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Abstract. This paper presents a local pattern-based method for fore-
casting failures in a data stream context. It also details a successful ap-
plication to complex vacuum pumping system prognosis. More precisely,
using historical data, the behavior of a set of pumping systems is first
modeled by extracting a given type of episode rules, namely the First
Local Maximum episode rules (FLM-rules). Each rule comes along with
its proper temporal information: its optimal temporal window width.
The most reliable FLM-rules are then selected to further forecast system
failures in a data stream context. A forecast time interval is supplied
for each forecasted failure by merging the temporal information of FLM-
rules. The results obtained for production data are very encouraging.
Failures are predicted with a good temporal accuracy and precision while
very few false alarms are generated. The method presented in this paper
is patented and it is being deployed for a customer of the semi-conductor
market.

Keywords: Data stream, Episode rules, Forecast, Prognosis, Predictive
maintenance, Vacuum pumps.

1 Introduction

In the current economic environment, industries have to minimize production
costs. Equipment profitability optimization is a way to meet this objective. The
use of Integrated Health Management Systems (IHMS) performing fault prog-
nosis is thus becoming a key practice. These systems allow to better manage
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production means by anticipating rather than undergoing failures.
Prognosis, from Latin prognõsis, is composed of prefix pro : ”before” and

gnõsis : ”inquiry, investigation, knowing”. It literally means to know before-
hand. Most of prognosis applications come from aerospace (e.g., [1] or [2]) or
medicine (e.g, [3]). In [2], fault prognosis is defined as detecting the precursor
signs of a system disfunction and estimating how much time is left before a
major failure. It is also defined as ”the estimation of time to failure and risk
for one or more existing and future failure modes” by ISO [4]. An example of
prognosis is the forecast of the remaining life time of a gearbox by monitoring
the quality of its oil. This clearly differs from class prediction/classification, i.e.
finding the value of a categorical variable describing an object for a given time
lap by considering others variables. It also differs from early prediction. Early
prediction indeed deals with identifying the class of an object as soon as possible
(e.g. [5]) while prognosis deals with forecasting a failure and its occurrence date.

As explained in [2], most of data-driven approaches are neural network-based.
Unfortunately, neural networks are limited by their inability to explain their con-
clusions [3]. Thus we propose to extract episode rules (e.g., [6–9]) from historical
categorical data to model system behavior and to perform fault prognosis using
real-time production data. In other words, in a data stream context, we aim to
forecast event types, and more specifically failures, by using previously extracted
episode rules. These rules are easy to interpret. For example, ”A → B ⇒ C” can
be read as ”if event type B occurs after event type A then event type C is likely
to occur”. Some recent works show that episode-based techniques can forecast
event types in a data stream context. Nevertheless, they all ask end-users to set
a temporal window size to extract episodes. Furthermore, either they use this
temporal window to forecast event types (e.g., [10]) or forecasted event types are
meant to be the next ones to occur (no occurrence date is provided) (e.g., [11]).
In this paper, we rely on episode rules having optimal window widths that are
automatically extracted and that can differ from one rule to another: the First
Local Maximum rules (FLM-rules) [12]. The most reliable FLM-rules are then
selected to forecast event types in data stream context. Once an event type is
forecasted by some FLM-rules, then a forecast time interval is computed by
merging their respective temporal information.

A successful application to vacuum pumping system failure prognosis is de-
tailed in this paper. When dealing with such pumping systems, common sensing
technologies (power levels, temperature, pressure and flow rates) are not suffi-
cient to deal efficiently with failure prognosis. Therefore, we use vibratory data,
which is more informative about the system status, but also more difficult to
handle. Indeed, because of their complex kinematic, vacuum pumping systems
may generate high vibration levels even if they are in good running conditions.
It is thus difficult to prognose failures using traditional data analysis techniques
(e.g., crest level or kurtosis) and to develop monitoring methods based on expert
knowledge or physical models.

This paper is structured as follows: Section 2 reviews existing works in data
mining applied to prognosis. Section 3 introduces our industrial application and
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describes the way data are selected and preprocessed. Section 4 presents the
notion of FLM-rules. Section 4.3 details the process that is used to select the
most reliable FLM-rules. In Section 5, we explain how to proceed to real time
forecasting, which includes matching the selected FLM-rules in a data stream
and merging their respective temporal information so as to provide a precise
forecast time interval. Finally, experimental results are presented in Section 6
while Section 7 concludes this paper and draws perspectives.

2 Related Work

Although maintenance is a manufacturing area that could benefit a lot from
data mining solutions, few applications (e.g., [13, 2]) have been identified so far.
Most of data mining applications are diagnosis ones (i.e., identifying problems
instead of forecasting them) [2]. Prognosis applications often meet difficulties in
predicting how much time is left before failure. End-users indeed have to set the
width of the temporal window width used to learn a model and forecast failures
(e.g., [1, 14, 10, 11]).

Prognosis applications are mainly neural-networks based. For example, in [14],
the authors propose a prognosis method that can be split into 2 sub-activities.
They first forecast the evolution of a degradation index with an Adaptive Neuro
Fuzzy System (ANFIS). This forecast is performed for a date given by the user.
Then, using a user-defined distance threshold, they compare this index evolution
to a reference one in order to check whether the observed system is about to be
affected by a failure or not. This approach has only been tested on synthetic
data. In [1], Letourneau and al. present an approach for forecasting aircraft
component faults. They build models from historical data before using them to
forecast failures. More precisely, for each component, heterogeneous data (nu-
merical, text) originating from measurements and maintenance reports are col-
lected. Learning datasets are then defined according to component replacement
occurrences found in maintenance reports by selecting data recorded before and
after replacements. Failure periods are defined by considering temporal windows
(about 10% of the time scale of the dataset) ending on replacement dates. All
temporal aspects are user-defined. Classifiers are finally extracted using decision
tree, nearest-neighbor or naive-bayes techniques. A failure is forecasted on the fly
if the current production data are classified as ’characterizing a failure period’.
It is to notice that the choice of the width of the failure periods significantly
impacts results as it is used both to model and forecast failures.

As further expounded in Section 3, the dataset we deal with is a large se-
quence of events, i.e. a long sequence of time-stamped symbols. Such a context
has been identified in [6]. More precisely, in [6], a data mining application, known
as the TASA project, is presented. It aims to extract symbolic rules describing
a network alarm flow, the episode rules. As explained in Section 1, these rules
syntactically take the temporal aspect into account. They are selected accord-
ing to a frequency (or support) measure and a confidence measure (for more
formal definitions, the reader is referred to [6–9]). In practice, users have to set
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the maximum temporal window width of episode rule occurrences so as to make
extractions tractable. Episode rule occurrences whose window width is greater
than this maximum window width are indeed not considered. This approach
can still generate a large amount of rules and experts are required to identify
interesting rules according to their knowledge. Though this approach has not
been designed for prognosis, it inspired some works that actually aim to forecast
failures. For example, in [10], the authors propose a method that searches for
previously extracted episode rules in data streams. As soon as an episode rule
premise is recognized, it is used to forecast future event types. More precisely,
they propose to build and to continuously maintain a queue of events which
are likely to form the premise occurrences of previously extracted episode rules.
Once the premise of a rule is matched in the data stream, they compute the
date at which the conclusion is meant to occur by adding the maximum window
width to the occurrence date of the first symbol of the premise. This method
is interesting as it avoids scanning the entire data stream backward but still,
a crucial temporal information, i.e. the maximum window width, has to be set
by users. Moreover, it has only been tested on synthetic data. Another episode-
based technique can be found in [11]. It aims to forecast, at the current time
instant n, the next event types of interest that are about to appear at the time
instant n+ 1. The order matters but no occurrence date is provided. To do so,
frequent episode are first extracted using a user-defined window width. Time
windows are considered if they end on one of the event type of interest. Each
frequent episode is then associated with a specialized Hidden Markov Model
(HMM), and a mixture of these HMMs is build for each event type of interest.
Finally, the likelihoods of the current window under these mixtures serve as a
basis to forecast event types of interest.

Beside asking for temporal parameters, the methods reviewed in this section
all impose a same temporal window width for all possible models, for all possible
patterns or rules. However, it is quite difficult to justify the use of a same tem-
poral window width for each rule. It has thus been proposed in [12] to extract
First Local Maximum rules (FLM-rules). These episode rules indeed come along
with their respective optimal temporal window widths. In [12], FLM-rules are
meant to describe event sequences and not to forecast events in a data stream
context. In [15], we proposed a first approach for using FLM-rules and their
optimal window widths so as to forecast events. An experiment on synthetic
supply chain datasets was also presented. Though the results of this experiment
were encouraging, and as explained in Section 5.1, the proposed approach was
not consistent with respect to the definition of FLM-rules. Furthermore, deal-
ing with vibratory data is more demanding than dealing with inventory levels.
In [16], we thus presented an improved version of this technique. We also de-
scribed a successful prognosis experiment that had been run on real production
datasets acquired from vacuum pumping systems. In this paper, we extend [16]
by giving a full insight into the data preparation (see Section 3). We also give
more details about the FLM-rule extraction/selection process (see Section 4.3)
and our forecast method (see Section 5). Finally, we improve the description of
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our experimental results and compare our performances with the performances
of the technique proposed in [10](see Section 6).

3 Application and Data Preparation

The aim of the approach described in this paper is to generate a model to fore-
cast a major dysfunction mode of complex pumping systems (i.e. with a complex
kinetic). These systems are running under really severe and unpredictable con-
ditions. They basically transfer gas from inlet to outlet. One major mode of
dysfunction of such systems is the seizing of pump axis. Seizings can be pro-
voked by many causes such as heat expansion or gas condensation. It is thus
difficult to establish a preventive maintenance planning. Therefore, ADIXEN
initiated a predictive maintenance project. As vibratory analysis is a promising
way for monitoring rotating machines [17], the vibration signals originating from
64 pumping systems of a semi-conductor manufacturer have been acquired. The
assumption that must be made to further predict seizings is that collected sig-
nals are representative of the variety of degradation patterns that emerge from
various use conditions.

3.1 Data Acquisition and Selection

In order to measure vibration signals, each one of the 64 pumping systems located
in the basement of our customer’s buildings is equipped with an accelerometer
to measure the vibration speed s(t). According to [18], the standard deviation
of s(t) over a period T can be approximated to:

σ =

√
1

T

∫ T

0

s(t)2dt (1)

This corresponds to the RMS-value (Root Mean Square value) of signal s(t)
over period T . Using the RMS-value as a descriptive quantity is interesting as it
directly relies to the power content of the vibrations. A common and convenient
way to qualify the criticality of the vibrations consists in:

– filtering the vibration signal s(t) using rectangular narrow band filters over
central frequencies,

– computing its RMS-value V rms at the output of each filter, i.e. for each
frequency band.

This way, a description of the signal spectrum and the repartition level for
each frequency band are obtained. This is important as studying frequencies ac-
cording to the kinematic of mechanical systems provides information about the
fault location. Back to our equipment, an acquisition system collects measure-
ments from accelerometers and directly provides the RMS-value of the vibration
speed over a period of 80 seconds for 20 frequency bands. Available data cover
more than 2 years for the 64 pumping systems. Pumps may undergo several
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subsequent failures, and after the first one, systems are damaged. If we succeed
in predicting seizing, then we will not monitor damaged systems. Thus data
recorded before first seizings are selected. Learning from potentially degraded
systems would indeed bias models.

3.2 Data Preprocessing

In order to perform FLM-rule extraction, the RMS-value of the vibration speed
of each frequency band has to be encoded into symbols. First, the default severity
has to be established. In the sound and vibration analysis domain, severity degree
is based on the power ratio [19, 18]:

Rn =
V rms(n,T )

V rms0
(2)

where V rms(n,T ) is the nth measured RMS-value of the vibration speed over
period T = 80s and V rms0 is the reference RMS-value of the studied pumping
system in good running conditions. V rms0 is defined as the lowest computed
RMS-value/standard deviation over a period P , with P � T and such that P
corresponds to a whole manufacturing process. This way, V rms0 is established
using a representative distribution of vibrations. However determining V rms0
over the right period is not easy as it varies from one pumping system to an-
other. According to our experts, V rms0 has to be computed at least 24 hours
after system power-on to get a stable signal. Then, for each frequency band, each
time a new measure arises, V rms0 is computed using a sliding window of size
P . If the computed value of V rms0 is lower than the previous one, V rms0 is
updated. For the selected data (see Section 3.1), V rms0 generally stops being
updated 2 weeks after the setup date.

Any variation of V rms(n,T ) relates to a default. For example, a shock induces
large variations of V rms(n,T ) relatively to reference V rms0. Thus RMS-values
are retained from the maximal envelope. Then, for these values, the power ratio
Rn (Equation. 2) is computed and discretized using three levels. Level one cor-
responds to Rn < α which means that V rms(n,T ) is less than α× V rms0. Level
two corresponds to α ≤ Rn < β and level three refers to Rn ≥ β. Each time
V rms(n,T ) switches from one discrete level to another one, the time spent at
the previous discrete level is computed and discretized using four levels ranging
from a few minutes to more than ten days. Levels are issued from experiments.
Finally, a dictionary of 240 symbols is defined, each symbol being associated to
three pieces of information: the frequency band (20 labels), the default severity
(3 labels) and the duration at this severity level (4 labels). A specific symbol is
also defined to represent seizing occurrences. In the end, 13 sequences contain-
ing about 2000 symbols along with their occurrence dates are obtained. Figure
1 illustrates the pre-processing of the signal. The first curve is a sample of one
V rms(n,T ) acquisition. The second curve shows its maximal envelope. Finally,
the bottom graphic illustrates the coding of that envelope: the two first digits
correspond to the signal identification (the frequency band), the third and the
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fourth digits respectively represent the level and the duration. In Figure 1, sym-
bol 1314 means: signal 13 was low (1) for few weeks (4). Symbol 1322 means:
signal 13 was high (2) for few hours (2) and 1333 means that it has been very high
(3) for a few days (3). In this paper, when possible and for the sake of fluidity,
symbols defined in this section (e.g., 1314 or 1323) are replaced by alphabetical
symbols. Figure 2 depicts our data selection and preprocessing process, from
vibration speed measurements to symbolic sequences.

Fig. 1. Signal pre-processing.
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Fig. 2. From vibration speed measurements to symbolic sequences: data selection and
preprocessing.

4 Learning by Means of FLM-Rules

4.1 Local Pattern Mining in Event Sequences

As presented in Section 3.2, the sequences to be mined are sequences of symbols
coming along with their occurrence dates. Such symbol occurrences are termed
as events. Two pattern extraction contexts can be distinguished. They depend
on the type of the dataset: either it is a single large event sequence [6, 8, 7, 12,
10, 9] or it is a collection of short event sequences namely a base of sequences
[20–26]. A single large sequence is composed of thousands of events whereas
a base of sequences is a set of multiple short sequences (about 500 events as
a maximum). As introduced in Section 3.2, we deal with sequences containing
2000 events on average. It is thus not recommended to use standard algorithms
extracting patterns from a base of sequences. So we focus on pattern extraction
from a single large sequence and transform our 13 pump sequences into a single
large sequence D. A time gap between each subsequence Seqi is imposed.

A maximum time gap constraint will indeed be further used in order to avoid
extracting FLM-rules whose occurrences could spread over the various initial
sequences.

The patterns used to mine a large event sequence are episode rules satisfying
a frequency and a confidence constraints. Two approaches have been originally
proposed: the Winepi [6, 8] and Minepi [7, 8] algorithms. Winepi extracts occur-
rences of episode rules in a sliding window whose width is set using a maximum
time span constraint. Minepi searches for episodes rules whose occurrences are
minimal, i.e. they do not contain any shorter occurrences. Furthermore, these
occurrences can not exceed a maximum window width. Both approaches thus
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require end-users to set a maximum time span (or window width) constraint
which is used to extract all possible rules. As a consequence, these algorithms
must be executed each time end-users consider a new and larger maximum time
span. In our application, the interesting window width is not known beforehand
and can vary from one episode rule to another. We thus decided to use algorithm
WinMiner [12]. It extracts episode rules having an optimal window width and
satisfying a frequency, a confidence, a minimal occurrence and a maximum gap
constraints. The maximum gap constraint is the maximum elapsed time between
two consecutive events forming an episode occurrence. It allows to linearly con-
strain the span of rule occurrences w.r.t. the number of event types forming the
rule instead of setting a unique maximum span for all possible rules. The opti-
mal window width, if it exists, is the smallest window width corresponding to a
local maximum of confidence for the rule (confidence is locally lower for smaller
and larger windows). These rules are termed as First Local Maximum Rules:
FLM-Rules. The following section introduces this concept in more details.

4.2 FLM-Rules

This section defines the main concepts that are necessary to understand the
notion of FLM-rules as originally proposed in [12]. As already mentioned in
Section 2, FLM-rules were originally designed to capture temporal dependencies
between events in event sequences and not to forecast events in data streams.
First, we define the dataset itself. As previously explained in Section 3.2, our
application context generates a large sequence.

Definition 1 (event, event sequence). Let E be a set of symbols, namely
event types. An event is defined by the pair (e, t) where e ∈ E and t is an integer
giving the occurrence date of e. An event sequence is a triple S = (s, Ts, Te)
where s is an ordered sequence of events 〈(e1, t1), (e2, t2), ..., (en, tn)〉 such that
∀i ∈ {1, ..., n}, ei ∈ E ∧ ∀i ∈ {1, ..., n − 1}, ti ≤ ti+1. Ts, Te are integers that
denote the starting and ending time of the event sequence.

1 2 3 4 5 6 7 8 9 15 16 1714131211100 18 19

A A B C F C E E E B F E A E C C
S

20

B AA

21

E

Fig. 3. Event sequence S.

Figure 3 depicts a toy example of such a sequence. FLM-rules are built upon
a given kind of episodes, namely serial episodes.

Definition 2 (serial episode, prefix, suffix). A serial episode is a tuple
α = 〈e1, e2, ...ek〉 such that ∀i ∈ {1, ..., k}, ei ∈ E and there exists a total or-
der relation between events types. The prefix of α, denoted by prefix(α) is the
tuple 〈e1, e2, ...ek−1〉. The suffix of α, denoted by suffix(α) is the singleton {ek}.
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For the sake of simplicity, a serial episode α = 〈e1, e2, ...ek〉 is also denoted
by e1 → e2 → ... → ek. As we only consider serial episodes, we will now refer
to episodes instead of referring to serial episodes. For example, A → B → C
is an episode stating that B occurs after A and is followed by C. The prefix of
A → B → C is A → B and its suffix is C. Let us now define how an episode is
said to occur within an event sequence:

Definition 3 (occurrence). An episode α = 〈e1, e2, ..., ek〉 occurs in a se-
quence S = (s, Ts, Te) if there exists at least one ordered sequence of events s’
= 〈(e1, t1), (e2, t2), ..., (ek, tk)〉 such that s′ can be obtained by removing some
elements of s or s′ = s (which will be denoted by s′  s in this paper) and
∀i ∈ {1, ..., k − 1}, 0 < ti+1 − ti ≤ maxgap with maxgap a user-defined con-
straint that represents the maximum time gap allowed between two consecutive
events. [t1, tk] is an occurrence of α. The set of all occurrences of α in S is
denoted by occ(α, S).

The maxgap constraint is set both to reduce the search space and to match
recurrent application requirements. It has been introduced in [12]. It linearly
constrains the time span of episode occurrences in function of the number of
symbols that form the episode (instead of having a same maximum time span for
all episodes). According to this definition, by considering the example depicted
in Figure 3 and by setting maxgap to 4 all along this section, occ(A → B,S) =
{[1, 3], [2, 3], [10, 11], [14, 18]}. Intervals [1, 11], [2, 11], [1, 18], [2, 18], [10, 18] do not
match the maxgap constraint. In order to reduce the size of such sets and to
consider occurrences that do not already contain another occurrence, minimal
occurrences are considered, as proposed in [7, 8] and in [12]:

Definition 4 (minimal occurrence). A minimal occurrence of an episode α
in a sequence S is a time interval [ts, te] containing α and such that there is
no other occurrence [t′s, t

′
e] verifying [t′s, t

′
e] ⊂ [ts, te]. The set of all minimal

occurrences of α in S is denoted by mo(α, S).

Back to our example, the minimal occurrences of episode A → B in S
are mo(A → B,S) = {[2, 3], [10, 11], [14, 18]}. Occurrence [1, 3] does not be-
long to mo(A → B,S) because it spreads over occurrence [2, 3]. We here re-
call that this definition relies on the occurrence definition that includes a max-
gap constraint. Minepi [8] can not handle this constraint as it causes incom-
pleteness. More precisely, if minimal occurrences of episodes of size k (i.e. hav-
ing k event types/symbols) are considered, then it is not possible to compute
episodes of size k + 1. Let us consider sequence S, episode A → B → C and
episode A. With maxgap = 4 time units, mo(A → B → C, S) = {[2, 4]} and
mo(A,S) = {[1, 1], [2, 2], [10, 10], [14, 14], [19, 19]} can not be used to generate
minimal occurrence {[2, 10]} of episode A → B → C → A. Indeed, the minimal
occurrence of (A → B → C) in S occurs too early with respect to the ending
date of A → B → C → A. Therefore, in [12], algorithm WinMiner has been pro-
posed. It extracts all minimal occurrences of the episodes satisfying a maxgap
constraint. It fully relies on the notion of minimal prefix occurrence:
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Definition 5 (minimal prefix occurrence). Let o = [ts, te] the occurrence of
episode α in a sequence S. o is a minimal prefix occurrence of α iff: ∀[t1, t2] ∈
mo(prefix(α), S), if ts < t1 then te < t2. The set of all mpo of α in S is denoted
mpo(α, S).

Using this definition, mpo(A → B → C, S) = {[2, 4], [2, 6]}. It is now possible
to join [2, 6] with [10, 10] to build mpo(A → B → C → A,S) = {[2, 10]}. The
notion of minimal prefix occurrences will be further used in Section 5.1 to detect
FLM-rule premises in data streams. For more details, the reader is referred to
[12].

Episode rules are derived from episodes. Let α be an episode. An episode rule
is the expression prefix(α) ⇒ suffix(α). For example if α = A → B → C, the
episode rule built on α is A → B ⇒ C. A more generic definition of episode
rules can be found in [8]. Episode rules are characterized with two measures :

– support : the number of occurrences of an episode rule over the whole se-
quence. The support of A → B ⇒ C, denoted by support(A → B ⇒ C),
is equal to the number of occurrences of episode A → B → C, denoted by
support(A → B → C).

– confidence: the observed conditional probability of observing the conclusion
of an episode rule knowing that the premiss already occurred. Confidence
of A → B ⇒ C is thus defined as follows: confidence(A → B ⇒ C) =
support(A→B→C)

support(A→B) .

These measures are used for selecting episode rules according to a minimum
support threshold σ and a minimum confidence threshold γ. As proposed in [12],
support and confidence can be defined for each window width, i.e. the maximum
time span of episode occurrences. In the example of Figure 3, mo(A → B,S) =
{[2, 3], [10, 11], [14, 18]} andmo(A → B → F, S) = {[2, 5], [10, 12]}. If we consider
a window width of 2 time units, then we have Support(A → B ⇒ F, S, 2) = 1
and Confidence(A → B ⇒ F, S, 2) = 1

2 . This means that A → B ⇒ F occurs
once and has a confidence of 50% for a 2 time units window width. If, for a given
episode rule λ, and for the shortest possible window width w,

– the support of λ is greater or equal to σ,
– the confidence cw of λ is greater or equal to γ,
– there exists a window width w′|w′ > w such that confidence of λ for w′ is

decreaseRate% lower than cw,
– there is no window width between w and w′ for which confidence is higher

than cw,

then, episode rule λ is said to be a First Local Maximum-rule or FLM-rule.
Parameter decreaseRate is user-defined and allows to select more or less pro-
nounced local maxima of confidence with respect to window widths. The window
width w corresponding to a first local maximum is termed as the optimal win-
dow width of FLM-rule λ. If we set decreaseRate to 30%, σ to 2, γ to 100%
and maxgap to 4, then rule r = A → B ⇒ F (Fig. 4) is a FLM-rule which
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has a first local maximum of confidence for a 3 time units window. This can
be interpreted as: ”if I observe the premiss of r at t0, then its conclusion must
appear within t0 and ts +w”. Parameter γ can be of course set to lower values.
In this case, the probability of observing the conclusion between t0 and ts + w
is greater or equal to γ. For more formal definitions, the reader is referred to
[12]. Using FLM-rules makes sense when dealing with temporal vibratory data.
Indeed, each FLM-rule we extracted in the context of our application has an
unique pronounced local maximum that differs from one rule to another. As fur-
ther explained in Section 5, to forecast failures, most reliable FLM-rules ending
on symbols relating to failures are retained. Then optimal window widths are
used to establish future failure occurrence dates.

window width 1 2 3 4 5
mo(A → B → F, S) ∅ {[10, 12]} {[2, 5], {[2, 5], {[2, 5],

[10, 12]} [10, 12]} [10, 12]}
mo(A → B,S) ∅ {[2, 3], {[2, 3], {[2, 3], {[2, 3],

[10, 11]} [10, 11]} [10, 11], [10, 11],
[14, 18]} [14, 18]}

support(A → B → F, S) 0 1 2 2 2
support(A → B,S) 0 2 2 3 3

confidence(A → B ⇒ F, S) 0 1/2 = 50% 2/2 = 100% 2/3 = 66% 2/3 = 66%

100%

50%
66%

2 3 4 5 6 8 91 7

confidence

window (time interval)

First Local Maximum for

optimal window width

σ = 2, γ = 100% and decreaseRate = 30%

Fig. 4. Confidence and support for rule A → B ⇒ F in sequence S (Fig. 3), for
maxgap = 4.

4.3 FLM-Rule Extraction and Selection

In order to forecast seizings, FLM-rules concluding on symbol ’seizing’ are the
only ones to be considered. The most reliable rules are then selected. As few
seizing examples are available, the extraction and selection process is inspired
from the well known leave-one-out cross validation technique. It involves remov-
ing a subsequence Seqi of sequence D, where each subsequence relates to a single
failure (see Section 4.1), and using it as a validation dataset. Remaining subse-
quences form the training dataset. This is repeated so that each subsequence is
used once as a validation dataset. We thus alternate FLM-rule extractions (with
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same parameter values) to get descriptions of training datasets and validations
of these descriptions by matching extracted FLM-rules over validation datasets.

A FLM-rule r is matched in a validation dataset if its conclusion occurs af-
ter each premise occurrence. If not, then, when used to forecast, rule r could
trigger false alarms and it has to be rejected. Temporal constraints are of course
taken into account. Let wr be the optimal window width of r. Firstly, each
premise occurrence time span must be lower than wr. Founding a premise oc-
currence that does not satisfy this constraint in a validation dataset means that
we would not have been able to forecast a failure using this dataset along with
r and wr. Indeed, according to the definition of FLM-rules, for each premise
occurrence starting at tps and ending at tpe, the conclusion should appear with
a high probability in ]tpe, tps + wr]. Rule r has thus to be rejected. Secondly,
regarding the conclusion, it must appear in ]tpe, tpe + gapmax]. By definition,
tps+ wr ≤ tpe+ gapmax. We thus allow the conclusion to occur after tps+ wr

which is permissive w.r.t. the definition of FLM-rules. In this case, using r and
wr, we would be able to forecast the failure but we would provide a too narrow
forecast time interval. This is better than being unable to forecast any failure,
and rule r can be retained. If the conclusion appears after tpe + gapmax, then
rule r was learned with a too short gapmax to describe and to forecast this case.
A rule having more event types might be able to take this case into account.
Rule r is thus rejected.

Once our extraction and selection process ends, we get a set of reliable FLM-
rules that do not trigger any false alarm on validation datasets (though too
narrow forecast time intervals may be provided). A same FLM-rule can be ex-
tracted at several iterations, each iteration providing a different optimal window
width. In this case, its optimal window width is set to the most observed value.
The set of selected FLM-rules is termed as the FLM-base. It will be used to
prognose seizings. This extraction and selection process, though not fully de-
tailed, was originally proposed in [16]. It is worth noting that if false alarms are
permitted (which is not allowed for our application), then this process can be
adapted so that a rule is rejected if and only if it triggers a number a false alarms
exceeding a user-defined threshold. In that latter case, the minimum confidence
threshold γ that is used to extract FLM-rules can thus be set to values lower than
100%. Figure 5 summarizes our extraction and selection process, from symbolic
sequences to the FLM-base.

5 Real Time Prognosis

Real time prognosis first relies on matching the FLM-rule premises of the FLM-
base in data streams. Then, for each matched premise, a time interval within
conclusions/failures/seizings should occur is computed. These aspects are de-
tailed in Section 5.1 which extends the proposition of [16] by giving, for the first
time, all necessary algorithms for forecasting events. As many different premises
can be matched, we may get different time intervals. We thus detail in Section
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Fig. 5. From symbolic sequences to the FLM-base: a leave-one-out approach.

5.2 a method, originally proposed in [16], for merging these informations and for
providing a single forecast time interval, namely the forecast window.

5.1 Matching FLM-Rules Premises in Data Streams

In order to match the premises of the FLM-rules belonging to the FLM-base,
we build a queue of event occurrences whose time span is lower than W , the
largest optimal window width of the FLM-base. When events occur, they are
added to the queue by setting their occurrence date to the current system date
t0. Events whose occurrence date t is lower than t0 −W are removed. We thus
make sure that enough data is kept for being able to identify the premises of
all the FLM-rules that form the FLM-base. From now on, a FLM-base is de-
fined as a set of tuples 〈premise, wr, tcr, size〉, each tuple relating to a single
FLM-rule. Element premise gives the premise of the FLM-rule, wr records its
optimal window width, tcr is the latest date at which the conclusion is meant
to appear (if no conclusion is forecasted then tcr = 0) and size, the number of
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event types forming the rule. The FLM-base is also maintained on the fly by
setting tcr to 0 if tcr < t0. For each event occurring at time t0, if its event type
corresponds to the last event type of a premise of a FLM-rule such that tcr = 0,
then the latest minimal occurrence of the whole premise is searched. In other
words, for a given FLM-rule, either the premise has already been matched and
tcr is still valid, or a new premise has to be searched, the latest one. Searching
for the latest occurrence is a strategy that is also proposed in [10]: any previous
occurrence has indeed already been used. Furthermore, in order to avoid any
useless processing, we search for this latest occurrence by reading backward the
queue from t0, the date at which the premise must end. This backward search
is also proposed in [10].

In this section, in order not to overwhelm readers with useless outputs, vari-
ables are meant to be passed by reference so that they can be directly modified if
necessary. Algorithm ForecastingSeizings (Algorithm 1) summarizes this ap-
proach. Date t0 is first set to the current system date (line 3). If event types
occur at t0 then the whole algorithm is executed (line 4 and line 5). The queue
S is maintained (line 6, see Algorithm 2) as well as the FLM-base (line 7, see
Algorithm 3). The queue is here considered as a set of events representing the
sequence of events recorded between t0 −W and t0. In order to search the data
stream backward and to simply adapt standard algorithms, we invert the whole
queue (line 8) w.r.t. t0, using function invert. It is detailed by Algorithm 4.
As already mentioned, this inversion is done in order to avoid any useless pro-
cessing, i.e. we intend to directly search for the latest occurrence: if we were
to consider the queue without inverting it, we would have to go through each
each occurrence to handle the minimality and the maximum gap constraints,
before finding the last occurrence, the one that was initially sought. This strat-
egy has been validated experimentally: seeking times are reduced by 20% in
the case of our application. In our case, this speed-up factor was necessary to
cope with the refresh rate of the data streams that were monitored. Then, the
premises of rules whose last event type occurs at t0 are searched for with pro-
cedure searchPremisses (line 9). If premises are found, then their respective
tcr are updated. The whole FLM-base may be thus updated and, in any case,
it is used by procedure buildForescatIntervall (line 10) to provide a forecast
window. If the forecast window is set to ]0, 0], then no failure/fault is forecasted;
otherwise a window of the form ]t0, tfe] (with t0 < tfe) is provided. Proce-
dures searchPremisses and buildForescatIntervall will be further detailed.

Searching for premise occurrences that are minimal ones satisfying the maxi-
mum gap constraint is not straightforward because of incompleteness issues. Our
algorithm thus derives from algorithm WinMiner [12]. As already explained in
Section 4.2, WinMiner uses mpos to remain complete while handling a maxi-
mum gap constraint. Furthermore, as we aim to avoid any useless processing by
searching the queue backward for the latest minimal occurrences, we consider
an inverted queue, an inverted sequence of events. This requires very few adap-
tations of algorithm WinMiner. Indeed, searching for the minimal occurrence
of the premises whose last event type occurs at t0 in event sequence S is is triv-
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Algorithm 1 (ForecastingSeizings)
Input:

– E, the set of event types that may appear in the data stream
– FLM − base, the FLM-base
– W , the largest optimal window width of the FLM-base

1. let S := ∅
2. while system Is ON do
3. let t0 := currentSystemDate
4. let O = {(e0, t0)|e0 ∈ E ∧ e0 occurs at t0}
5. if O �= ∅
6. maintainQueue(W, t0, S)
7. maintainFLM − base(t0, FLM − base)
8. let S−1 := invert(S)
9. searchPremises(S−1, FLM − base, E, t0, )
10. buildForecastInterval(FLM − base, t0)
11. fi
12. od

ially equivalent to searching for the minimal occurrence of the inverted premises
whose first event occurs at time t = 0 in inverted event sequence S−1. For ex-
ample, in Figure 5.1, if premise A → B → C and sequence S are considered,
then minimal occurrence [13, 18] has to be found. If we now consider S−1, then
the corresponding minimal occurrence [0, 5] of inverted premise C → B → A
shall be found. Algorithm WinMiner is thus adapted to search, in a backward
manner, for the latest minimal occurrences, ending at t0, satisfying a maximum
gap constraint. This leads to Algorithm 5 and Algorithm 6. There are detailed
hereafter:

We first begin by building an E/O-pair x (E/O stands for episode/occurrence)
to store the mpos of each event type belonging to a premise of the FLM-base
(line 2). To do so, we record the event type itself (line 3) and the occurrence list
is obtained using function scan (line 4). The occurrence list given by Occ is a
set of pairs (ts, T ) where ts is the starting date of a set of mpos whose respective
ending dates are stored using set T . All E/O-pairs are then collected with set
L1. They will be further used to compute premise occurrences. Basically, the
inversion algorithm, Algorithm 4, and the maintenance of L1 could be directly
done in Algorithm 2. The actual presentation was adopted for the sake of clarity.
Then, for each premise p that is not activated (p.tcr = 0), if its last event type
occurs at t0 (line 7), then, we search for its first occurrence beginning at t0 (line
9) with procedure searchForF irstOccurrenceBeginingAtT0. It is described by
Algorithm 6.

It recursively builds the mpos of the whole inverted premise, if it exists. At
recursion level i, it calculates the mpo of the inverted subpremise Z composed by
the first (last when considering the premise and not the inverted premise) i+ 1
event types. To do so, the mpos of event type i+ 1, Y, is selected using y (line
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Algorithm 2 (maintainQueue)
Input:

– W , the largest optimal window width of the FLM-base
– t0, the date at which the algorithm is triggered
– O, the set of events occurring at time t0
– S, a set of events representing an event sequence, i.e., the queue

1. for all (e, t) ∈ S do
2. if t < t0 −W
3. let S := S − {(e, t)}
4. fi
5. od
6. for all (e0, t0)inO
7. let S := S ∪ {(e0, t0)}
8. od

Algorithm 3 (maintainFLM-base)
Input:

– t0, the date at which the algorithm is triggered
– FLM − base, the FLM-base

1. for all p ∈ FLM − base do
2. if p.tcr ≤ t0
3. let p.tcr := 0
4. fi
5. od

1). Then, the new subpremise is recorded using mpo z (line 3) and its respective
mpo occurrence list is initialized to the empty set (line 4). We now consider the
earliest (starting at t0, 0 in the inverted queue) occurrences of subpremise X that
have been calculated at level i, that are stored using x (line 5) and that do not
end after wr units of time, i.e. that appear in observation window W obs

r = [0, wr]
(line 7). This way, we avoid building an occurrence exceeding the optimal window
width. Then, for each occurrence ending date, we search for the occurrences of
event type Y that appears after it while satisfying the maximum gap constraint
(line 8). We also make sure that they do not appear right after an occurrence of
X starting after t0 (line 8, second part). This last check is only used at recursion
level 1. Indeed, from level 2, by construction, all the occurrences of X start at
0. If needed and if occurrences of Z have been built, we then go the following
recursion level (line 11-14) until either the whole premise is build (line 15-18) or
there is no occurrence of Z to be able to go deeper. If the whole premise is found,
then tcr is set to t0 −min(L)+ p.wr (line 17). In other words, knowing that the
shortest occurrence of the inverted premise ends at min(L), we can deduce that
the first element of the premise occurs, in the non-inverted event sequence, at
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Algorithm 4 (invert)
Input :

– S, a set of events representing an event sequence
– t0, the date at which the algorithm is triggered

1. let S−1 := ∅
2. for all (e, t) ∈ S do
3. let t−1 := t0 − t
4. let S−1 := S−1 ∪ {(e, t−1)}
5. od
6. return S−1

CBB BAAA
1714 15 161311 1812 6543210 7

AABBC ABS S−1

Fig. 6. Event sequence S and inverted event sequence S−1.

t0 − min(L). We then add optimal window width wr to get the latest date at
which the conclusion is meant to occur, according to the definition of FLM-rules.
An example is given in Figure 7 for rule A → B → C ⇒ P . In other words,
the FLM-base is here updated to be further used to forecast failures (see next
section): no output is thus to be reported for algorithms 5 and 6. This update
relates to the forecasts associated to the rules forming the FLM-base. In [15], for
each matched premise of rule r, its conclusion is forecasted at tcr though it may
appear in ]t0, tcr] by definition of FLM-rules. The prognosis approach proposed
in [15] is thus not consistent with respect to the definition of FLM-rules.

5.2 Merging FLM-Rules Predictions

Let t0 be the date at which a FLM-rule premise is matched. For each matched
premise of rule r, its conclusion should occur in ]t0, tcr] with 100% confidence (if
the minimum confidence is set to 100%). Let Tc be the set of all forecast dates
tcr that are active, i.e. that are greater than t0 (those dates can be computed
before and at t0). Associated failure forecast time interval ]tfs , t

f
e ], also termed

as the forecast window WF , is such that tfs = t0 ∧ tfe = min(Tc). By choosing
the min operator to aggregate forecast dates, this forecast window is defined to
be the earliest one. Figure 8 provides a forecast window established using rules
α, β, δ that have been recognized at tn−1

0 and tn0 .

From a more operative point of view, after having tried to identify rule
premises in the queue, the forecast interval is calculated using Algorithm 7.
It first selects the earliest tcr (line 1). If it is different from 0, then interval
]t0, p.tcr] is provided (line 3), ]0; 0] otherwise (line 5, no failure is forecasted).
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Algorithm 5 (searchPremises)
Input:

– S, the set of events representing the inverted queue available at t0
– FLM − base, the FLM-base
– E, the set of events that may appear in S
– t0, the date at which the algorithm is triggered

1. let L1 := ∅
2. for all e ∈ E | ∃p ∈ FLM − base such that

∃i ∈ {1, ..., p.size} | p.premise[i] = e do
3. let x.Pattern := e
4. let x.Occ := scan(S, e)
5. let L1 := L1 ∪ {x}
6. od
7. for all p ∈ FLM − base | ∃(e, t) ∈ S such that

t = 0 ∧ p.premise[p.size] = e ∧ p.tcr = 0 do
8. let x := e ∈ L1 | e.Pattern = p.premise[p.size]
9. searchForF irstOccurrenceBeginingAtT0(t0, p, x, L1, 1, FLM − base)
10. od

6 Experimental Evaluation

6.1 Rule Selection

As explained in Section 3, seizings can originate from very different causes. In
addition, only 13 event sequences relating to seizings are available. Therefore,
minimum support threshold σ is set to 2, which is very low. In order to extract
the most confident rules, the minimum confidence threshold γ is set to 100%.
Parameter decreaseRate is set to 30% to select pronounced/singular optimal
window widths and the maximum gap constraint is set to 1 week to consider
very large optimal window widths. Indeed, when searching for the optimal win-
dow width of an episode rule, confidence and support measures are computed
for window widths that are lower or equal to the number of events of the rule
premise multiplied by the maximum gap constraint. Finally, FLM-rules con-
taining 4 event types as a maximum are considered to get generic rules and to
make extractions tractable.

For each extraction the number of episode rules ranges from 7509368 to
8713574 while the number of FLM-rules ranges from 2760307 to 3554548 rules.
Among them, 431 to 486 FLM-rules end on symbol seizing. At the end of the
FLM-rule extraction and selection process, we get a FLM-base containing 29
FLM-rules along with their respective optimal window widths. The frequency
bands involved in these rules all cope with experts’ knowledge except for one
band. Using various pump behavior simulations, our experts did validate it:
a new frequency band, that was not reported in the literature or in inter-
nal reports, has thus been discovered. The optimal window width distribution
presents several modes including 2 strong ones: about 3 days (15 FLM-rules)
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Algorithm 6 (searchForFirstOccurrenceBeginingAtT0)
Input:

– t0, the date at which the algorithm is triggered
– p, the tuple 〈premise, wr, tcr, size〉 describing the premise to be searched for
– x, a E/O-pair
– L1, the set of E/O-pairs of the event types belonging to the FLM-base premises
– i, the recursion level
– FLM − base, the FLM-base

1. let y := l ∈ L1 | l.Pattern = p.premise[p.size− i]
2. let z be a mpo
3. let z.Pattern := x.Pattern → y.Pattern
4. let z.Occ := ∅
5. let (ts, T ) ∈ x.Occ | ts = 0
6. let L := ∅
7. for all t ∈ T | t < p.wr do
8. let EndingT imes := {t′s | ∃(t′s, T ′) ∈ y.Occ such that t′s > ts ∧ t′s − t ≤ gapmax

∧∀(t′′, T ′′) ∈ x.Occ, ts < t′′ ⇒ ∀t′′′ ∈ T ′′, t′s ≤ t′′′}
9. let L := L ∪ EndingT imes
10. od
11. if L �= ∅ ∧ i < p.size
12. z.Occ := z.Occ ∪ {(ts, L)}
13. searchForF irstOccurrenceBeginingAtT0(t0, p, z, L1, i+ 1)
14. fi
15. if L �= ∅ ∧ i = p.size
16. let p′ ∈ FLM − base | p′.premise = p.premise
17. let p′.tcr := t0 −min(L) + p.wr

18. fi

and 10 days (14-rules). This clearly shows that setting a unique window width
when extracting such rules is too restrictive. The extracted rules looks like :
(1931− > 1933− > 1933 => 4, 100, 2448, 3), which means: if signal over fre-
quency 19 is very high (3) for a few minutes (1) and then very high (3) for few
days (3) twice (1933− > 1933), pump has a probability of 100% to seize (event 4)
within 2448 minutes. It has been observed 3 times. The extraction and selection
process is tractable: execution times does not exceed 3 hours on a standard PC
(proc. Intel Xeon CPU 5160 @ 3.00GHz, 4 Gbytes ram, linux kernel 2.26.22.5)
and no memory swap is to be reported.

6.2 Real Time Prognosis

When prognosing faults, each time a symbol occurs in the data stream, 2 different
informations are provided to end-users. The first one, namely the fault forecast,
indicates whether the pump that is monitored is about to fail or not. If so, then
the second information to be given is the forecast window, i.e. the time interval
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Fig. 7. Projecting the optimal window width of rule A → B → C ⇒ P .

in which the pump is likely to fail. A twofold evaluation is consequently proposed
to characterize both informations.

Evaluating the Fault Forecast Each time a symbol occurs, a fault forecast is
provided. Let ’a fault is forecasted’ and ’no fault is forecasted’ be two different
classes charactering a pump whose status has just changed (i.e. a symbol just oc-
curred). Having objects and their classes, a classification-based evaluation can be
conducted. Nevertheless, temporal aspects must be taken into account. Firstly,
the objects are quite unusual: they are defined according to a given system/pump
for a given date t0 (when a symbol occurs). Secondly, the only way to get the
class label is to look after t0. As the FLM-rules having been extracted using
a maximum gap constraint, no fault occurring after t0 +maxgap can be fore-
casted. Therefore, time interval ]t0, t0+maxgap] is checked to get the class label.
As class ’a fault is forecasted’ is the minority one, it is termed the positive class
’+’ while the other one is termed the negative ’-’ class. Four different cases, can
be distinguished:

- case 1: true positives (TP) - a fault is forecasted and it occurs in ]t0, t0 +maxgap].

- case 2: false negatives (FN) - no fault is forecasted but a fault occurs in ]t0, t0 +

maxgap].

- case 3: false positives (FP) - a fault is forecasted but no fault occurs in ]t0, t0+maxgap].

- case 4: true negatives (TN) - no fault is forecasted and no fault occurs in ]t0, t0 +

maxgap].

The instance number of these cases can be reported in a confusion matrix and
can serve as basis for calculating standard classification measures (e.g., accuracy,
recall, precision or specificity). The reader is referred to [27] for a full presentation
of these measures.
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Fig. 8. Merging prediction information of FLM-rules.

We applied the real time forecast method on 2 datasets: the 13 sequences
used to build our FLM-base (dataset 1) and 21 new sequences of production
data (dataset 2). Using these datasets, we simulated 2 data streams and made
respectively 24125 and 32525 forecasts. Results of evaluations are given in Ta-
ble 1 and in Table 2, using confusion matrices

Table 1. Dataset 1 confusion matrix.

Predicted classes

+ −
Actual + 492 262

classes − 20 23351

Table 2. Dataset 2 confusion matrix.

Predicted classes

+ −
Actual + 300 0

Classes − 404 31821

Using these counts, accuracy, recall, precision, and specificity measures are
calculated for dataset 1 and dataset 2 (see Table 3).
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Algorithm 7 (buildForecastInterval)
Input:

– t0, the date at which the algorithm is triggered
– FLM − base, the FLM-base

1. let p ∈ FLM − base | p.tcr �= 0 ∧ �p′ ∈ FLM − base such that p′.tcr < p.tcr
2. if p′.tcr �= 0
3. output 〈t0, p.tcr〉
4. else
5. output 〈0, 0〉
6. fi

Table 3. Classification measures for dataset 1 and dataset 2.

dataset accuracy recall precision specificity

dataset 1 0.98 0.64 0.96 0.99

dataset 2 0.98 1 0.43 0.99

Though we could access few data relating to failures so far, results are en-
couraging as we forecast 10 seizings out of 13 with 98% of accuracy on dataset 1
and as we foresee 2 upcoming seizings with 98% of accuracy as well on dataset
2. There are very few false alarms, which is very important in our production
context: specificity measures reach 0.99 for both datasets. Furthermore, the 20
and 404 false alarms (Tables 1 and 2) stating that a pump will seize are gener-
ated for a pump that seizes few days later. Thus, the precision measures (96%
for dataset 1, 43% for dataset 2) should be balanced. A typical illustration can
be found on Figure 9. More precisely, Figure 9 shows the evolution of the fore-
cast window for seizing #11. It is worth notice that the first forecast window,
provided 7 days before seizing, did not include the failure. However, all forecast
windows provided between 5 days before the failure and the failure date contain
the date of occurrence of the forthcoming seizing. This figure also illustrates that
the more we are close to the failure occurrence, the more the forecast window
is precise (the largest one covers 7.5 days). As the low precision level observed
for dataset 2 is due to too early warnings, the optimal window widths that have
been learned on dataset 2 might be to short ones. This can be explained by the
small number of training examples, only 13 seizings, which imposes low support
thresholds. From an applicative point of view, this does not represent a major
problem because the pumps all seized a few days later. Finally, the 262 false
negatives on dataset 1 all relate to the 3 failures that are not forecasted. The
associated recall measure is thus 64% while it rises up to 100% for dataset 2. A
so low recall measure for the training dataset indicates that the extraction and
selection process presented in Section 4.3 tends to focus on very generic rules.
It is indeed the case: this process has been designed to select rules with high
confidence ratios that do not trigger any false alarm. Very specific rules, that
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only hold for a pump or so, are thus discarded. This inhibits us from forecasting
3 seizings. This has to be balanced, because extracted rules are generic enough
to forecast seizings using dataset 2, which has been built by monitoring pumps
that were subjected to different manufacturing processes (e.g., different gases).

Fig. 9. The forecast window evolution of seizing #11.

Evaluating the Forecast Window As previously mentioned in this section, by
construction, a failure can not be forecasted after t0+maxgap. A rough solution
would be therefore to provide end-users with constant forecast window ]t0, t0 +
maxgap]. Nevertheless, as explained in Section 5.2, a narrower forecast window
can be calculated: ]t0, t

f
e ], with tfe ≤ t0+maxgap]. Is it correct to propose such a

reduced forecast window? This section tries answering that question. In [28], the
authors propose different measures for evaluating prognosis techniques. Among
them, the accuracy and the precision are to be mentioned. They differ from the
ones used in the previous paragraph and can be expressed as follows:

– accuracy: the average distance between the seizing occurrence date and its
forecasted occurrence date.

– precision: the standard deviation of the distance between the seizing occur-
rence date and its forecasted occurrence date.

These measures holds for techniques providing a single occurrence while our
method outputs time interval ]t0, t

f
e ], the forecast window. We thus propose to
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adapt these measures to our framework by calculating the mean μerror (cf. Equa-
tion 3) and the standard deviation σerror (cf. Equation 4) of the distances/errors
between dates tfe , t0 and t0 +maxgap w.r.t. to tr, the date at which the seizing
occurs. Dates tfe , t0 and t0 +maxgap are denoted ti in equations 4 and 3 while
N is the number of forecast windows.

μerror =
1

N

N∑
i=1

(tr − ti) (3)

σerror =

√√√√ 1

N

N∑
i=1

(tr − ti)2 (4)

In order to check whether the forecasted occurrence dates are, in average,
before or after the seizing occurrence dates, (tr − ti) is preferred to |tr − ti| in
Equation 3. These measures are reported in Table 4 and Table 5 for each one
of the datasets. For dataset 1, the lowest average distance is obtained for date
tfe : −0.85 days. The same holds for the standard deviation with a value of 1.48
days. Date tfe is thus the most accurate and the most precise estimation of tr.
For dataset 2, date tfe remains the most precise (2.15 days) but it is not the most
accurate. In this case, date t0 is indeed better with an accuracy of 2.27 days. In
any case, for both datasets, date tfe and date t0 are far better than t0+maxgap.
The proposed interval reduction thus makes sense.

Table 4. Accuracy and precision for dataset 1.

Date to which tr is compared.

tfs = t0 tfe t0 +maxgap

μerror (days) 2.06 -0.85 -4.88

σerror (days) 2.26 1.48 2.26

Table 5. Accuracy and precision for dataset 2.

Date to which tr is compared.

tfs tfe t0 +maxgap

μerror (days) 2.27 -3.14 -4.68

σerror (days) 2.69 2.15 2.69

In more details, for dataset 1, the distance w.r.t. t0 is always positive and,
most of the time, it ranges from 0 to 4 days. Sizings thus occur after t0 in 100%
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of the case, while in 90% of the cases, they occur right before tfe . Furthermore, as
already seen, in most cases, the distance w.r.t. tfe is below 1 day. On the contrary,
in 97% of the case, t0 +maxgap > tr. The forecast interval is thus a precise and
accurate estimation of seizing occurrence dates. For dataset 2, the distribution
remain similar for date t0+maxgap. In most of the cases, seizings occur between
5 and 7 days after t0 +maxgap. They also appear mainly between 2 and 4 days
(even 6 days in some cases) after tfe . In that case, the interval reduction is too
strong but still, tfe remains more accurate and precise than t0+maxgap. It thus
better expresses how much time is left before a failure/seizing. Finally, latest
failure predictions provided by our software prototype arise at least 3 hours
before failure really occurs and, most of the time, more than 2 days before. This
is enough to plan maintenance tasks.

6.3 Performances

In Section 2, two techniques for forecasting event types in a data stream context
are presented. The one proposed in [11] aims to forecast the next event types of
interest that are about to arise. Given that this technique does not provide any
occurrence date, it can not be applied in our context. Indeed, technical teams
need this information to plan maintenance tasks.

The second technique is proposed in [10]. It searches for previously extracted
episode rule premises in data streams. As soon as an episode rule premise is
recognized, it is used to forecast future event types. The latest date at which the
corresponding conclusion is meant to occur is computed by adding the maximum
window width of episode rule occurrences, β, to the occurrence date of the first
symbol of the premise. If several dates are computed and active, then the lastest
one is retained. This is contrary to our method: we select the earliest one. A
crucial temporal information, i.e. β, has to be set by users. It is indeed used both
to learn episode rules and to forecast event types. Another maximum window
width, termed as α, must be set by users to learn episode rules: the premise
maximum window width, i.e., the maximum time gap between the first and
the last event of the premise occurrences. These two time constraints, originally
proposed in [6, 8, 7], have to be satisfied by all rule occurrences, whatever the
size of rules, i.e., the number of event types. We here remind the reader that we
propose to use FLM-rules whose occurrences are linearly constrained w.r.t. the
size of rules by using a maximum gap constraint between events. Our technique
also selects automatically the most reliable FLM-rules, i.e. episode rules having
optimal window widths, which are, in turn, used to forecast event types. Unlike
the method proposed in [10], users do not have to set the width of forecast
windows and different window widths, depending on the rules that are found in
data streams, can be used.

Though there exist significant differences between our method and the one
proposed in [10], especially when it comes to define the window widths that are
used to forecast event types, we checked whether the later would work in our
context. To do so, we used the same data sets and the same preprocessing to learn
and to forecast seizings. In order to be as close as possible in terms of learning
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parameters, we also asked for rules formed by 4 event types as a maximum
and ending on event type ’seizing’. We used the same support and confidence
thresholds (σ = 2, γ = 100%). Knowing that the maximum gap constraint was
set to 10 days to learn FLM-rules, we set α to 20 days and β to 30 days to learn
episode rules. Thus, as for FLM-rules:

– the largest occurrences to be considered do not exceed 20 days when consid-
ering rule premises and 30 days when considering episode rules,

– there is no more than 10 days between the last event type of premises and
rules conclusions.

In order to learn episode rules by taking into account parameters α, β and
all other parameters, we used the prototype of C. Rigotti, DMT4SP [29] : 611
episode rules ending on event type ’seizing’ were extracted.

About forecasts, both methods add a temporal window width to the occur-
rence date of the first event type of the found premises to compute the latest
date at which the conclusion of the rule is forecasted. Our method adds the opti-
mal window widths of FLM-rules while the method proposed in [10] adds β, the
unique maximum window width of episode rules. Nevertheless, by construction
and because of our parameter choice strategy, for both methods, the largest pos-
sible forecast interval is ]t0, t0+10 days] =]t0, t0+maxgap]. Therefore, the same
measures, as defined in Section 6.2, are considered to evaluate the performance
of the method proposed in [10]. About fault forecasts, results are as follows:

Table 6. Classification measures for dataset 1 and dataset 2.

dataset accuracy recall precision specificity

dataset 1 0.86 0.12 0.14 0.93

dataset 2 0.92 0.18 0.07 0.94

As it can be observed, all our measures are better, especially when considering
recall and precisions ones. Furthermore, on dataset 1, only 7 out of 13 were
predicted while 1 out of 2 seizings are predicted on dataset 2. We remind the
reader that we were able to predict 10 seizings on dataset 1 and 2 on dataset 2.
Our forecast windows are also far better:

Table 7. Accuracy and precision for dataset 1.

Date to which tr is compared.

tfs tfe t0 +maxgap

μerror (days) 26.87 14.34 21.96

σerror (days) 36 26 37.18
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Table 8. Accuracy and precision for dataset 2.

Date to which tr is compared.

tfs tfe t0 +maxgap

μerror (days) 43.28 -19.25 34.73

σerror (days) 76 27.49 71.49

These results show that, even if some seizings are forecasted, forecast win-
dows can not be trusted for both datasets. As a conclusion, when considering
our datasets, the concept of FLM-rules and optimal window widths (originally
proposed in [12]), along with a leave-one-out-based FLM-rule selection process
(see Section 4.3), leads to better forecasts: our method indeed outperforms the
method proposed in [10].

7 Conclusion and Perspectives

In this paper, we present an approach for modeling pumping systems by means
of FLM-rules and for forecasting failures (namely seizings) in a data stream con-
text using these rules along with their respective temporal information. This
information is used to define a temporal forecast window. The developed ap-
proach is applied in an industrial context in which systems are running under
severe and unpredictable conditions. Although a small statistical population of
seizings resulting from different causes (heat expansion or gas condensation) is
available, results are encouraging. Failures are forecasted with a good temporal
accuracy and precision on both the learning dataset and a new dataset, while
the false alarm level remains low. In addition, our forecasts provide enough time
to technical teams to plan interventions. This approach is now patented [30]. Fu-
ture works include introducing fuzzy logic in order to provide a gradual warning
within a forecast window and studying loose matching of episode rules in data
streams. Loose matching could help us in generalizing our technique to moni-
tor other systems where temporal aspects are not always prevalent. Similarity
measures capturing both ordered and non-ordered dependencies, such as the one
proposed in [31], are good candidates.
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