
Transactions on Machine Learning
and Data Mining
Vol. 1, No. 2 (2008) 67 - 82
c©ISSN:1865-6781 (Journal),
IBaI Publishing ISSN 1864-9734

Distributed Monitoring of Frequent Items

Robert Fuller and Mehmed Kantardzic

Computer Engineering and Computer Science Department
University of Louisville, Louisville, KY 40292

{rhfull01, mmkant01}@louisville.edu

Abstract. Monitoring frequently occuring items is a recurring task in
a variety of applications. Although a number of solutions have been
proposed there has been few to address the problem in a distributed
networked environment. Most past solutions relied upon approximating
results to lower communication overhead. In this paper we introduce a
new algorithm designed for continuously tracking frequent items over
distributed data streams providing either exact or approximate answers.
We tested the efficiency of our method using two real-world data sets.
The results indicated significant reduction in communication cost when
compared to näıve approaches and an existing efficient algorithm called
Top-K Monitoring. Since our method does not rely upon approximations
to reduce communication overhead and is explicitly designed for tracking
frequent items, our method also shows increased quality in its tracking
results.

Keywords: data stream, distributed data mining, frequent items, con-
tinuous query.

1 Introduction

Many applications require discovering items in a data stream which have oc-
curred frequently. An item is defined to be frequent if it accounts for a high
percentage of the total number of occurrences seen so far. An important appli-
cation of this problem is that of detecting distributed denial of services (DDoS)
attacks in a network. DDoS attacks are characterized by a surge of traffic used
to overload the resources of a victim [1]. Recently, methods have been used to
detect these attacks by identifying destination addresses which have received a
large number of packets over a given time [2–4]. Additionally, similar tracking



68 Robert Fuller and Mehmed Kantardzic

tasks can be used for network flow and traffic management [5], worm detection
[6], and click-fraud detection [7].

In this paper we consider the problem of monitoring frequent items over
distributed data sources. More precisely, given a set of data streams originating
from dispersed sources, we will report the up-to-date list of frequently occurring
items in real-time. This problem is difficult since it inherits the challenges that
many data stream analysis tasks possess. These challenges include a very rapid
rate of data entry with potentially no foreseeable end point. To overcome these
obstacles past solutions have opted to process the stream in only a single pass
[8]. This often provides for a faster response time needed to keep pace and
prevents the need to buffer the stream into memory. Data stream analysis is
made additionally more difficult when placed in a distributed environment. Not
only must computation constraints be maintained, but communication must be
limited to observe any imposed network constraints.

Due to the difficulties described, it is not surprising that few solutions have
been proposed [9, 10, 3]. Most available solutions focus only on the computational
constraints such as memory requirements, and were not designed to operate in a
distributed environment [11–15]. In this paper we present the FIDS (Monitoring
Frequent Items over Distributed Data Streams) system also introduced in our
preliminary work [16]. Heavily influenced by an existing method we call Top-K
Monitoring [9], the FIDS system is explicitly designed to track frequent items
in a distributed environment. Additional contributions are made in this work by
providing an approach to reducing and bounding memory requirements. Work in
this direction is important in applications where memory is heavily constrained.

The remainder of this paper will be organized as follows. Section 2 gives a
formal definition of our problem and discusses prior work in the defined domain.
Sect. 3 we describe in detail the FIDS system. Extensions to account for memory
constraints are provided in Sec. 4. We evaluate our method based on a series of
criteria in Sect. 5. Finally, closing remarks are given in Sect. 6.

2 Preliminaries

2.1 System Architecture

In this paper we considered a distributed monitoring environment defined as a
single-level hierarchical architecture [9]. It consists of m monitoring nodes and
a specialized coordinator node. Of the nodes N1, N2, . . . , Nm each observe and
summarize a single local data stream Si. Partial knowledge of these summarizes
are collected at the specialized coordinator node N0. With the knowledge gath-
ered, the coordinator is responsible for reporting continuously the set of frequent
items over the union of the m distributed data streams. As in previous work [9,
10], communication is only conducted among the monitoring nodes and the co-
ordinator node. No direct communication between monitoring nodes is allowed.
A schematic of this architecture can be seen in Fig. 1.

The locally observed data streams at each node, S1, S2, . . . , Sm are modeled
as a sequence of update tuples. Each update tuple is of the form 〈oj , t〉, where



Distributed Monitoring of Frequent Items 69

Coordinator Node

Monitor Node 1 Monitor Node 2 Monitor Node m….

S1 S2 Sm

Frequent Item Set

User

Fig. 1. Single-level distributed monitoring architecture.

oj is an item pulled from a (possible large) set of allowable identifiers U and
t represents the timestamp. To summarize the data streams each monitoring
node Ni maintains a set of frequency counts Ci = {c1,i, c2,i, . . . , cn,i}. For each
update tuple 〈oj , t〉, cj,i is incremented by one. Therefore, each data stream is
summarized as a frequency distribution set.

2.2 Frequent Item Problem Definition

The responsibility of the coordinator node, in our monitoring structure, is to re-
port all items which are globally frequent. We define an item oj globally frequent
if

∑
1≤i≤m cj,i ≥ s ·N , where s ∈ (0, 1) is a user defined support parameter and

N =
∑

1≤i≤m |Si|. The collection of all items meeting this criterion we call the
frequent item set, denoted by F .

To allow approximate results we adopted an extended definition, called the
ε-deficient frequent items problem [14]. In this scenario the user provides a de-
sired error tolerance quantity controlled by variable ε � s. Each counter cj,i on
monitoring node Ni is then replaced by an estimation counter ĉj,i, which at all
times cj,i−ε ·N ≤ ĉj,i ≤ cj,i. Since each counter now only provides estimated fre-
quencies, which is potentially less than its true frequency by a bounded amount,
we report all items oj as frequent if

∑
1≤i≤m ĉj,i ≥ (s − ε) · N .

The purpose of providing approximate results is to reduce memory required
on each monitoring node. This comes at a cost of reporting some false positives
(items which are not truely frequent). The amount of false positives is governed
both by the way the estimation counters are managed and the level of error
tolerance. (Note, if ε = 0 we will provide exact results in the fashion discussed
at the beginning this section.)



70 Robert Fuller and Mehmed Kantardzic

2.3 Prior Work

Most prior work has focused primarily in the single stream problem domain.
The goal of these solutions are to reduce the number of counters stored at a
monitoring site. That is, they commonly address the problem of finding the
ε-deficient frequent items.

Several algorithms have been proposed to solve the ε-deficient frequent items
problem. Two popular methods are Lossy Counting and Frequent algorithms.
Lossy Counting, one of two methods proposed by Manku and Motwani, requires
O(1

ε · log(εN)) space [14]. Frequent requires only O(1
ε ) space and O(1) time [13],

and although theoretically an improvement, Lossy Counting requires less space
in practice on skewed data [11]. More recently an algorithm called Space-Saving
has been proposed, which was compared against several prior solutions. This
method provided significantly better precision at the cost of using more space
[15].

Very little prior work has been completed in the distributed stream environ-
ment. Prior solutions can be categorized into three approaches. The first category
we call a periodic approach. An example of this approach was proposed in [3]. In
this paper frequency counts were propagated up a hierarchical communication
structure following a fixed time period. To reduce communication, frequency
precision at each level of the communication tree was addressed. A major draw
back of this method is that it cannot provide continuous results without re-
quiring a high communication overhead. The second category we call a cache
approach. Cormode and Garofalakis in [10] introduced an approach of this type.
Their method maintains a summary of the input stream and a prediction sketch
at each monitoring node. If the summary deviants from the prediction sketch
by more than a user defined tolerance amount, the summary and (possibly) a
new prediction sketch is sent to a coordinator node. A major drawback of this
approach is that the total error tolerance must be significant enough to prevent
small deviations from triggering summary refreshes. The third category we call
the synchronization approach. The Top-K Monitoring approach by Olston and
Babcock is an example of this approach [9]. Their solution addressed the similar
problem of finding the top-k occurring items, which can can be used to monitor
frequent items indirectly.

2.4 Our Contributions

It was the goal of this work to build off the experiences of the past in order to
provide a system to explicitly monitor frequent items in a distributed stream
environment. The solution was required to minimize communication overhead
and consider computation constraints such as memory. In this paper we will
introduce this system, examining the following three points:

1. Experimentally demonstrate the weaknesses of tracking frequent items utiliz-
ing Top-K Monitoring. The results indicate, although adequate under certain
circumstances, better approaches should be considered.



Distributed Monitoring of Frequent Items 71

2. Present a new approach which greatly reduces communication overhead and
considers the problem directly for improved output quality. We call this new
approach the FIDS monitoring system which is heavily influenced by Top-K
Monitoring.

3. Include extensions to the FIDS system for reducing memory requirements by
accommodating ε-deficient frequent items. Evaluation of our approach indi-
cates little overhead when compared to the worst case memory requirements
of less complex single stream applications.

3 Frequent Item Monitoring

FIDS begins following a specified length of time called an initialization phase.
This phase can be accomplished in two ways. One option is to issue an efficient
one-time frequent item query. This option will reduce communication overhead,
however, monitoring will not begin until the time period has elapsed. The second
option is to forward all update tuples to the coordinator node. This will require
more communication overhead but allow monitoring to begin immediately. De-
pending on the needs of the user any of these two methods can be used, although
it is highly recommended that an initialization phase is used.

Once initialization is completed, the coordinator broadcasts the current global
frequent item set to each monitoring node. With the current global set, each mon-
itor then installs a series of parameterized constraints. These constraints consist
of two core components and are used to determine if the global frequent item
set has changed over time.

The first component of the parameterized constraints is a local threshold
value Ti, kept by each corresponding monitoring node Ni. The value of each
threshold is managed in a fashion so that at all times Ti = s · |Si|. This is
achieved by incrementing Ti by the user defined support s for each input tuple
to Ni. Summing the threshold values across each monitoring nodes we see that
T• =

∑
1≤i≤m Ti =

∑
1≤i≤m s · |Si| = s · N . Thus the global frequent item

threshold is divided amongst each monitoring node, and each local threshold Ti

represents a portion of this division.
The second component of the parameterized constraints is a series of adjust-

ment factors. These adjustment factors are borrowed directly from the Top-K
Monitoring approach and are used to shift item occurrences amongst the nodes
to facilitate local constraint checking [9]. For each item oj and node Ni a corre-
sponding adjustment factor δj,i is defined. For the correctness of the monitoring
approach, each adjustment factor must meet three requirements:

1. For each item oj its corresponding adjustment factors must sum to zero
across all nodes:

∑
0≤i≤m δj,i = 0.

2. For each item of ∈ F , its corresponding adjustment factor at the coordinator
node is greater than or equal to zero: δf,0 ≥ 0.

3. For each item onf �∈ F , its corresponding adjustment factor at the coordi-
nator node is less than or equal to zero: δnf,0 ≤ 0.



72 Robert Fuller and Mehmed Kantardzic

Utilizing the two core components just introduced, we can now define the
parameterized constraints. For each item observed at monitoring node Ni, the
following constraints are installed:

1. If an item oj ∈ F , then the installed constraint is defined: cj,i + δj,i ≥ Ti.
2. If an item oj �∈ F , then the installed constraint is defined: cj,i + δj,i < Ti.

If all the parameterized constraints hold for each node, then for every oj ∈ F ,∑
1≤i≤m cj,i+

∑
0≤i≤m δj,i ≥

∑
1≤i≤m Ti or

∑
1≤i≤m cj,i ≥ T•. Likewise for every

oj �∈ F ,
∑

1≤i≤m cj,i +
∑

0≤i≤m δj,i <
∑

1≤i≤m Ti or
∑

1≤i≤m cj,i < T•. Thus, as
long as all constraints hold, the set of frequent items is guaranteed to be valid.
In the event any one constraint is violated, the coordinator is notified that the
current set may no longer be valid. At this point the coordinator begins a process
called resolution to determine the new frequent item set.

3.1 Resolution

Whenever a local constraint is broken on any monitor node a three phase process
called resolution is initiated. The purpose of this process is to determine if the
frequent items set has changed and to assign new adjustment factors so that all
parameterized constraints hold. This process is modified from Top-K Monitoring
changing validation tests and message content. The changes made to the three
phases are described below.

To begin the resolution process, in Phase 1 the monitor containing an invalid
constraint NI sends a message to the coordinator. This message contains a set
of frequency counts, adjustment factors, and item identifiers which are involved
in violated constraints. Also included in the message sent to the coordinator, is
the local threshold value of the monitor. This value is used later for calculating
the new adjustment factors.

It is important to note that the entire frequent item set does not need to be
sent to the coordinator. The membership of an item in F is independent of any
other item. As we will see later this is very important in reducing communication
overhead, when comparing FIDS to Top-K Monitoring.

In Phase 2 the coordinator node determines if the frequent item set is still
valid using information gathered from NI and its own stored adjustment factors.
For each violated constraint, the coordinator performs the following tests:

1. If oj ∈ F then the test performed is cj,I + δj,I + δj,0 ≥ TI .
2. If oj �∈ F then the test performed is cj,I + δj,I + δj,0 < TI .

In the event that all violated constraints passed their respective tests, a pro-
cess called reallocation is initiated and resolution terminates. If any one test
fails, however, Phase 3 is initiated instead. In Phase 3 of resolution, the coor-
dinator contacts each monitoring node Ni : i �= I and collects the frequency
counts, adjustment factors, and item identifiers corresponding to those involved
in violated constraints on NI . Also collected, are the local threshold values for
each monitor contacted. Once all the values are collected the new frequent item



Distributed Monitoring of Frequent Items 73

set is determined, reallocation is initiated, and resolution terminates. Phase 3
of resolution can also be called a synchronization phase, as all monitors in the
network are contacted to determine the new set F .

3.2 Reallocation

Before the resolution process can terminate, new adjustment factors must be
assigned to all nodes involved in the resolution process. Borrowing from Top-
K Monitoring, we call this set of nodes N the participating nodes. If resolution
terminated after Phase 2, then N = {NI , N0}, otherwise, N = {N0, N1, . . . , Nm}
[9]. The process responsible for all reassignments is called reallocation. Like
resolution, this process is a modification of the same process found in Top-K
Monitoring. The process and changes made are now described.

The first step of reallocation is the summation process. That is, we sum
all weighted frequencies (cj,i + δj,i) and sum all thresholds retrieved from the
participating nodes. Next the difference ∆j is calculated by subtracting the two
sums respectfully. Whenever N contains all the monitoring nodes, ∆j represents
the amount an item is over or under the global threshold.

The third step of reallocation is the tightening process. For each monitoring
node Ni ∈ N and item oj , we assign a new adjustment factor δ′j,i so that the
adjusted frequency is equal to the local threshold value. Doing this step alone is
enough to guarantee that each item in F will have valid constraints.

The final and fourth step, assigns a portion of ∆j to the new adjustment
factor assigned in Step 3. The amount added is based on an allocation parameter
0 ≤ Fi < 1 corresponding to node Ni. Allocation parameters are set in a fashion
to control the amount of ∆j given to node Ni and is required that

∑
0≤i≤m Fi =

1. This notation is similar to that of Top-K Monitoring with exception that
Fi �= 1. That is, we can not assign ∆j entirely to any single node. Any item
oj �∈ F must have a value less than its local threshold. As a result of this
requirement and the assignments made previously, we must assign a portion of
∆j to the new adjustment factors in order for all constraints to be valid.

Given the description above, the reallocation procedure can be expressed
formally with two expressions.

1. ∆j =
∑

i∈N cj,i +
∑

i∈N δj,i −
∑

i∈N Ti.
2. δ′j,i = Ti − cj,i + Fi · ∆j .

The first expression represents the summation process, while the second ex-
pression represents the final steps. For each item involved in an invalid constraint
oj , both expressions are evaluated to determine the new adjustment factor δ′j,i
where i ∈ N represents node Ni. Comparing these two equations to those used in
Top-K Monitoring will show that the reallocation method original designed can
be re-used. Assigning the parameters used in Top-K Monitoring appropriately
will result in the definitions given above.



74 Robert Fuller and Mehmed Kantardzic

4 Monitoring Memory Reduction

4.1 Frequency Count Reduction

To reduce memory requirements for our method we cannot store a frequency
count and corresponding adjustment factor for each observed item. Instead we
can only store a subset of observed items utilizing techniques described in Sect.
2.3. Each of these solutions has the commonality of reducing space by utilizing
estimation counters.

In this paper we adopted the MG algorithm to manage the frequency counts
on each monitoring node [13, 17, 18]. This algorithm requires only O(1

ε ) counters
to summarize a data stream. The MG algorithm works by maintaining a set of
counters for each item observed, decrementing all counters by one when there
are more than 1

ε counters in memory. Any counter with a frequency of zero does
not need to be stored and is thus removed from memory. With this method it
is easy to prove that each local counter is under counted by at most ε · |Si| and
thus comply with our definition of estimation counters.

Since the MG algorithm under-counts each frequency, we must modify our
local thresholds T1, T2, . . . , Tm. There are two approaches of making this mod-
ification. First, for each update tuple observed at node Ni we can increment
Ti by (s − ε). Maintaining the threshold value in this fashion we see that T• =∑

1≤i≤m Ti =
∑

1≤i≤m(s−ε)·|Si| = (s−ε)·N , which complies with our definition
of the ε-deficient frequent items problem. Second, for each update tuple observed
at node Ni we increment Ti by one. Whenever a batch decrement occurs, we also
decrement the threshold. Since there can be at most ε · |Si| decrements at each
node, we see that (s− ε) ·N ≤ T• ≤ s ·N . We believe this second approach will
greatly improve the quality of our results by providing a threshold that more
accurately reflects the error injected into our counters.

4.2 Adjustment Factor Maintenance

Recall from the previous section, that the MG algorithm removes any counter
with frequency equal to zero. However, we cannot remove an associated non-zero
adjustment factor, otherwise we invalidate adjustment factor requirement 1 (see
Section 2.3). To prevent this, all corresponding negative value adjustment fac-
tors are forwarded to the coordinator. Since the value of the adjustment factor
is negative, this will not invalidate requirement 3. We maintain, however, all
positive value adjustment factors. To prevent an accumulation of these values,
the coordinator redistributes forwarded negative adjustment factors to the re-
maining monitoring nodes with positive adjustment factors. Theorem 2 shows
that it is always the case that such a node exists.

Theorem 1. If there is an adjustment factor δj,i < 0 with corresponding counter
cj,i = 0 at node Ni, then there exists a monitoring node Np containing δj,p > 0.

Proof. With adjustment factor requirement 1 we know that
∑

1≤i≤m δj,i = 0.
Thus if there is a δj,i < 0, there must be a node Np containing corresponding



Distributed Monitoring of Frequent Items 75

δj,p > 0. Since the adjustment factor is δj,i < 0 and its corresponding counter
cj,i = 0, we know that the item oj is globally infrequent. With adjustment
factor requirement 3, we know that δj,p is not at the coordinator node. Thus δj,p

is located on a monitoring node Np. 	


To determine which nodes contain a positive adjustment factor, we can store
all adjustment factor assignments at the coordinator. With this knowledge the
coordinator can both determine which nodes to forward the negative adjustment
factor to and how much of its value to forward. We only want to forward enough
so that to cancel the positive adjustment factor out at the receiving nodes,
otherwise, we may be forced to repeat this step over wasting communication.

Finally, the coordinator itself may also contain an associated adjustment fac-
tor. This adjustment factor will be negative since the item in question is globally
infrequent. As a result, whenever the coordinator is assigning new adjustment
factors, if its determined that there are no longer any monitoring nodes con-
taining a negative adjustment factor, the coordinator must redistribute it owns
negative adjustment factor. This may occur upon receiving a forwarded adjust-
ment factor or during the reallocation process.

4.3 Memory Requirements

With the method for maintaining both the frequency counts and their corre-
sponding adjustment factors we can now determine the memory requirements
for both the monitoring nodes and the coordinator.

Theorem 2. Each monitoring node uses at most O(m
ε ) counters and corre-

sponding adjustment factors.

Proof. Using the MG algorithm and the adjustment factor maintenance policy
given, there are at most 1

ε plus any positive adjustment factors. In the worst
case each item observed locally on each node is unique globally and requires an
associated adjustment factor. In this case we will have m−1

ε positive adjustment
factors. Thus, we see that the memory requirements is O(m

ε ). 	


Since the coordinator only stores adjustment factors we can also bound the
memory requirements.

Theorem 3. The coordinator node has at most O(m2

ε ) adjustment factors stored
in memory.

Proof. The coordinator node maintains the adjustment factor assignments made
to each node. In the worst case each item observed locally on each node is unique
globally and requires an associated adjustment factor. In this case, we have m

ε
unique items in the system and m

ε · (m+1) adjustment factor assignments. Thus
the coordinator node stores at most O(m2

ε ) adjustment factors in memory. 	




76 Robert Fuller and Mehmed Kantardzic

5 Experimental Evaluation

5.1 Data Sets and Experiment Methodology

Data Sets To evaluate the FIDS system we used two public data sets. The
first data set consists of wide-area network traffic between Lawrence Berkeley
Laboratory and the rest of the world [19]. The data set contains 1.8 million TCP
packets with 1,622 unique user IDs. To simulate a distributed environment we
evenly assigned each packet to one of four nodes and tracked frequent users. The
second data set consists of 1998 World Cup web requests on 9th June [20]. The
data set contains approximately 20 million requests with nearly 10,000 unique
requested item IDs. For our monitoring task, we tracked frequently requested
object IDs using 26 monitoring nodes (one for each active server).

Performance Measures For our experimentation we evaluated performance
using two criteria. The first criteria is communication cost. In all our studies, we
preformed exact counting and did not use our adjustment factor maintenance
policy. As a result, communication is only conducted during resolution. The
number of bits transmitted per resolution phase (EPR) can be formally expressed
with the following equation:

EPR = 128 · |F| · |N ′| + 64 · |N ′| + 96 · |F| · |N ′| . (1)

In (1) we define |F| as the number of invalid constraints and N ′ = |N −
{N0}|. We make two assumptions on data representation. First all local threshold
and adjustment factors are represented with 64 bits and all remaining elements
(including each update tuple) require 32 bits.

Our second performance criteria measures output quality. From information
retrieval we adopted the concepts of precision and recall. Precision is the per-
centage of relevant items found in the output and recall is the percentage of
relevant items found compared to the total possible [12]. To measure the overall
output quality we adopted the equation provided in [21] listed below.

F-Measure =
2PR

(P + R)
. (2)

5.2 Experimental Results

Parameter Effects on Communication Cost The FIDS system consists of
a number of user defined parameters. In our studies we investigated the effects
of the support value s and the coordinator allocation parameter F0 on communi-
cation cost. Figure 2 and Fig. 3 shows the effects of these two parameters using
the two data sets described in Sect. 5.1.

The figures show opposite results with respect to the effects of F0. We see for
the Berkeley TCP data set that as the allocation parameter is increased commu-
nication cost also increased, but the opposite occurs with the World Cup data



Distributed Monitoring of Frequent Items 77

0%

5%

10%

15%

20%

 0  0.2  0.4  0.6  0.8  1

C
om

m
un

ic
at

io
n 

C
os

t

Coordinator Reallocation Parameter (F0)

Berkeley TCP Data

even, s = 0.005
even, s = 0.01
even, s = 0.02

Fig. 2. Communication cost for Berkeley data set.

0%

20%

40%

60%

80%

100%

 0  0.2  0.4  0.6  0.8  1

C
om

m
un

ic
at

io
n 

C
os

t

Coordinator Reallocation Parameter (F0)

1998 World Cup Data

even, s = 0.01
even, s = 0.008
even, s = 0.006

Fig. 3. Communication cost for ’98 World Cup data set.



78 Robert Fuller and Mehmed Kantardzic

set. The analysis of Top-K Monitoring demonstrated that when F0 is increased
resolution can terminate more often in Phase 2, however, constraints are broken
more frequently [9]. This same phenomenon is exhibited with our FIDS system.
Since the Berkeley TCP data set consists of only four monitors, Phase 3 required
little communication cost and the weaker constraints could not offset this cost.
Derived from our observations, we recommend that when few monitoring nodes
are within the system a small F0 value (< 0.3) should be used.

With respect to the support parameter s, both figures demonstrate the same
general pattern. As s is increased, communication cost is decreased. An anomaly
was exhibit, however, in the World Cup data set with s = 0.008. We speculate
that in this scenario F becomes more volatile, demonstrating the need for the
data to maintain a degree of stability in order for significant reduction in com-
munication cost to be realized.

Finally, we have yet to address the effects of monitor allocation parameters
F1, F2, · · · , Fm. In our studies we examined two heuristics for assigning these
values. These two methods are defined as proportional allocation and even allo-
cation and were both introduced in [9]. Our experiments showed no significant
differences between the two methods, thus we used even allocation in all our
experiments.

Communication Cost with Time We see in Fig. 4 how communication cost
accumulates with time. To retrieve these results we set F0 = 0 and allowed
the support value to vary. In each case a sudden spike in communication cost is
exhibited followed by a gradual increase. This gradual increase will continue even
further past our stopping point of 500,000 updates until the data set is exhausted.
These results demonstrate the need for an initialization phase. Extending the
time period for initialization to cover the first 100,000 tuples will drastically
reduce communication cost in our results.

0%

10%

20%

30%

40%

50%

60%

70%

80%

 0  100000  200000  300000  400000  500000

C
om

m
un

ic
at

io
n 

C
os

t

Monitoring Nodes

1998 World Cup Data

s = 0.01
s = 0.008
s = 0.006

Fig. 4. Communication cost over time for ’98 World Cup data set.



Distributed Monitoring of Frequent Items 79

Memory Requirements Evaluation Our previous evaluations demonstrated
communication cost with respect to exact counting. To reduce memory require-
ments error tolerance ε can be increased. We investigated the memory require-
ments of our policies with varying support values and settings ε = 0.1 · s. Since
the majority of space required is dedicated to maintaining frequency counts, the
maximum number stored on any monitoring node was used as our measure. The
results of our experiments are given in Table 1.

Table 1. Counter statistics and worst cases.

Support O(m
ε
) O( 1

ε
) Actual Used

’98 World Cup 0.010 26,000 1,000 1,281
Data Set 0.008 32,500 1,250 1,521

0.006 43,334 1,667 1,895
Berkeley TCP 0.020 2,000 500 502

Data Set 0.010 4,000 1,000 1,001
0.005 8,000 2,000 1,489

Given in Table 1 are the maximum counts used by any monitor, as well
as, the worst case bound for our method O(m

ε ). Also included is the worst
case memory requirements for any centralized monitoring approach O(1

ε ) for
comparison. Ideally, our method would use approximately the same amount of
memory as any centralized approach in practice. Our results verify that this is
true, since in all cases the number of counters used is much closer to 1

ε than it
is to m

ε .
Also examined in our experiments was the communication cost required to

maintain the adjustment factors. We saw that communication cost was between
−1.5% and 0.5% from our previous results. However, since all adjustment factors
are stored at the coordinator node and do not need to be forwarded during
resolution, communication can be reduced even more. This signifies that our
adjustment factor maintenance policies are both lightweight and communication
efficient.

5.3 Comparison

Comparison against Top-K Monitoring To measure the benefits gained
from our FIDS system we used the results of Top-K Monitoring as a benchmark.
Although Top-K Monitoring was not originally designed for monitoring frequent
items, it can be used for this purpose. Assigning K = 1

s will guarantee that all
frequent items are reported. However, this setting will also report a large amount
of false positives. To reduce the number of false positives and improve the overall
quality of our results, we considered setting K < 1

s . Experiments demonstrated
that if K ≈ |F | we can both improve output quality and reduce communication
cost.



80 Robert Fuller and Mehmed Kantardzic

Given the above observation, we examined the communication cost and out-
put quality using the Berkeley TCP data set. Our results for both the FIDS
system and Top-K Monitoring are summarized in Table 2 below. In our com-
parison table we selected the coordinator allocation parameter F0 which yielded
the lowest communication cost.

Table 2. Comparison of two approaches.

Method Support Avg. Output Communication F-Measure
Size Cost

Top-K Monitoring 0.005 50.00 143.34% 95.37%
0.01 20.00 46.66% 96.07%
0.02 10.00 12.20% 83.62%

FIDS 0.005 52.25 7.43% 100.00%
0.01 21.45 7.03% 100.00%
0.02 7.48 2.70% 100.00%

Table 2 illustrates that in all scenarios communication cost is significantly
reduced with the FIDS system. This becomes more pronounced when a lower
support value is supplied. In one scenario, however, Top-K Monitoring did per-
form better. When K = 5 and s = 0.02 communication cost is reduced by less
than a percent, but the output quality is less than optimal.

With respect to output quality, the FIDS system out-performed Top-K Mon-
itoring in all scenarios. This is not surprising since Top-K Monitoring was not
specifically designed for monitoring frequent items. It must be noted, however,
that if our memory management policies are introduced, the quality of the out-
put will also be effected. This is depended upon the amount of allowable error
tolerance the user specifies.

Comparison against Prior Work In Sect. 3 we introduced three methods
applicable to our problem domain. Of the three methods, the FIDS system is
the only solution that is capable of providing exact results. Both the periodic
and cache approaches relied upon approximation to reduce communication cost.
Top-K Monitoring, as discussed previously, also cannot produce exact results
since it was not specifically design for our task.

Despite our attempts to reduce memory requirements in Sect. 4 it is not
known if the FIDS system requires less memory in practice. Compared to the
cache approach provided in [10], if m > 1

ε log(1
δ ), where (1− δ) is a probabilistic

confidence, our approach will in worst case use more space on each monitoring
node. Since all adjustment factors are stored at the coordinator, more memory
will also be required at this location.



Distributed Monitoring of Frequent Items 81

6 Conclusions

In this paper we addressed the problem of continuously monitoring frequent
items in a distributed data stream environment. We analyzed a previous solu-
tion called Top-K Monitoring and determined that it can also solve this problem.
However, modifications to the algorithm were made which both reduced com-
munication cost and improved the overall quality of the output. Finally, we
extended our system addressing memory constraints. Empirical studies showed
that memory was reduced to near worst case quantity required of any monitoring
approach.

A few issues still need to be addressed to improve upon the FIDS system.
First, our experiments demonstrated the importance of an initialization phase.
Alternative methods should be implemented and communication cost reevalu-
ated. Additionally, heuristics should be determined on the length of time needed
to ”warm-up”. Second, further research in memory reduction and adjustment
factor maintenance is needed to obtain an improved theoretical bound. Finally,
the scalability of the FIDS system needs to be evaluated.

References

1. Peng, T., Leckie, C., Ramamohanarao, K.: Proactively detecting distributed denial
of service attacks using source IP address monitoring. NETWORKING 2004,
Networking Technologies, Services, and Protocols; Performance of Computer and
Communication Networks; Mobile and Wireless Communications. (2004) 771–752

2. Akella, A., Bharambe, A., Reiter, M., Seshan, S.: Detecting DDoS attacks on ISP
networks. (2003)

3. Manjhi, A., Shkapenyuk, V., Dhamdhere, K., Olston, C.: Finding (recently) fre-
quent items in distributed data streams. In: Proc. of Int. Conf. on Data Engineering
(ICDE), Washington, DC, IEEE Computer Society (2005) 767–778

4. Sekar, V., Duffield, N., Spatscheck, O., van der Merwe, J., Zhang, H.: LADS: large-
scale automated DDOS detection system. In: Proc. of the Annual Conf. on USENIX
’06 Annual Technical Conference, Berkeley, CA, USA, USENIX Association (2006)
171–184

5. Stanojevic, R.: (Scalable heavy-hitter identification) Also available as
http://www.hamilton.ie/person/rade/ScalableHH.pdf.

6. Kim, H.A., Karp, B.: Autograph: toward automated, distributed worm signature
detection. In: Proc. of the USENIX Security Symposium, Berkeley, CA, USA,
USENIX Association (2004) 271–286

7. Metwally, A., Agrawal, D., Abbadi, A.E.: Using association rules for fraud detec-
tion in web advertising networks. In: Proc. of the 31st international conference on
Very large data bases, VLDB Endowment (2005) 169–180

8. Zhu, Y., Shasha, D.: Statstream: statistical monitoring of thousands of data
streams in real time. In: Proc.s of the 28th Intl. Conf. on Very Large Data Bases,
VLDB Endowment (2002) 358–369

9. Babcock, B., Olston, C.: Distributed top-k monitoring. In: Proc. of ACM SIGMOD
Int. Conf. on Management of Data, New York, ACM (2003) 28–39



82 Robert Fuller and Mehmed Kantardzic

10. Cormode, G., Garofalakis, M.: Sketching streams through the net: distributed
approximate query tracking. In: Proc. of Int. Conf. on Very Large Data Bases
(VLDB), VLDB Endowment (2005) 13–24

11. Arasu, A., Manku, G.S.: Approximate counts and quantiles over sliding windows.
In: Proc. of the 23rd ACM Symposium on Principles of Database System (PODS),
New York, ACM Press (2004) 286–296

12. Cormode, G., Muthukrishnan, S.: What’s hot and what’s not: tracking most fre-
quent items dynamically. ACM Trans. Database Syst. 30(1) (2005) 249–278

13. Demaine, E.D., López-Ortiz, A., Munro, J.I.: Frequency estimation of internet
packet streams with limited space. In: Proc. of Annual European Symposium on
Algorithms, London, UK, Springer-Verlag (2002) 348–360

14. Manku, G.S., Motwani, R.: Approximate frequency counts over data streams. In:
Proc. of the 28th Int. Conf. on Very Large Data Bases (VLDB), VLDB Endowment
(2002) 346–357

15. Metwally, A., Agrawal, D., Abbadi, A.E.: Efficient computation of frequent and
top-k elements in data streams, Springer-Verlag (2005) 398–412

16. Fuller, R., Kantardiz, M.: Fids: Monitoring frequent items over distributed data
streams. Volume LNAI 4571., Heidelberg, Springer Verlag (2007) 464–478

17. Karp, R.M., Shenker, S., Papadimitriou, C.H.: A simple algorithm for finding
frequent elements in streams and bags. ACM Trans. Database Syst. 28(1) (2003)
51–55

18. Misra, J., Gries, D.: Finding repeated elements. Science of Computer Programming
2(2) (1982) 143–152

19. Paxson, V., Floyd, S.: Wide-area traffic: The failure of poisson modeling.
IEEE/ACM Trans. on Networking 3(3) (1995) 226–244

20. Arlitt, M., Jin, T.: 1998 World Cup web site access logs. Available from
http://www.acm.org/sigcomm/ITA/ (1998)

21. van Rijsbergen, C.: Information Retrieval. Butterworths, London (1979)


