasks combined with a lot 
of heuristics [27-31] to make the methods more or less automatically work on the 
specific images. One such method is the Watershed-Transformation for image seg-
mentation [31]. We have developed a flexible and automatic Case-Based Watershed 
Transformation method where the WT can be adapted to the image characteristics of 
the image under consideration. 

Standard texture feature extraction procedures are used as well [32] but the random 
set approach as described here does have the flexibility to describe the different parti-
cles appearing in a cell and their randomness. Application-oriented systems that can 
only solve one specific task are very costly and it takes time to develop them. The 
success of automatic image-interpretation systems can only be guaranteed when the 
development effort is as low as possible and when they can be adapted quickly to 
different needs and tasks. The proposed architecture of Cell Interpret will help to 
overcome this problem. There are commercial High-Content Analysis developments 
where data mining capabilities are included in the system. However, a better under-
standing of when and how to apply these methods and how to interpret the results are 
necessary for the user. Therefore we are constantly working on a methodology of data 
mining that is presented in our data mining tutorial (www.data-mining-tutorial.de) 
and copied in our data mining tools included in Cell Interpret. 

Our novel cell tracking method can automatically track the cell in the image with-
out heavy interaction of the user. There are no parameters to adjust, except for the 
threshold of the similarity. This can be easily done, or the user can take the predefined 
threshold of the system developer. 

Another interesting observation in high-content analysis is that of images are creat-
ed by using different staining to make specific cell details/objects visible [33,34]. It is 
obvious that in the resulting images the specific object details/parts are most visible 
and the analysis of these images can be simply made. However, for a computer vision 
expert arises the question if this approach is really necessary in all case studies or 
would it be better to consider the whole task as a pattern recognition problem as has 

http://www.data-mining-tutorial.de/
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been done in the HEp-2 cell application and study the different patterns that appear 
when treating the cells in different ways. This statement might be a bit provocative 
and we have to admit that we do not know all applications in HCA but we would be 
happy to further discuss this with experts from the domain. 

We also think that a better categorization of the different image analysis tasks is 
necessary to ensure a standardization of the image analysis procedures in HCA or 
cellular and molecular biology. A first study in that direction has been given in 
[35] [36]. Biologists, computer scientists and all other people involved in this field 
need to further discuss this and find a common basis of understanding. The case-
based reasoning approach in our system architecture Cell Interpret we are recently 
being further developing for cell-tracking and 3D image analysis. 

11 Conclusion 

In this paper we have presented our architecture, Cell_Interpret, for High-Content 
Image Analysis (HCA) and cellular and molecular biology and the methods used for 
the different tasks such as image segmentation, feature extraction, image mining, 
classification and interpretation, and cell tracking. Most of the methods are based on 
case-based reasoning. CBR solves problems using already stored knowledge, and 
captures new knowledge, making it immediately available for solving the next prob-
lem. Therefore, case-based reasoning can be seen as a method for problem solving, 
and also as a method to capture new experience and make it immediately available for 
problem solving. It can be seen as a learning and knowledge-discovery approach, 
since it can capture from new experience some general knowledge, such as case clas-
ses, prototypes and some higher-level concepts. In this work we used CBR for meta-
learning of parameter for the different processing units and for learning the interpreta-
tion knowledge. The idea of case-based reasoning originally came from the cognitive 
science community which discovered that people are reasoning on formerly success-
fully solved cases rather than on general rules. Our interest is to build intelligent flex-
ible and robust data-interpreting systems [37-41] that are inspired by the human case-
based reasoning process and by doing so to model the human reasoning process when 
interpreting the cell images. 
Other methods that are used are decision tree induction, case-based reasoning, and 
conceptual clustering. Our decision tree induction unit can learn binary tree and n-ary 
trees that is novel, and it is not known to us that there is a commercial tool available 
that can do it. N-ary trees when having a better accuracy than binary trees are often 
more compact and present the knowledge in a better way to the user. Also, deep learn-
ing is nowadays the preferred method, we still rely on decision trees since they give 
the user an understanding how the decision has been made.  

Case-based reasoning is to prefer when no generalized knowledge is available. 
That is often the case when starting a new HCA or biological experiment. 

Conceptual clustering is our choice for learning groups since it is an incremental 
learning method and brings out the concept of the cluster. We have developed own 
conceptual learning methods and included in our tool. 
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Our feature descriptor based on random sets if flexible enough to describe the dif-
ferent texture and has also knowledge explanation capabilities. 

Finally, we think that a better categorization of the different image analysis tasks is 
necessary to ensure a standardization of the image analysis procedures in HCA or 
cellular and molecular biology. This task must be done together with the domain ex-
perts. It will help to develop more specific methods and algorithm that can be easily 
used by the domain expert without having heavy knowledge in image analysis and 
interpretation. 
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