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Abstract. In this paper we study the k-means clustering problem. It
is well-known that the general version of this problem is NP -hard. Nu-
merous approximation algorithms have been proposed for this problem.
In this paper, we propose three constant approximation algorithms for
k-means clustering. The first algorithm runs in time O(( k

ε
)knd), where

k is the number of clusters, n is the size of input points, and d is di-
mension of attributes. The second algorithm runs in time O(k3n2 log n).
This is the first algorithm for k-means clustering that runs in time poly-
nomial in n, k and d simultaneously. The run time of the third algorithm(
O(k5 log3 kd)

)
is independent of n. Though an algorithm whose run

time is independent of n is known for the k-median problem, ours is the
first such algorithm for the k-means problem.
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1 Introduction

Among the different clustering techniques known, k-means is very popular. In
this problem, given a set P ⊂ �d of n data points and a number k, we are
required to partition P into k subsets (i.e., clusters). Each such cluster has a
center defined by the centroid (i.e., mean) of the points in that cluster. The
partitioning should minimize the following cost function:

�P (K) =
∑

x∈P

‖x−K(x)‖2,
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WhereK(x) denotes the nearest centroid to x, and ‖x−y‖ denotes the Euclidean
distance between two points x and y.

One of the most popular heuristic algorithms for k-means is Lloyd’s algorithm
[1], which initially chooses k centers randomly. For each input point, the nearest
center is identified. Points that choose the same center belong to a cluster. Now
new centers are calculated for the clusters. Each input point identifies its nearest
center; and so on. This process is repeated until no changes occur. The process
of identifying the nearest center for each input point and recomputing centers
is refered to as an iteration. This algorithm may converge to a local minimum
with an arbitrarily bad distortion with respect to the optimal solution [2].

Researches have been conducted to find algorithms with bounded quality,
either (1 + ε)-approximation or constant approximation. Matousek [3] has pre-

sented a (1+ε)-approximation algorithm with a run time of O(n logk nε−2k2d) for
any fixed ε > 0, k, and d using the approximate centroid set idea. The centroid
set was constructed by recursively subdividing the 3-enlargement cube of the
bounding box of the point set P . Then the algorithm generates all well-spread
k-tuples and returns the k-tuple with the minimum cost.

Kanungo et al. [2] have given a (9 + ε)-approximation algorithm. This algo-
rithm uses an ε-approximate centroid set generated from the algorithm of [3] as
the candidate centers. The algorithm starts with k initial centers selected from
the candidate centers, and iteratively removes p centers (for some appropriate
value of p) and replaces them with another p centers from the candidate centers
if the resulting cost decreases. The running time is O(n log n + nε−d log(1/ε) +
n2k3 log n).

The algorithm of Har-Peled and Mazumdar [6] takes time
O(n + kk+2ε−(2d+1)k logk+1 n logk 1

ε ) to find a (1 + ε)-approximate solution to
the k-means problem. If k and d are fixed, the run time is O(n). The algorithm
constructed a corset by sampling in an exponential grid. The authors achieved
the linear time solution by combining many other known algorithms.

Kumar et al. [7] propose a simple (1+ε)-approximation algorithm with a run

time of O(2(
k
ε )

O(1)

dn). The idea of the algorithm is to approximate the centroid
of the largest cluster by trying all subsets of constant size from the sample, and
doing the same on the smaller cluster by pruning points from the larger cluster.

A problem closely related to k-means clustering is the k-median clustering
problem. In this problem the objective is to minimize the sum of the distances to
the nearest median. Also, the cluster centers should form a subset of the input
points. Finding optimal solutions to k-means and k-median problems are NP -
hard. Jain et. al. [10] even showed that it is NP -hard to obtain an approximation
within a factor of 1 + 2

e . Thus most of the research focusses on approximation
algorithms. In this paper, we focus on constant approximations to the k-means
problem. None of the previous (O(1)-approximation) algorithms for the k-means
problem run in time polynomial on n, k and d at the same time. We present
three algorithms in this paper. Run time of the first one is polynomial on n and
d, of the second one is polynomial on n, k and d, of the third one is polynomial
on k and d while being independent of n.
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2 An Algorithm Polynomial on n and d

This algorithm is inspired by the following facts: the centroid of one cluster can
be approximated by the centroid of a random sample from this cluster. Also the
centroid of the sample can be approximated by the closest point to the centroid
of the samples. Inaba et. al. [11] showed the first approximation by the following
lemma.

Lemma 1. [11] Let P be the set of input points, T be a random sample with
size of |T | from P , μP be the centroid of P , μT be the centroid of T , then with
probability at least 1− δ (δ > 0),

∑

xi∈P

‖xi − μT ‖2 ≤ (1 +
1

δ|T | )
∑

xi∈P

‖xi − μP ‖2 .

Let δ = 1
4 . Then if we choose |T | to be 4

ε , with a probability at least 3
4 , the

cost computed using the centroid of the sample is 1 + ε approximation to the
real cost.

We show the second approximation by the following lemma.

Lemma 2. Let CT be the closest point within the sample to the centroid of the
sample, then with probability greater than 1

12 ,

∑

xi∈P

‖xi − CT ‖2 ≤ (5 + 2ε)
∑

xi∈P

‖xi − μP ‖2 .

Proof. By the doubled triangle inequality,

‖xi − CT ‖2 ≤ 2(‖xi − μT ‖2 + ‖CT − μT ‖2).
With respect to the second term on the right side of the above inequality,

∑

xi∈P

‖CT − μT ‖2 = |P | ‖CT − μT ‖2 ≤ |P |
|T |

∑

xi∈P

‖xi − μT ‖2 = |P |V ar(T ),

Where V ar(T ) is the variance of the sample and is defined as 1
|T |

∑
xi∈P ‖xi − μT ‖2.

Let V ar(P ) denote the variance of P , then we have[9],

E(V ar(T )) =
|T | − 1

|T | V ar(P ).

By Markov’s inequality,

Pr[V ar(T ) ≤ 1.5V ar(P )] ≥ 1− |T | − 1

1.5|T | >
1

3
.

Thus, with a probability greater than 1
3 ,

∑

xi∈P

‖CT − μT ‖2 ≤ 1.5|P |V ar(P ) = 1.5
∑

xi∈P

‖xi − μP ‖2 .
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Let A represent this event, B be the event of satisfying the statement of
Lemma 1 (with δ = 1

4 ), then Pr(AB) = 1−Pr(Ā
⋃
B̄) ≥ 1−(Pr(Ā)+Pr(B̄)) =

Pr(A) + Pr(B)− 1 > 3
4 + 1

3 − 1 = 1
12 .

Therefore, with a probability greater than 1
12 ,

∑

xi∈P

‖xi − CT ‖2 ≤ 2
∑

xi∈P

‖xi − μT ‖2 + 2
∑

xi∈P

‖CT − μT ‖2

≤ 2(1 + ε)
∑

xi∈P

‖xi − μP ‖2 + 3
∑

xi∈P

‖xi − μP ‖2

= (5 + 2ε)
∑

xi∈P

‖xi − μP ‖2 .	


Next, we will figure out the sample size |T | such that the sample would
include 4

ε points for each cluster with high probability. Let ns be the size of

the smallest cluster, and assume ns = α |P |
k (A similar assumption is found in

[8]). By Chernoff Bounds, we have the following inequality with respect to the
number of points (Xs) falling in the smallest cluster:

Pr[Xs ≥ β|T | ns

|P | ] ≥ 1− exp(− (1− β)2

2
|T | ns

|P | ),

and hence

Pr[Xs ≥ β|T |α
k
] ≥ 1− exp(− (1− β)2

2
|T |α

k
).

Let β|T |αk = 4
ε , and β = 1

2 , then |T | = 8
εαk. The above probability is greater

than 1− exp(− 1
ε ).

Therefore, we get algorithm1:
1) Draw a random sample of size 8

εαk, where α = nsk
n , ns is the size of the

smallest cluster, and n = |P |.
2) Using each k-subset of sample points as centers, calculate the cost of

clustering with respect to all the original input points.
3) Retrieve the k-subset that results in the minimum cost.

Theorem 1. The output of algorithm1 is a (5+2ε)-approximation to the optimal
clustering with a probability greater than 1

12 . Algorithm1 runs in time O((kε )
knd).

Proof. The cost of clusters from algorithm1 is less than the cost of the following
clustering: Each center of the cluster is the closest point within the sample
to the centroid of the sample. By Lemma 2 and simple summation, (5 + 2ε)-
approximation holds. Obviously, the running time is O((kε )

knd). 	


3 An Algorithm Polynomial on n, k and d

In this section we present an algorithm with a running time that is polynomial on
n, k and d. Kanungo et al. [2]’s local search algorithm is polynomial on n and k,
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but exponential on d because they used the candidate centroid sets constructed
by the algorithm of [3]. In our algorithm, we employ the local search algorithm,
but we use all the input points as the candidate centers instead of just the
candidate centroid sets. The algorithm is described as follows:

1) Initially select an arbitrary set of k centers (S) from the input points.
2) For some integer p, swap between any subset of p′ (p′ ≤ p) centers from

S and p′ elements from the input points if the new centers decrease the cost
significantly.

3) Repeat step 2 until there is no significant cost change after several swaps.

Theorem 2. The local search algorithm using all the input points as candidate
centers yields an O(1)-approximation to the optimal k-means clustering problem.

To prove this theorem, we prove some related lemmas.

Lemma 3. Let CP be the closest input point to the mean μP of the input points
P . Then, ∑

xi∈P

‖xi − CP ‖2 ≤ 2
∑

xi∈P

‖xi − μP ‖2 .

[4]

Proof.

∑

xi∈P

‖xi − CP ‖2 ≤
∑

xi∈P

((xi − μP ) + (μP − CP ))
2

=
∑

xi∈P

‖xi − μP ‖2 + 2
∑

xi∈P

((xi − μP )(μP − CP ))

+
∑

xi∈P

‖CP − μP ‖2

≤
∑

xi∈P

‖xi − μP ‖2 + 2(μP − CP )
∑

xi∈P

(xi − μP )

+
∑

xi∈P

‖xi − μP ‖2

= 2
∑

xi∈P

‖xi − μP ‖2 .	


Lemma 4. The algorithm that enumerates all sets of k points from the input,
uses them as centers, computes the clustering cost for each such set, and iden-
tifies the best set yields a 2-approximation to the optimal k-means clustering
problem.

Proof. The cost of the algorithm described in the lemma is less than the cost
of the following algorithm: The center of each cluster is taken to be the closest
point to the centroid of this cluster. By Lemma 3, this lemma follows. 	


Next, we prove theorem 2.
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Proof. We use the same construction of the set of swap pairs as [2]. The readers
are referred to [2] for details. Here, we redescribe the representation of some
symbols. S is a local optimal set of k centers resulting from the local search
algorithm, O is the optimal set of k centers from the input points. �(O) denotes
the cost using the optimal centers O, �(S) denotes the cost using the heuristic
centers S. For any optimal center o ∈ O, so represents the closest heuristic
center in S to o, NO(o) represents the neighborhood of o. For any point q ∈ P ,
sq denotes the closest heuristic center to q, oq denotes the closest optimal center
to q, soq denotes the closest heuristic center to oq. We use d(x, y) to denote the
Euclidean distance between two points x and y, i.e. ‖x − y‖, and �(x, y) to
denote ‖x− y‖2.

The following two lemmas adapted from [2] will be used.

Lemma 5.

0 ≤ �(O)− 3�(S) + 2R,

where R =
∑

q∈P �(q, soq ).

Lemma 6. Let α > 0 and α2 =

∑
i
s2i∑

i
o2
i

for two sequences of reals < oi > and

< si >, then
n∑

i=1

oisi ≤ 1

α

n∑

i=1

s2i .

First, consider the 1-swap case. By the triangle inequality and lemma 6, we
have

R =
∑

o∈O

∑

q∈NO(o)

�(q, so)

=
∑

o∈O

∑

q∈NO(o)

(�(q, o) +�(o, so) + 2d(q, o)d(o, so))

≤
∑

o∈O

∑

q∈NO(o)

(�(q, o) +�(o, sq) + 2d(q, o)d(o, sq))

=
∑

q∈P

(�(q, oq) +�(oq, sq) + 2d(q, oq)d(oq, sq))

≤
∑

q∈P

(�(q, oq) +
∑

q∈P

(d(oq, q) + d(q, sq))
2 + 2

∑

q∈P

d(q, oq)(d(oq, q) + d(q, sq))

= 4
∑

q∈P

�(q, oq) +
∑

q∈P

�(q, sq) + 4
∑

q∈P

d(q, oq)d(q, sq)

≤ 4�(O) +�(S) +
4

α
�(S)

= 4�(O) + (1 +
4

α
)�(S).
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By lemma 5, we have

0 ≤ �(O)− 3�(S) + 2(4�(O) + (1 +
4

α
)�(S)),

0 ≤ 9�(O)− (1− 8

α
)�(S),

9

1− 8
α

≥ �(S)

�(O)
= α2,

(α+ 1)(α− 9) ≤ 0.

We get α ≤ 9. Therefore, �(S) ≤ 81�(O).

Second, for p-swap case, by the replacement of 2R with (1 + 1
p ) in lemma 5,

we have

0 ≤ �(O)− (2 +
1

p
)�(S) + (1 +

1

p
)(4�(O) + (1 +

4

α
�(S)))

= (5 +
4

p
)�(O)− (1− 4

α
(1 +

1

p
))�(S),

5 + 4
p

1− 4
α (1 +

1
p

≥ �(S)

�(O)
= α2,

(α+ 1)(α− (5 +
4

p
)) ≤ 0.

We get

α ≤ 5 +
4

p
.

Therefore,

�(S) ≤ (5 +
4

p
)2�(O).

As p increases, �(S)
�(O) approaches 25. Further, using lemma 4, the output of

algorithm2 is a 50-approximation to the optimal k-means clustering.

The number of swaps the algorithm takes is proportional to log(�(S0)
�(O) ) [5],

where S0 is the initial solution. Because log�(S0) is polynomial in n [5], the algo-
rithm terminates after O(k log n) swaps [6]. Each swap involves nk candidate sets
of centers in the worst case. For each set, computing the cost of clusters requires
O(nk) time. Therefore, the running time of the algorithm is O(k3n2 log nd).
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4 An Algorithm Polynomial on k and d and Independent
of n

In this algorithm, we apply the sampling approach of [8] for k-median clustering.
These samples resulting from this approach are processed by algorithm2 to yield
a solution. The algorithm has a run time that is polynomial in k and d while
being independent of n. A description of the algorithm follows.

1) Draw a random sample T of size 512k
α log(32k), where α = nsk

n , ns is the
size of the smallest cluster.

2) Do k-means clustering on the sample using algorithm2.
3) Use the centers from step 2 as the centers for all the input points P .
Replacing n in the run time of algorithm2 with the sample size, we see that

the run time of Algorithm3 is O(k5 log3 kd).

Theorem 3. The output of Algorithm3 is an O(1)-approximation to the optimal
k-means clustering with probability greater than 1/32.

We precede the proof of this theorem with the following lemma.

Lemma 7. For any subset of k centers KT ⊆ T , and any subset of k centers
KP ⊆ P ,

�T (KT ) ≤ 4�T (KP ),

where �T (KT ) =
∑

x∈T ‖x−KT (x)‖2, �T (KP ) =
∑

x∈T ‖x−KP (x)‖2, KT (x)
is the closest point in KT to x, KP (x) is the closest point in KP to x.

Proof. Let qT (KP (x)) denote the closest point in T to KP (x). For any x ∈ T ,

‖x−KT (x)‖2 ≤ ‖x− qT (KP (x))‖2 ≤ 2(‖x−KP (x)‖2+‖KP (x)− q(KP (x))‖2).
By the definition of qT (KP (x)),

‖KP (x)− qT (KP (x))‖ ≤ ‖x−KP (x)‖ .
Thus we have,

‖x−KT (x)‖2 ≤ 4 ‖x−KP (x)‖2 .
Therefore,

�T (KT ) ≤ 4�T (KP ).	

Next, we prove the theorem. We adapt the proof from [8] given for the k-

median problem.

Proof. Let K = K1, ...,Kk denote the set of centers obtained by algorithm3,
K∗ = K∗

1 , ...,K
∗
k denote the optimal centroid set, K(K∗

i ) denote the closest
center in K to K∗

i , N(K∗
i ) denote the neighborhood of K∗

i , ni = |N(K∗
i )|, and

nT
i = |N(K∗

i ) ∩ T |. For any x ∈ P , let K(x) denote the closest center in K to
x, and K∗(x) denote the closest center in K∗ to x. Let Qi =

∑
x∈N(K∗

i
) ‖x −

K∗
i ‖2, Ri =

∑
x∈N(K∗

i
) ‖x −K(x)‖2, QT

i =
∑

x∈N(K∗
i
)∩T ‖x −K∗

i ‖2, and RT
i =
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∑
x∈N(K∗

i
)∩T ‖x−K(x)‖2. It follows that ∑1≤i≤k Qi = �P (K∗),

∑
1≤i≤k Ri =

�P (K),
∑

1≤i≤k Q
T
i = �T (K∗), and

∑
1≤i≤k R

T
i = �T (K).

By the doubled triangle inequality,

‖K∗
i −K(K∗

i )‖2 ≤ minx∈N(K∗
i
)∩T ‖K∗

i −K(x)‖2

≤ minx∈N(K∗
i
)∩T 2(‖x−K∗

i ‖2 + ‖x−K(x)‖2

≤ 2

nT
i

∑

x∈N(K∗
i
)∩T

(‖x−K∗
i ‖2 + ‖x−K(x)‖2

=
2

nT
i

(QT
i +RT

i ).

For x ∈ N(K∗
i ),

‖x−K(x)‖2 ≤ ‖x−K(K∗
i )‖2

≤ 2(‖x−K∗(x)‖2 + ‖K∗(x)−K(K∗
i )‖2).

Therefore,

�P (K) ≤ 2
∑

x∈P

‖x−K∗(x)‖2 + 2

k∑

i=1

∑

x∈N(K∗
i
)

2

nT
i

(QT
i +RT

i )

= 2
∑

x∈P

‖x−K∗(x)‖2 + 4

k∑

i=1

ni

nT
i

(QT
i +RT

i ).

By Chernoff Bounds,

Pr[nT
i < βni(s/n)] < exp(−sni(1− β)2/(2n)).

Assume ni ≥ αn
k , then if s = 2k

(1−β)2α log(32k), Pr[nT
i < βni(s/n)] < 1/32.

Therefore,

�P (K) ≤ 2�P (K∗) +
4n

sβ

k∑

i=1

(QT
i +RT

i )

= 2�P (K∗) +
4n

sβ
(�T (K) +�T (K∗)).

By Lemma 4,
�T (K) ≤ c2�T (K∗

T ),

where c2 = 50, and K∗
T is the optimal clustering for sample T .

By Lemma 7,
�T (K∗

T ) ≤ 4�T (K∗).

Thus
�T (K) ≤ 4c2�T (K∗),
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and

�P (K) ≤ 2�P (K∗) +
4n

sβ
(1 + 4c2)�T (K∗).

It is known that

E(�T (K∗)) =
s− 1

n
�P (K∗).

By Markov’s inequality,

Pr[�T (K∗) ≤ 16s

15n
�P (K∗)] >

1

16
.

Let β = 15
16 (the corresponding sample size is 512k

α log(32k)). We have

Pr[�P (K) ≤ 2�P (K∗) + 4(1 + 4c2)�P (K∗)] > 1− 1

32
− 15

16
=

1

32
.

Therefore, with probability greater than 1/32,

�S(K∗) ≤ (6 + 16c2)�P (K∗).	


5 Experiment

In theory, algorithm 2 proposes an algorithm that is polynomial on n, k and
d simultaneously, and algorithm 3 proposes an algorithm whose run time is
independent on n while polynomial on k and d based on algorithm 2. These
algorithms, however, obtain large approximation ratios in the worst case, which
raises a concern whether these algorithms can be practical. Keeping this in mind
we have run some experiments to observe the experimental approximation ra-
tio. Since algorithm 3 is based on algorithm 2 and requires large data size, we
only ran algorithm 2. The implementation is based on Mount’s k-means soft-
ware downloaded from http://www.cs.umd.edu/mount/Projects/KMeans/. We
produced a set of 2-dimensional random data with different sizes. In particular
we used the following values for n: 100, 1000, 10000, and 100000. The following
values of k have been employed: 4, 9, and 16. To compute the optimal cost easily,
we randomly generated data points within known clusters in the way shown in
figure 1: each cluster is within a square of area 1, the gap between two contiguous
squares is 1. For each data size and a given number of clusters, we generated
five random data sets and computed the average approximation ratio (the cost
from the algorithm divided by the optimal cost). The results are shown in tables
1 through 3.

It is obvious from experimental results that the experimental approximation
ratios (close to 1) are far smaller than the theoretical ones of the worst case,
which indicates that the proposed algorithm can be practical.
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Fig. 1. Illustration for data generation

Table 1. Approximation ratios for k = 4

data size approximation ratio

100 1.0668
1000 1.0098
10000 1.0010
100000 1.0006

Table 2. Approximation ratios for k = 9

data size approximation ratio

100 1.1266
1000 1.0205
10000 1.0100
100000 1.0098

Table 3. Approximation ratios for k = 16

data size approximation ratio

100 1.2405
1000 1.0629
10000 1.0564
100000 1.0579
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6 Conclusion

In this paper we have proposed three O(1)-approximation algorithms for the
k-means clustering problem. Algorithm2 is the first algorithm for the k-means
problem whose run time is polynomial in n, k, and d simultaneously. There is a
trade-off between the approximation ratio and the running time. Although the
theoretical constant approximation ratio seems large, it is the bound in the worst
case. In practice, especially when n is large, we could get better approximations.
We obtained experimental approximation ratios that are close to 1. Also, the
run time of Algorithm3 is independent of n. No prior algorithm for the k-means
problem had this property.
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