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Abstract. The present work aims to demonstrate an innovative way of 
application of modern data analysis tools for structural power plant materials, 
such as 9%Cr-steels. The purpose is the optimized prediction of the material 
behaviour considering the stress/time to rupture data and the determination of 
position of the specific melt in the scatter band for the given steel. This data is 
needed for an effective life time assessment of power plant components. The 
material behaviour is influenced by the multidimensional interdependencies 
between the individual elements of the chemical composition, the heat 
treatment parameters, product form, tensile properties and microstructure, 
which are difficult to describe using simple analytical methods. Modeling with 
neural network techniques therefore seems to be an interesting alternative. 
Moreover, the applied method takes away the requirement for long and 
expensive experiments. A large variety of data was used for training of a 
commercial neural network. By means of sensitivity studies the influence of 
specific data features was investigated with regard to an optimized correlation 
factor r. The interpretations of the neural network have been checked whether 
basic physical and metallurgical backgrounds are reflected. The results are 
compared with the real material behaviour gained by material tests. The 
applicability of the neural network tool for technical use in life time assessment 
was investigated. 

Keywords: 9%Cr-Steels, data mining, creep-rupture behaviour, neural 
network.  
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1   Introduction  

Modern non-destructive and destructive material testing experiments need novel data 
analysis methods that can automatically analyze data sets with a high number of 
attributes and data. In the past, data mining experiments have to be applied to a 
variety of different material testing applications [1], [2], [3].   

For e.g, neural nets and decision trees have been developed for welding-seam 
inspection in order to judge if a component contains a crack or a hole [1], [2]. It has 
been shown that neural nets and decision trees have advantages and disadvantages 
that have to be taken into consideration before making the decision about what kind 
of data mining method should be used for the particular application [1].  

Data from pump inspection were analyzed by genetic feature selection methods in 
order to figure out the relevant features among all the various features that were 
acquired during the experiment. The obtained highly-relevant features were used to 
build a classifier for in-situ pump inspection [3] in order to predict the life-time of a 
pump or a pump component.  

We want to use data mining in order to judge the behaviour of the material before 
it is used for a particular component in a power plant or in another industrial plant 
with high-class claims. 

In this paper we describe our work on using data mining for determining creep 
rupture behavior of the individual melt and extended to additional steels. The 
remainder of the paper has the following structure. The problem description is given 
in Section 2. The application is described in Section 3. We decided to use neural nets 
for data mining experiment since we expect our data highly correlated and neural nets 
can easily perform classification on non-linear decision surfaces. The objectives of 
our work are described in Section 4. The neural network model is described in Section 
5. There we describe the data set and the application of neural networks. In Section 6 
we present our results for modeling with creep rupture strength and time to rupture. 
We explain why we have to verify our neural network model and give an evaluation 
of physical and metallurgical backgrounds. Final we give conclusion in Section 7. 

2   Problem Description 

The experience has shown the fact that the old approaches for data mining and 
processing which were used in a past to evaluate power plant data, usually result in 
high data scatter or even deliver unrealistic or physically impossible results. In any 
case inaccurate outcome could cause high costs damages or unplanned idles. 

Also modern non-destructive and destructive material testing experiments provide 
more and more data as well as new factors to be considered which make old methods 
outdated and ineffective.  

Artificial neural networks have been proved as very effective tools for modeling of 
creep behaviour of weld metal based on knowledge of creep strength of wrought 
plates, which are available mostly for austenitic steels, Badeshia [4]. Even so these 
methods have some disadvantages, which have to be taken into consideration before 
application, as already mentioned above. 
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The main question of this research is: “How can an individual creep rupture curve 
of the melt be determined? “ There are several possibilities, which allow us to get the 
answer we are looking for. One way is creep tests, which requires minimum 4 years, 
so far as components made of given steel are expected to remain in service more than 
100 000 hours. In addition, the technique is applicable just in case of availability of 
given steel grade, this is not the case for old power plants. The second way is a 
theoretical approach, so called Z-Factor, where the estimation of the dependencies 
between creep strength and the corresponding parameters is achieved using factor, 
according to Melzer [5], [6]. This approach is not empirically verified for modern 
steels.    

The previous work on application of neural networks on assessment of long-term 
creep behaviour of heat-resisting steels was successfully done for the 11%Cr-steel 
X20CrMoV11-1, Balos [7].   

The focus of the work described in this paper is an application of modern data 
analysis tools for structural power plant materials, such as 9%Cr martensitic steels. 
The purpose is the optimized prediction of the material behaviour considering the 
stress/time to rupture data and the determination of position of the specific melt in the 
scatter band for the given steel. In this paper we describe our work on using data 
mining for determining creep rupture behavior of the individual melt as a function of 
many parameters.  

3   Application 

Critical components in power plants are exposed to high temperatures and pressures. 
The material strength parameter, which is used for the design of the component, 
depends on time and temperature. This parameter normally will be determined by 
performing creep tests. That means, a specimen is exposed at a constant temperature 
to a constant load. During the experiment, the elongation of the specimen will be 
measured: a time-dependant creep elongation results in the deduction of the elastic 
strain and the strain at the time of load. The time to rupture of specimen represents the 
target of the investigation. The stress value calculated from the load test of the 
specimen is applied over the time until failure of the sample, so-called time to rupture. 
The result is the scatter band of the experimental data. With the help of various 
numerical methods, an estimation of the mean value can be determined. This mean 
value in turn provides the basis for the design of components. However, as it is shown 
in Figure 1, the experimental results represent a relatively large scatter band; the 
design value compared to the mean value will be lowered by 20%. This factor is to 
ensure that the use of an individual melt, whose strength value lies below the mean 
curve, won’t lead the component to fail. Technically, it is accepted a scatter band of ± 
20% around the mean value. Since it is unknown what position has the built-in melt in 
the scatter band, for the determination of the consumed lifetime of component it will 
be forced to apply the lower scatter band limit. In that way, the conservative estimate 
of the calculated lifetime of component will be obtained. For example, the 
overestimation of the lifetime can be up to 300%, in case of melt at the upper scatter 
band situated. 
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The possibilities for the realistic calculation of the component lifetime arise as a 
result from: 

  Determination of specific melt creep rupture curves  
  The classification of individual melt in the scatter band via a correlation with 

melt-specific data. 
 

 
Fig. 1. Creep rupture strength at 600 ° C - scatter band of the material X10CrMoVNb9-1 and 
mean value according EN 10216-2 standard.  

Other important properties, such as the creep rupture deformation, e.g. elongation, 
reduction of area or the short-term behaviour, e.g. yield stress, are often associated 
with individual characteristics, such as a particular value of an element that differs 
from the mean value or associated with parameters of the heat treatment parameters. 
However, from the metallurgical point of view, it’s more unlikely that simple linear 
relationships exist for one feature only. It is rather to be expected that complex 
interactions between different features, i.e. characteristics lead to a different 
behaviour. These relationships can be studied, in principle, with the help of an 
artificial neural network (ANN). This helps to simulate the specific variation of the 
quantitative value of the feature, which has an influence on a target (creep elongation, 
creep stress, creep rupture deformations, short-term values) and compare the result 
with the actual behaviour.  

Microstructure parameters such as precipitates, size and distribution are the direct 
response of the material to external conditions namely, heat treatment, temperature, 
stress and elongation, time to rupture in dependence of output features. Therefore, 
they are fundamentally appropriate as features for the description of dependencies 
between different parameters for application in neural networks. Indeed, these data 
are very limited, so that the following experience barely exists: in what form i.e. 
quantitative measure these parameters should be given in ANN to achieve an optimal 
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evaluation. Similarly, as with the other features it is necessary to determine to what 
extent namely, the number and quality of records, the raw data must be available for 
representation of reliable relationships. 

In modern power plants for components e.g. headers, pipework exposed to 
temperatures up to 620°C martensitic 9%Cr-steels are used. Different steel grades 
with specific chemical composition and heat treatment are available, such as the 
X10CrMoVNb9-1 (P91), X10CrMoVNb9-2 (P92), and X11CrMoWVNb-1-1 (E911) 
grade. 

4   Objectives 

In the present work, the results of the previous project [7], [8] are summarized and the 
method of "artificial neural network" is established as a tool for determining creep 
rupture behaviour of the individual melt and extended to additional steels. 

In particular, the following objectives will be pursued: 
1. Application of the ANN-method to commonly used 9%Cr steels. 
2. Conducting of sensitivity studies, i.e. estimation of what influence has a specific 

feature on an individual targets of the creep rupture properties. 
3. With the addition of microstructure parameters to the feature values for 9%Cr 

steels, which have an influence on the creep rupture strength in the long-term 
range, and therefore to increase the sensitivity of the ANN, as well as to improve 
the accuracy of the expected outcome [9], [10] .  

4. It will be examined, whether the ANN is an appropriate method for the 
reproduction of the multi-dimensional relationships such as chemical analysis, 
heat treatment properties, etc., and what scope of work is necessary for this. 

5. Reliability analysis of the ANN: which allows to estimate the creep rupture 
strength obtained with the help of ANN in comparison to practical results.  

5   Neural Network Model for P91 Alloy 

5.1 Dataset  

The data shown in Table 1 were used for the analysis of the aforementioned 9%Cr 
steel grades. 

Table 1. Data availability of the steels chosen for the analysis. 

Alloy Name Number of data points/records 
P91 1396 
P92 586 
E911 296 



6      Olga Frolova et al.  

The investigation is very large and complex with extensive modeling with different 
chemical elements and other parameters of models. Therefore, just the scope is 
outlined with different types of models in 5.3. The presentation and results will be 
focused on the analysis of P91 steel as the most representative dataset within this 
paper.  

 
Fig. 2. Histogram of time to rupture values. 

 
Fig. 3. Histogram of applied stress values. 

A statistical analysis of the data frequency for P91 alloy, related to time to rupture 
and applied stress features, is represented in Figure 2, 3. The life time of the 
component, made of given steel, is designed for up to 20 years approximately. And 
the most interesting area in this study for target "time to rupture" after 100 000 hours 
is displayed in Figures 2 with a few data only. The prediction of long term creep 
rupture behaviour has been done here using ANN. It is known that the creep rupture 
test is temperature dependent. Most of the investigated data represent test temperature 
with four main temperatures: 500, 550, 600, 650°C. 
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5.2 Data Evaluation 

The initial dataset of P91 alloy consisted from 3708 records, only creep tests were 
considered which ended in rupture, fourth part of the data have been removed 
including welded specimens.  

After reduction, the data covers 186 distinct melts and 33 different chemical 
compositions.  

Further, the selection of features was done for the data analysis. Based on the 
standard requirements and on the data availability, the basic set of parameters has 
been selected and the data were grouped into data levels. As a result of this evaluation 
step, the selected dataset with 1396 records meets the requirements according to the 
standards: VdTÜV material sheet 511 and DIN EN 10216-2 [11], [12], [13]. 

The data have been structured into three levels: from 16 up to 23 features for level 
3 and for level 1 accordingly. Table 2 demonstrates that there are, indeed, many 
features available, but it is also apparent that some individual characteristics are 
weakly presented. The features are known as characteristics of tested specimens. A 
record, in this context, is composed of quantified variables, such as the alloying 
elements, the product form, heat treatment conditions i.e. temperature and duration of 
the austenitizing and tempering processes, the mechanical properties namely proof 
stress, tensile strength, elongation and the creep rupture data such as test temperature, 
time to rupture, creep rupture strength, elongation.  

Overview of data availability and selection of the features, based on the original 
data levels, are completely filled in sub-matrices in Table 2. 

5.3 Application of Neural Networks for the Modeling of Creep Rupture 
Behaviour 

Artificial neural networks can be particularly beneficial for modeling, where a 
description of physical and mathematical models due to complex or unknown 
dependencies is not available. The model predictions are comparable to an accuracy 
of a classical-statistical modeling. The essence of artificial neural networks is to 
reproduce the operation and the structure of the human brain through mathematical 
models [14]. 

Badeshia [4] came to a conclusion that the regression analysis methods are 
applicable to the creep properties of materials, but with several limitations. He has 
pointed out that neural networks are seen as an appropriated tool for modeling of 
mechanical properties of materials, and, even more, for development and prediction 
of properties of new alloys. 2 ¼ Cr1Mo steel was investigated, based on chemical 
composition and heat treatment data, as those two groups of elements have greatest 
influence of the microstructure, and thus on creep properties of a material. According 
to [4], the neural network can find interactions between the inputs, which are 
nonlinear. ANN can be used to make predictions and to see how they depend on 
various combinations of inputs. There is strong fundamental evidence that a well 
designed neural network is the best way of extrapolating empirical data. The method 
should now be more widely exploited in the assessment of creep data [15].  

 



8      Olga Frolova et al.  

Table 2. Overview of data availability and features according to the material P91. 

Matrix Number 
 

Alloy P91 Number 
of Points 

Availability, 
[%] 

1 2 3 
Alloy Name 1396 100%    
Melt Number 1396 100%    
Product Form 1396 100%    
Production Process  723 52.79%    
Austenization Temperature 1396 100% 1 1 1 
Austenization Duration 1031 73.85%    
Austenization Medium 1346 96.41%    
Tempering Temperature 1396 100% 1 1 1 
Tempering Duration 1105 79.16%    
Tempering Medium 1346 96.42%    
C 1396 100% 1 1 1 
Si 1396 100% 1 1 1 
Mn 1396 100% 1 1 1 
P 1396 100% 1 1 1 
S 1377 98.64% 1 1  
Cr 1396 100% 1 1 1 
Mo 1396 100% 1 1 1 
Ni 1291 92.48% 1 1  
V 1396 100% 1 1 1 
Al 1335 95.63% 1 1  
B 253 18.12%    
Nb 1384 99.14% 1 1  
N 1344 96.27% 1 1  
As 131 9.38%    
Co 301 21.56%    
Cu 584 41.83% 1   
Pb 137 9.81%    
Sn 344 24.64%    
Ti 328 23.50%    
W 106 7.59%    
Proof Strength Rp0,2  
(Room Temperature) 1396 100% 1 1 1 
Tensile Strength Rm (RT) 1396 100% 1 1 1 
Tensile Elongation A5 (RT) 1342 96.13% 1 1 1 
Tensile Reduction Area Z (RT) 555 39.76%    
Test Specimen Number 792 56.73%    
Test Temperature 1396 100% 1 1 1 
Applied Stress 1396 100% 1 1 1 
Time to Rupture 1396 100% 1 1 1 
Creep Tensile Elongation  1378 98.71% 1 1 1 
Creep Tensile Reduction Area 1314 94.13% 1 1  
Time to 1% Total Plastic Strain 305 21.85%    
Testing Institution 1396 100%    
Useful features for each data matrix / Data aggregation level 

23 22 16 
 Level 1 Level 2 Level 3 
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The network types which are most commonly employed in practice are multilayer 
perceptron with back-propagation learning for the supervised learning, and 
Kohogen’s self-organizing feature maps for unsupervised learning [14]. Both models 
have a long history of successful application for various data behaviour modeling, 
starting from financial, medical sectors, traffic control and modeling of physical 
phenomena.  

Multilayer Perceptron (MLP) neural networks [14] were applied as they are most 
efficient for the modeling of the dependency of creep rupture and time to rupture [4], 
[16]. The software package DataEngine [17] was used for the construction of neural 
networks. 

As a result, several models were constructed for the analysis with the following 
dependent variables:  

P91 steel: 
                    Model 1: Proof strength by room temperature, [MPa] 
                    Model 2: Creep rupture strength, [MPa]; time to rupture, [h] 

P92 steel:  
                    Model 3: Creep elongation at rupture A5, [%] 
                    Model 4: Creep rupture strength, [MPa]; time to rupture, [h]  

E911 steel: 
                    Model 5: Creep rupture strength, [MPa]; time to rupture, [h]  

9-12%Cr steels, product form “Tube”: 
                    Model 6: Creep rupture strength, [MPa]; time to rupture, [h]. 

 
The results in MLP can be analyzed and represented graphically. The software 

provides tools that can be used for calculation, variation and sensitivity analysis of the 
models. With the tools mentioned above it is possible to analyze how much the 
variation in the input parameters changes the values of output parameters, in our case 
time to rupture and creep rupture stress. For example, Figure 5 shows the sum of 
derivations for creep rupture strength of material P91. In this type of chart for each 
feature the derivations are added up, occurring when the input is changed. The 
resulting totals are displayed in a bar chart. The sensitivity analysis has shown the big 
influence of the time to rupture and test temperature variables on the target: creep 
strength. Figure 4 demonstrate the important influences/features for the same target. 

 

 
Fig. 4. Important influences/features on creep strength value. 
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Fig. 5. Sum of the differentials graph for the P91 alloy. 

6   Results 

6.1 Modeling with Targets: Creep Rup Ture Strength and Time to RupTure 

A prerequisite for modeling with ANN is a sufficiently large and representative 
dataset. Moreover, the influence of reliability and accuracy of the data is very 
essential for the prediction ability of a constructed model. First objective evidence on 
the quality of input data and ANN model provides the correlation coefficient. A 
graphical comparison between measured and model values is the better way, in this 
case, to represent the degree of agreement or discrepancy. Figure 6 and Figure 7 
represent corresponding graphs for the targets: creep rupture strength and time to 
rupture for the data level 1. 

It should be mentioned, that the correlation coefficient r between the model- and 
measured values for the target "time to rupture" is significantly worse in comparison 
with the “creep rupture strength” and has most values between 0.8 and 0.9. The model 
and target values for the “creep rupture strength” show significantly better 
correlations with r values> 0.94. 

Four additional models were trained for the data levels 2 and 3 with the same 2 
targets for P91 alloy. The correlation coefficients for these models are represented in 
Table 3 and Table 4.  

In summary, it can be concluded that an increasing number of records with fewer 
features does not automatically have to be beneficial. Because the level 3 has shown a 
high degree of spreading of values for the target “time to rupture”. The deviation at 
low creep strengths or long-term duration will not become necessarily lower through 
increased number of feature’s values. Therefore, the conversion of the data in the 
ANN will be considered advantageous with a data structure constructed in accordance 
with data level 2 or level 1 which is thus used for training in ANN. 
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Fig. 6. Creep rupture strength: comparison between model- and measured values: data level 1, 
20 features, 449 records, correlation coefficient=0.989.  

 
Fig. 7. Time to rupture: comparison between model- and measured values: data level 1, 20 
features, 449 records, correlation coefficient=0.939.  

Table 3. Correlation coefficients for target “creep rupture strength”, P91 steel 

Data level 1 Data level 2 Data level 3 Correlation 
coefficients 0.989 0.994 0.989 

Table 4. Correlation coefficients for target “time to rupture”, P91 steel 

Data level 1 Data level 2 Data level 3 Correlation 
coefficients 0.939 0.809 0.894 
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6.2 Verification of Neural Network Models 

The functionality on the basis of above described ANN is shown below on an 
examination of an individual melt. The verification procedure has been done as 
follows: the features of selected melt were given to the trained network i.e. model. 
Based on this, the ANN calculates stress values for the given times, which can be then 
connected to a creep rupture curve. In other words, the predicted values can be 
compared with the real measured values of the selected melt. 

The evaluation of the data was carried out for the data levels 1 and 2 at 
temperatures 550, 600, 650°C. Figure 8 demonstrates a good agreement of the model 
values of data level 2 for the melt number 801141 at 650°C with target "creep rupture 
strength" and as well the mean curve according to EN-10216 standard of the given 
steel.  

 

 
Fig. 8. Determination of the melt position with NN for the melt No. 801141, 650°C, Data level 
2, with target: creep rupture strength, P91 alloy. 

6.3 Evaluation of Physical and Metallurgical Backgrounds  

The analysis of the influence of the individual chemical and other alloying elements 
on creep strength was done with the help of an artificial melt. The artificial melt 
represents the mean of all independent features of all available melts by the variation 
of time to rupture. Four test temperatures 500, 550, 600, 650°C were taken into 
consideration for the artificial melt.  

As an example, here will be demonstrated the influence of chromium content on 
the creep rupture strength. Figure 9 shows the determination of the artificial melt 
position with ANN by chromium variation from 8.0% up to 9.5% according EN-
Standard which specifies the range, for target "creep strength", data level 2 and 



Representation of the Heat Specific Creep Rupture Behaviour      13 

600°C. For this purpose, the separate model was calculated with ANN for each 
chromium value, not trained! As shown on Figure 9, with the increasing chromium 
content, the curve is shifted upwards significantly. And the difference between the 
curves of maximum and minimum chromium content becomes smaller with the 
temperature increase from 500 to 650°C. In the literature [18] it is described that an 
increase of chromium has a positive effect on the creep strength:" in almost all 
projects with the test temperature 650°C it was initially intended to use the 
experimental alloys with 11-12% chromium to achieve a sufficient oxidation 
resistance. Almost all results indicate that the highest creep rupture strength can be 
achieved only with a chrome-mass fraction below 11%, possibly even just from 9 to 
10%." 

 

 
Fig. 9. Determination of artificial melt position with NN – chromium variation from 8% to 
9.5% specified in EN-standard range, level 2, 600 °C, with target: creep strength, P91 steel. 

6.4 Considerations to the Accuracy of Prediction of the Creep Rupture 
Behaviour 

Within this section the residual analysis is demonstrated. It is known that ANN tries 
to minimize the squared distance between the predicted and measured values, in other 
words, the ANN is characterised by the residuals [14],[17], [19].  

The training process is based on the minimization of the residuals, both on mean 
and max scale. Moreover, the learning rule uses additional techniques to prevent the 
"overfitting" or so called "learning by heart" effect. The learning algorithms 
SuperSAB and Resilient Propagation were applied within the training process. For 
P91 models the mean residual error has the margin ± (4.1-5.3) MPa for creep strength 
depending on applied data level, which is acceptable. This means, that each model 
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value is associated on average with an uncertainty of about ± 5 MPa. The distribution 
of the residuals is demonstrated on the Figure 10. 

 

 
Fig. 10. Distribution of residuals, data level 1, learning algorithm: Resilient Propagation. P91 
material, target "creep rupture strength"  

7   Conclusion 

The present work has demonstrated an innovative approach to the use of modern tools 
for data analysis. The goal is the optimized prediction of a material behaviour under 
consideration of the creep strength and duration i.e. time to rupture data and 
determination of the position of the specific melt in the scatter band for 9%Cr steels. 

The material behaviour is influenced by the multidimensional interdependencies 
between the individual elements of the chemical composition, the heat treatment 
parameters, product form, tensile properties and microstructure, which are difficult to 
describe using simple analytical methods. Modeling with neural network techniques 
therefore seems to be an interesting alternative. Moreover, the applied method takes 
away the requirement for long and expensive experiments.  

In summary, the results described in the present paper are:  
- It was shown that the neural network models used in the current study process the 
assumed metallurgical connections  
- The framework conditions for the successful training of the neural network have 
been determined  
- The results of the forecasting have provided plausible estimations.  

In summary it can be held, that it is very reasonable to continue the work by 
involvement of new steels which are already in use and therefore to expand the state 
of knowledge and to further enhance the existent models.  
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