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Abstract. For objects in general metric spaces, the generalized hyperplane in-
dexing is one of the most widely used indexing techniques In the paper, some 
methods are presented to improve the quality of the partitioning in generalized 
hyperplane  tree structure from the viewpoint of balancing factor. The proposed 
method to represent the elements in the target domain metric space is the usage 
of a distance matrix as it can model the distance relationship without any in-
formation loss. The efficiency of the partitioning depends on the appropriate se-
lection of the pivot elements. As this method requires the knowledge of a great 
number of distance values between the objects, the paper proposes an interval-
based distance value representation. Based on the test results, the given method 
dominates the usual techniques if the fullness factor of the distance matrix is 
between 3% and 35%.  
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1 Introduction 

Objects under investigation are usually represented by real valued feature vectors. 
The generation of appropriate feature vectors in some complex problem domains is a 
very hard or impossible task. For such complex objects as x-ray photos, large docu-
ments or the feeling of humans, there exists no simple and all-covering feature repre-
sentation. Our investigation focuses on the cases, where the only information on the 
objects is the distance values between them. The applied distance function d() is 
called metric if it fulfills the following conditions: 
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𝑑(𝑥, 𝑦) ≥ 0 
𝑑(𝑥, 𝑦) = 0 ↔ 𝑥 = 𝑦 
𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) 

𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) ≥ 𝑑(𝑥, 𝑦). 

(1) 

 
In this case the container space is a general metric space (GMS). The different appli-
cation areas may have very different and complex distance functions. Usually the 
storage and comparison of the objects in GMS are relatively expensive operations. In 
the case of applications with huge collection of these objects, the objects are clustered 
and indexed to reduce the query and object retrieval costs. The traditional one dimen-
sional indexing techniques cannot be used in GMS. The most widely used indexing 
methods in general metric spaces use pivot elements. A pivot element p is a distin-
guished object from the object-set. The distance from an object x to p is used as the 
indexing key value of x to locate the bucket containing x. Usually more than one sin-
gle pivot element are used in the partitioning algorithms. 

There are many variants of pivot-based index trees in general metric spaces. The 
Generalized Hyperplane Tree (GHT) [29] and Bisector Tree [14] tree are widely used 
alternatives. These structures are binary trees where each node of the tree is assigned 
to a pair of pivot elements (p1,p2). If the distance of the object to p1 is smaller than the 
distance to p2, then the object is assigned to the left subtree, otherwise it is sent to the 
right subtree. According to experiments [29], the GHT provides a better indexing 
structure than the usual vantage point trees.  

A key element in the efficiency of indexing is the appropriate selection of the pivot 
elements. Based on the survey of [5], the following methods are usually used for pivot 
selection. The simplest solution is the random selection of the pivot elements. In this 
approach, more tests are run and the pivot set with best parameter is selected. The 
second method is the incremental selection method. In the first step of this algorithm, 
a p1 with optimal fitness is selected. In the next step, the pivot set is extended with p2, 
generated by a new optimization process where p1 is fixed already. On this way, the 
pivot set is extended incrementally to the required size. The third way is the local 
optimization method. In this case, an initial pivot set is generated on some arbitrary 
way. In the next step, the pivot element with worst contribution is removed from the 
set and a new pivot element is selected into the set. This phase is repeated until a giv-
en quality level is reached. 

The work [5] analyzed the pivot selection methods from the viewpoint of subtree 
pruning operation. Usually a heuristic approach is used in the applications. The core 
elements of the heuristics are the following rules: the pivot elements should be far 
from the other not pivot elements and they should be far from each others too. The 
paper concluded that the incremental selection method provides the optimal solution 
of this heuristics. An improved pivot selection method called Sparse Spatial Selection 
(SSS) is presented in [6]. The SSS method generates the pivot elements dynamically 
when a new outlier element is inserted into the object pool. The new incoming ele-
ment is selected as a new pivot if it is far enough from the other pivot elements. A 
loss minimization method was proposed by [13] for optimization of the output index 
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structure, where the loss is measured as the real distance between the object and its 
nearest neighbor in the index tree.  

The main goal of this paper is to analyze the pivot selection methods from a differ-
ent viewpoint, namely from the viewpoint of balancing factor of the generated index 
tree. The object set to be indexed is represented with a distance matrix as only this 
method can preserve the distance relationship found in the domain space. The as-
sumption in the investigation is, that initially this distance matrix is empty and the 
calculation of the distance value is a relatively high cost operation. This condition is 
usually met in the case of complex objects.  The balancing factor is an important pa-
rameter of the traditional search trees. In the case of well balanced tree, the cost of 
search operation is low and stable [26]. Another aspect of the investigation is the cost 
reduction of distance computations during the selection of pivot set. The proposed 
method optimizes the process of pivot selection to achieve a balanced GHT tree using 
a minimum number of distance calculations. The investigation addresses the split 
operation of a GHT node when the bucket gets full. In this process, two new pivot 
elements should be selected. As the bucket contains only the objects of a single node, 
it can be assumed that the size of the object set is limited. Based on these considera-
tion, the presented method is a combination of algorithms on distance matrices and 
direct pivot selection. The proposed method uses a interval-based distance value rep-
resentation form in order to reduce the number of required distance computations. The 
performed tests demonstrate the efficiency of the presented method. 

2 Distance matrix for representation of elements in GMS 

There are two main different approaches for representation of objects in general met-
ric space. The first method is based on the mapping of the objects into some Euclide-
an space as this representation form provides a large set of operators on the object set. 
The generation of aggregated elements or of sample objects, the construction of con-
tainer objects and ordering of the objects by some of the dimensions are among the 
most frequently used operators. The applied mapping function is denoted with 
𝜇:𝐺𝑀𝑆 → 𝐸𝑁, where N denotes the dimensionality of the target Euclidean space. 

The most widely used mapping algorithm is the Fréchet-embedding [4]. The algo-
rithm is based on the following considerations. First, Ai  (i=1,..,N) groups of elements 
in GMS are selected as groups of pivot elements. The group Ai is assigned to the ith 
coordinate in the target Euclidean space. The ith coordinate of a target object u is cal-
culated with  

 𝜇(𝑢)𝑖 = 𝑚𝑖𝑛𝑣∈𝐴𝑖{𝑑(𝑢, 𝑣)}. (2) 

Another mapping option is the application of a multidimensional scaling (MDS) [17]  
method. The initial positions in the target Euclidean space are generated randomly. 
The final positions are calculated in a iterative process which optimizes the stress 
mapping error function. The stress measure [17] is calculated with  
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 𝑠𝜇 = �
∑ (𝐷�𝜇(𝑢), 𝜇(𝑣)� − 𝑑(𝑢, 𝑣))2𝑢,𝑣

∑ 𝑑(𝑢, 𝑣)2𝑢,𝑣
 2(3) 

 
where 

 𝜇 : the mapping function 
 u,v : objects in GMS 
 d: distance in GMS 
 D : distance in L2. 

To find the optimum positions, a gradient method is applied. The method is based on 
the analogy from physics, where each pair-wise connection can be treated as a spring. 
Another standard method is the FastMap mapping [10], which is based on the stand-
ard dimension reduction method in Euclidean space. The dimension value in a lower 
dimensional space can be calculated from the distance values in the higher dimen-
sional space using the known cosine low. In this approach, two pivot elements are 
assigned to a target dimension. The new coordinate value is equal to 
 

 𝜇(𝑢)𝑖 =
𝑑(𝑢, 𝑝𝑖1)2 − 𝑑(𝑢, 𝑝𝑖2)2 + 𝑑(𝑝𝑖1, 𝑝𝑖2)2

2𝑑(𝑝𝑖1, 𝑝𝑖2)
 (4) 

where 
 𝑝𝑖1: the first pivot element of ith dimension, 
 𝑝𝑖2: the second pivot element of ith dimension. 
 
This mapping uses the projection of (pi1,u) onto the line (pi1, pi2) as coordinate value 
µ(u)i. This projection can be calculated from the cosine law and applying the Pythago-
ras law. The distance values on the hyperplane perpendicular to the selected line (𝑝𝑖1, 
𝑝𝑖2) are calculated with 

 

 𝑑′(𝑢, 𝑣) = �𝑑(𝑢, 𝑣)2 − (𝜇𝑖(𝑢) − 𝜇𝑖(𝑣))2 (5) 

 
Taking two another pivot elements in this perpendicular space, the dimension values 
for the next dimension of the target Euclidean space can be generated on a similar 
way as it was presented in the previous steps. A main drawback of the presented 
mapping approach is that the distance values in the source metric space may signifi-
cantly differ from the distance values in the target Euclidean space. For example, the 
Fréchet-embedding is no relation preserving, i.e. it is not ensured that 

 

 ∀𝑎, 𝑏, 𝑐,𝑑: 𝑑(𝑎, 𝑏) ≥  𝑑(𝑐,𝑑) →  𝐷�𝜇(𝑎), 𝜇(𝑏)� ≥  𝐷(𝜇(𝑐), 𝜇(𝑑)) (6) 
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There exist many object distributions in GMS, which can't mapped to a corresponding 
point set in Euclidean space. The Fig. 1 shows this fact with a simple example for 
object set with four objects. The given distance values are valid in GMS, but they are 
no valid in Euclidean space. The experiences show that for GMS with larger object 
sets only a small subset of valid GMS distance distribution can be represented without 
information loss in Euclidean space. Thus, the direct mapping of the objects into a 
Euclidean space causes a significant loss of information, the resulted object set is a 
rough approximation of the original object set.  

 

 
 Fig. 1. , Object set valid in GMS but not valid in Euclidean space  

 
Another representation approach is the distance matrix form, where the distance val-
ues between every objects are saved without any modification in a matrix. Let  
ℋ ⊂ ℜ𝑁×𝑁 denotes the set of distance matrices meeting the axioms of the distance 
functions. Let 𝑑̂ denote the upper triangle part of ℎ�  and ℋ𝑢 the set of these matrices. 
With corresponding mapping of indexes the formula (1) can be converted into the 
following form: 
 

 

∀ 𝑑𝑖𝑗 ,𝑑𝑗𝑘 ,𝑑𝑘𝑖 ∈ 𝑑̂  ∈  ℋ𝑢:𝑑𝑖𝑘 + 𝑑𝑘𝑗 − 𝑑𝑖𝑗 ≥ 0 
∀ 𝑑𝑖𝑗 ∈ 𝑑̂ ∈ ℋ𝑢:𝑑𝑖𝑗 ≥ 0 

ℋ𝑢 ⊂ ℜ�𝑁2� 

(7) 

 
As it can be seen the set of valid distance matrices is equal to the solution set of the 
linear homogenous inequality system (7). In this formula we allow to have a zero 
distance value between any objects. This difference enables the investigation of de-
generate cases where two objects may be overlapped, i.e. they are the same object.  It 
follows from this fact that if 

 𝑥�, 𝑦� ∈ ℋ𝑢 ,𝛼,𝛽 ∈ ℛ+ (8) 

then  

 𝛼𝑥� + 𝛽𝑦� ∈ ℋ𝑢 (9) 

5 

2 

3 3 

2 

2 
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is also met.  Thus ℋ𝑢 is a convex cone in ℜ�𝑁2� containing the zero element of  ℜ�𝑁2� 
too. A ray of ℋ𝑢  for direction  d� ∈ Hu is defined as  
 

 𝛼𝑑̂ ∈ ℋ𝑢 ,𝛼 ∈ ℛ+ (10) 

 
The direction d�  is an extreme direction of a convex cone if it cannot be expressed as a 
conic combination of directions of any rays in the cone distinct from it: 
 

 ∀𝑎�, 𝑏� ∈ ℋ𝑢 ,𝛼,𝛽, 𝛾 ∈ ℛ+, 𝑎� ≠ 𝛾𝑑̂, 𝑏� ≠ 𝛾𝑑̂: 𝛼𝑎� + 𝛽𝑏�  ≠ 𝑑̂   (11) 

 
According to the theory of Klee [27], any closed convex set containing no lines can 
be expressed as the convex hull of its extreme points and extreme rays. 

Given a matrix 𝐴̂ = [𝑎�1, 𝑎�𝑘, … , 𝑎�𝑘], a cone C(𝐴̂) and its polar cone P(𝐴̂) can be de-
fined as follows [5]: 

 

 
𝐶�𝐴̂� =  �𝑥̅|𝑥̅ =  � 𝛽𝑖𝑎�𝑖,   𝛽𝑖 ≥ 0

𝑘

𝑖=1
� 

𝑃�𝐴̂� = �𝑥̅|𝐴̂𝑇𝑥̅ ≥ 0�. 
(12) 

 
The vector 𝑤�  is called as edge vector of the polar cone given in (3) if 𝑤�  is not posi-
tively covered by any vectors in P(𝐴̂) \ C(𝑤�), where C(𝑤�) denotes the one dimension-
al cone generated by 𝑤� .  

The theorem by Tamura [27] determines the conditions for a given vector 𝑤�  in 
P(𝐴̂) to be an edge vector of P(𝐴̂). Assume that rank(𝐴̂) = M. Then the vector 𝑤�  with 
unit norm is an edge vector of P(𝐴̂) if and only if there exists subcollections 
{a�i1, . . , a�iq} and {a�iq+1, . . , a�ik} of 𝐴̂ such that    

 

 
〈𝑤� , 𝑎�𝑖𝑗〉 = 0, 𝑗 = 1, . . , 𝑞 

〈𝑤� , 𝑎�𝑖𝑗〉 > 0, 𝑗 = 𝑞 + 1, . . , 𝑘 
𝑟𝑎𝑛𝑘��𝑎�𝑖1, . . , 𝑎�𝑖𝑞�� =  𝑀 − 1 

(13) 

 
and the polyhedral cone P(𝐴̂) can be expressed in terms of edge vectors as 
 

 𝑃�𝐴̂� =  �𝑥̅|𝑥̅ = � 𝛽𝑖𝑤�𝑖,    𝛽𝑖 ≥ 0
𝑞

𝑖=1
� (14) 
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if P(𝐴̂) does not contain any subspace. Unfortunately, the extreme rays of the metric 
cone can't be generated directly for larger N values as the number of extreme rays is a 
 O(2N2)[31].  
In the distance matrix representation form, a useful aggregated property of the object 
set is the distance distribution function. As the experiences show the efficiency of the 
algorithms are significantly influenced by the characteristics of the distribution. In the 
test generations, three main types of distribution were selected: uni-polar, bi-polar and 
multi-polar distributions with uniform distribution within the clusters. The shape of 
the functions for the investigated uni-polar and bi-polar cases is shown in Figure 2. 

 

 
Fig. 2. , Distance distributions of uni-polar and bi-polar cases 

3 Indexing methods in general metric space  

The most important functionality of an information system is the retrieval of the re-
quired data or information items. The retrieval operation can be given as a function  

 𝑓(𝐷, 𝑞�) (15) 

where D denotes the domain of target objects and the vector 𝑞� is the predicate vector. 
The result set of the query is defined with 

 𝑅𝑓(𝐷,𝑞�) = {𝑜|𝑜 ∈ 𝐷 ∧ 𝑞�(𝑜)}. (16) 

In the case of GMS, the predicate refers only to the distance values between the ob-
jects: 

 𝑞�(𝑜) =  𝑞�({𝑑(𝑜, 𝑥)| 𝑥 ∈ 𝐺𝑀𝑆}). (17) 

One important characteristic of the different retrieval methods is the functionality of 
the matching operation [24]. The exact search uses an exact matching, while the 
neighbor search allows a fuzzy matching too. The term "fuzzy" means in this context 
that not an exact matching is required. For example, in [23], the category of fuzzy 
matching includes among others the substring matching or the string matching with 
regular expression.  
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The main goal of the indexing structure is to provide an efficient method for ele-
ment retrieval. The first indexing methods were developed for elements in one-
dimensional Euclidean space. The most widely used index structure of this kind is the 
B-tree [24] structure. The index structure provides a O(log(N)) cost for exact match-
ing. To support interval matching, the base B-tree structure is extended with an addi-
tional pointer chain between the sibling nodes. The main benefit of the B-tree struc-
ture is that it provides a well-balanced structure with a stabile cost value. The retrieval 
from B-tree structure is based on the pair-wise comparisons of the objects. In the lit-
erature, there are methods for comparison-less structures too, like the family of the 
hash functions [18]. The main drawback of this structure is that it is very sensitive to 
the value distribution of the target objects. 

In the case of multi-dimensional Euclidean space, more candidate index structures 
are used as there is no simple dominating index method. The kd-tree [24] structure 
uses a similar structure as the B-tree has, but every level corresponds to different di-
mensions. This tree structure provides a O(log(N)) for exact matching, but it has a 
significantly higher cost for interval matching. The R-tree [12] structure is based on a 
different concept. Every node corresponds here to a cube in the high dimensional 
space. The hierarchy of embedded cubes provides an efficient exact search with 
O(log(N)) cost, but the interval-based search may increase to linear cost.   

In the case of general metric space, neither of the given methods can be used for 
object retrieval. Four main types of indexing methods can be distinguished for this 
domain. The first group contains so called ball-based partitioning methods [9]. As the 
ball can be defined in GMS too, this shape can be used to separate the set of objects 
into two distinct subsets: objects within a ball and objects outside of the ball: 

 

 𝑅𝑖𝑛,𝑐 = {𝑜|𝑜 ∈ 𝐷 ∧ 𝑑(𝑐, 𝑜) ≤ 𝑟} 
𝑅𝑜𝑢𝑡,𝑐 = {𝑜|𝑜 ∈ 𝐷 ∧ 𝑑(𝑐, 𝑜) > 𝑟}. (18) 

 
The center of the ball is called usually pivot element of the index structure. The main 
benefit of the structure is that it can be implemented on a simple way. The drawback 
of the method is that the roles of the inner and outer clusters are asymmetric, i.e. there 
is an intra-cluster distance threshold (2r) for the objects within the inner cluster and 
there is no such threshold for the outer cluster. An improvement of the base ball-
partitioning method is the M-tree index structure [7] which works similar to the R-tree 
structure. The M-tree provides a balanced structure, the algorithm for insertion of a 
new element is based on the concepts implemented in B-tree. An entry in the M-tree 
stores also the distance values between the parent and child pivot objects. This value 
can be used to prune some branches of the index tree in the case of neighbor search. 
The elimination of the branch is based on the following consideration: 
 

 𝑑(𝑎, 𝑏) > 𝑟1,𝑑(𝑎, 𝑐) < 𝑟2, 𝑟1 > 𝑟2 → 𝑑(𝑏, 𝑐) > 𝑟1 − 𝑟2. (19) 
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Having a current closest object at a distance rc, all subtrees with 𝑟𝑝 − 𝑟𝑑 > 𝑟𝑐  are elim-
inated, where rp is the distance to the pivot object and rd is the radius of the corre-
sponding ball.  

A conceptually different approach for object indexing is the family of computation 
methods based only on the distance matrix. In the AESA [21] algorithm, the distances 
between every pairs of objects are known and thus every objects can be considered as 
a candidate pivot element The method provides the best query results for small object 
sets but it can't be applied to larger sets because of the O(N2) number of distance 
computations.   

Another important approach is the Generalized Hyperplane Tree (GHT) partition-
ing [29]. In this approach, two pivot elements are applied for separation of the object 
set. The first cluster contains objects near to the first pivot element, while the second 
cluster includes the elements closer to the second pivot element. Basically, in this 
approach, both clusters have symmetric roles, thus the element distribution is more 
suitable for recursive partitioning than the ball-based architecture. Another benefit of 
the GHT structure is that the generated regions do not overlap unlike the ball-based 
partitioning methods. The GHT structure stores also distance information in the tree 
nodes, the maximum distance to the pivot element within a cluster is saved as a clus-
ter parameter. Having a range query with a radius rq, the right subtree at the current 
node should be parsed if  

 

 𝑑(𝑞, 𝑝𝑟) − 𝑟𝑞 ≤ 𝑑(𝑞, 𝑝𝑙) + 𝑟𝑞 (20) 

 
is met. In this case, the intersection of the neighborhood with radius rq and rq.The left 
subtree is traversed if  

 

 𝑑(𝑞, 𝑝𝑙) − 𝑟𝑞 ≤ 𝑑(𝑞, 𝑝𝑟) + 𝑟𝑞 (21) 

 
is met. The symbols pl and pr denote the pivot elements of the left and right 
hyperplanes; q is query object. In some cases, both branches should be processed, 
causing an increased query cost. The cost of tree construction is in O(N⋅logN) [29].  

The literature contains some extensions of the base GHT structure. In [3], the base 
structure was extended to a distributed architecture. The proposed GHT* structure is 
optimized for range query and it is scalable to manage huge amount of objects with-
out a central directory. The nodes of the tree are distributed on a cluster of servers. 
The synchronization of data content during the search operation is performed with a 
message forwarding technique. Later, a more refined dynamic hyperplane index struc-
ture was presented in [22]. The paper invented a fully dynamic data structure. The 
proposed ghost hyperplane technique uses a disk-memory bound structure and pro-
vides high scalability. According to the test experiments, the hyperplane-based dy-
namic partitioning requires less distance computation operations but the disk utiliza-
tion is less efficient than the ball-based partitioning methods.  
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Another GHT alternative is the multi-pivot variant tree where m pivots divide the 
space into m Voronoi-like partitions. The parameterized GHT structure was proposed 
in [19]. This GHT structure enables a flexible region topology, where the borders may 
differ from the plane shape. The separation condition is given with 
 

 𝑅𝐴 = {𝑜|𝑜 ∈ 𝐷,𝑑(𝑝𝐴, 𝑜) < 𝑑(𝑝𝐵 , 𝑜) + 𝑐} 
𝑅𝐵 = {𝑜|𝑜 ∈ 𝐷,𝑑(𝑝𝐴, 𝑜) ≥ 𝑑(𝑝𝐵 , 𝑜) + 𝑐}. (22) 

 
It can be mentioned here, that the hyperplane partitioning technique is used also in the 
case of Euclidean domain. In this case, the hyperplane is defined on a way different 
from the GMS approach. For example in [8], the hyperplane is the optimal separator 
plane closest to the selected pivot elements.  

An important characteristic of every partitioning structure is the balancing factor. 
The cost of a query operation depends on the actual balancing factor of the tree, the 
optimal cost is yielded in the case of perfect balancing. The balancing factor can be 
quantified with some measures. The usual approach is to calculate the difference of 
the subtree heights. If the leaf nodes can store variant number of elements, the differ-
ence of the weighted heights is used as balancing measure. Another approach is pre-
sented in [8], where a δ-safe property is defined. The partitioning is δ-safe, if both 
open half-spaces contain at least δ⋅(N-Nd) objects, where Nd denotes the number of 
objects for constructing the separator hyperplane.  

4 Selection of pivot elements  

It is known that the efficiency of indexing methods depends significantly on the posi-
tion of the pivot elements [21], thus the appropriate selection of the pivot elements is 
a crucial optimization component. The usual measure to calculate the fitness of a 
pivot-set is the average of maximum distance differences [5]: 
 

 𝜇𝑝1,..,𝑝𝑀 =
1
𝑁2� � 𝑚𝑎𝑥𝑘∈1..𝑀��𝑑(𝑥𝑖 , 𝑝𝑘) − 𝑑(𝑥𝑗 , 𝑝𝑘)��

𝑁

𝑗=1

𝑁

𝑖=1
 (23) 

 
where M denotes the number of pivot objects. It can be shown that 𝜇𝑝1,..,𝑝𝑀 is always 
between 0 and the average object distance. This statement follows from the facts, that  
a)  

 �𝑑(𝑥𝑖 , 𝑝𝑘)− 𝑑(𝑥𝑗 , 𝑝𝑘)� ≥ 0 → 𝑚𝑎𝑥��𝑑(𝑥𝑖 , 𝑝𝑘) − 𝑑(𝑥𝑗 ,𝑝𝑘)�� ≥ 0 → 𝜇𝑝1,..,𝑝𝑀 ≥ 0; (24) 

 
b) and using the triangle inequality, we get that 
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 𝑑�𝑥𝑖 , 𝑥𝑗� ≥ �𝑑(𝑥𝑖 , 𝑝𝑘) − 𝑑�𝑥𝑗 , 𝑝𝑘�� → 𝜇𝑝1,..,𝑝𝑀 ≤
∑ ∑ 𝑑�𝑥𝑖 , 𝑥𝑗�𝑗𝑖

𝑁2 = 𝑑̅. (25) 

 
The 𝜇𝑝1,..,𝑝𝑀 measure can be used to approximate the search cost of the nearest neigh-
bor search. As it was shown, both child hyperplanes of a node should be tested if  

 

 
𝑑(𝑞, 𝑝𝑟) ≤ 𝑑(𝑞, 𝑝𝑙) + 2𝑟𝑞  
𝑑(𝑞, 𝑝𝑙) − 2𝑟𝑞 ≤ 𝑑(𝑞, 𝑝𝑟). (26) 

 
This means that in this case  

 |𝑑(𝑞, 𝑝𝑟) − 𝑑(𝑞, 𝑝𝑙)| ≤ 2𝑟𝑞 . (27) 

Considering ξ as stochastic variable of the neighborhood radius, we get that 

 𝑃�|𝑑(𝑥, 𝑝𝑟) − 𝑑(𝑥, 𝑝𝑙)| ≤ 2𝑟𝑞� = 𝐹𝜉�2𝑟𝑞�. (28) 

The multiplication of the variable with 1
𝑑̅�  preserves the monotony of F(), thus the 

smaller is the search cost the smaller is   2𝑟𝑞
𝑑̅�  . This means that for large 𝑑̅, i.e. 

𝜇𝑝1,..,𝑝𝑀 value, the search cost is low. 
 

On the other hand, the 𝜇𝑝1,..,𝑝𝑀 measure does not provide an appropriate measure for 
our GHT-balancing problem, as there is no strong correlation between the 𝜇𝑝1,..,𝑝𝑀 
measure and the balancing factor of the tree. As the main goal of the investigation is 
to provide a well-balanced distribution of the objects, a new balancing criterion meas-
ure is introduced with 

 𝜇 = 2 ∙
𝑚𝑖𝑛{|𝐵𝐿|, |𝐵𝑅|}

|𝐵𝐿| + |𝐵𝑅|    (29) 

where BL and BR denote the left and right side subtrees. This measure corresponds to 
the global objective function. In the optimal case, the value of µ is equal to 1. If µ = 0 
then all objects are assigned to one of the child branches.  

For implementation of a µ-optimal partitioning algorithm, a novel extension of the 
multi-phase pivot selection method [30] is applied. The proposed method is the com-
bination of the distance-maximization heuristic and the hill-climbing method. Despite 
the simplicity, the hill-climbing method is considered as a very efficient and low cost 
local optimization algorithm.  In the first phase the usual heuristic step is applied: the 
object pair with largest intra-distance will be selected. In order to minimize the com-
putation cost, only an approximation is performed in the followings steps to find the 
object pair with maximum distance: 
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─  random selection of an object p
─  selection of p

0 
1 with d(p1,p0

─  selection of p
) → maximum 

2 with d(p1,p2

The object pair (p1,p2) is selected as initial pivots. Based on the experiences, the fit-
ness of the random selection largely depends on the object distribution. In the case of 
uniform distribution it provides a relatively good result but if the distribution is bi-
polar a poor results is yielded. To improve the efficiency a local optimization process 
is performed in the second phase. The main steps of this phase are the followings, 
where p1,p2 denote the current best pivot candidate pair: 

) → maximum. 

 

 1: mumax = mu (p1,p2); 
 2:   selection of p3 where mu(p1,p3) is maximum; 
 3:   selection of p4 where mu(p4,p2) is maximum; 
 4:   mu = max (mu(p1,p3),mu(p4,p2)); 
 5:   if mu > mumax then  
  6:     mumax = mu; 
  7:     replace the old pivot pair with the new one; 
  8:     go back to step 1  
  9:   else  
  10:     terminate the procedure; 
  11:   end; 

 
In the first line of the algorithm, the current µ(p1,p2) value is stored into variable 
mumax. In line 2 and 3 two new candidate elements are selected with 

 
𝑝3 = argmax

𝑝
{𝜇(𝑝, 𝑝1)} 

𝑝4 = argmax
𝑝

{𝜇(𝑝, 𝑝2)} (30) 

 
If one of the new objects yields a better balancing factor, it will selected into the can-
didate pivot pair.  

In the tests, three algorithms were compared. The first algorithm is the brute force 
search where for every object pair (p1,p2) the µ(p1,p2) value is evaluated and the best 
pair is selected. This method provides a global optimum but it requires the largest 
execution cost. The second method is the random pivot selection method with maxi-
mum intra-distance criteria. The third method is the proposed local optimization algo-
rithm. Regarding the cost factors of the tested methods, the brute-force method has 
the largest cost with 
 O(N3) 
as the number of measure calculation is equal to O(N2) and the cost to determine the µ 
measure is in O(N). The proposed combined method belongs to the  
 O(N2) 
complexity class, as in a optimization cycle, only O(N) µ measure calculations are 
executed. The random search method requires only  
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 O(N) 
cost. 

In the tests, two parameters were measured: the efficiency factor µ  and the execu-
tion costs t. The test results are summarized in Table1. The first table (Table 1a) is for 
the uni-polar case, the second table (Table 1b) shows the bi-polar case with parameter 
value: |BL|/|BR|=4. For the multi-polar cases, the results always lay between these 
values.  

The Fig. 3 shows the comparison of the µ values for the random and local search 
methods for bi-polar distribution. It can be seen from the results that the random 
search method work weak in the case of bi-polar distribution and can work well in 
uni-polar case. The local optimum search method provides always a good result and it 
requires significant less time than the brute force algorithm.  

Table 1.a 

sample 
size 

brute force random local optimization 
µ t  µ t µ t 

300 1 0.910 0.89 0.001 1 0.018 
400 1 2.312 0.93 0.001 0.99 0.026 
500 1 4.321 0.93 0.001 1 0.054 
600 1 7.916 0.95 0.001 1 0.081 
700 1 12.532 0.94 0.001 1 0.120 
800 1 19.166 0.91 0.001 0.98 0.167 
900 1 27.331 0.93 0.001 0.99 0.188 

1000 1 38.182 0.94 0.001 1 0.221 
1200 1 63.529 0.93 0.001 1 0.340 
1400 1 105.117 0.94 0.001 0.98 0.442 

 

Table 1.b 

sample 
size  

brute force random local optimization 
µ t  µ t µ T 

300 1 0.932 0.40 0.001 1 0.017 
400 1 2.212 0.36 0.001 1 0.024 
500 1 4.413 0.39 0.001 0.99 0.054 
600 1 7.806 0.39 0.001 1 0.077 
700 1 12.731 0.38 0.001 1 0.112 
800 1 18.463 0.44 0.001 1 0.163 
900 1 27.625 0.44 0.001 0.99 0.181 

1000 1 37.458 0.42 0.001 1 0.218 
1200 1 62.715 0.41 0.001 0.99 0.351 
1400 1 103.563 0.41 0.001 1 0.438 
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Fig. 3. Time cost of the brute force and local optimum search methods 

5 Interval model of distance calculations 

The cost models presented in the previous section, are valid only for the case when all 
the d(x, y) distance values are already known. On the other hand, in real applications 
the generation of the distance matrix is also a high cost operation. For an object set 
with N objects, the distance matrix contains �N

2� distance values, thus the generation 
of the matrix is an O(N2

The first question of this research phase was to investigate how the single distance 
values restrict each other within the object set. As the distance value between two 
objects is constrained by the triangle inequalities of the metric function, the values 
already in the matrix will constrain the values not already filled in. Every new value 
entered into the matrix will reduce the uncertainty on the still empty positions.  

) cost operation. As the calculation of the distance value for 
complex object is a high cost operation, the reduction of the redundant distance values 
is an important optimizations step. 

There are many approaches in the literature to manage value uncertainty. One 
dominant option is the usage of stochastic variables instead of strict scalar values. In 
these approaches [15], a distribution function is defined for every stochastic variable. 
Another widely used approach is the fuzzy modeling of the values. In fuzzy logic 
[28], a membership function is used instead of the single value. As it can be seen, in 
both cases, a complex description is required. The main drawbacks of these approach-
es are that it requires higher computational costs and a more precise knowledge on the 
domain. If a low cost solution is required then a simplified model should be used. A 
low cost solution is the application of interval arithmetic [11]. The interval value rep-
resentation requires only two strict values instead of detailed function description. 
The model was tested in many application areas. For example in [25], the domain of 
linear interval number programming was studied, where the coefficients are all inter-
val numbers.  

In GMS, every object triplet can be represented by a triangle with sides (a, b, c), 
where the sides denote the distances between the objects. According to the triangle 
inequality, the range condition for a given side c can be given with 
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 𝑐 ≤ 𝑎 + 𝑏 = 𝑐𝑚𝑎𝑥 
𝑐 ≥ max(𝑎, 𝑏) − min(𝑎, 𝑏) = max(𝑎 − 𝑏, 𝑏 − 𝑎) = 𝑐𝑚𝑖𝑛 . (31) 

 
Thus, for every object pair, the distance between the objects can be given with a range 
(cmin, cmax). Using the interval value for all sides of the given triangle, the range ine-
quality for side c has the following form: 
 

 𝑐𝑚𝑎𝑥 = 𝑎𝑚𝑎𝑥 + 𝑏𝑚𝑎𝑥 
𝑐𝑚𝑖𝑛 = max (𝑎𝑚𝑖𝑛 − 𝑏𝑚𝑎𝑥, 𝑏𝑚𝑖𝑛 − 𝑎𝑚𝑎𝑥 , 0). (32) 

 
In order to avoid the upper range explosion, an upper threshold DM is set for every 
valid distance value, as it is usual in interval arithmetic [11]. Taking this threshold 
into account, the range constraint can be transformed into 
 

 𝑐𝑚𝑎𝑥 = min (𝑎𝑚𝑎𝑥 + 𝑏𝑚𝑎𝑥 ,𝐷𝑀) 
𝑐𝑚𝑖𝑛 = max (𝑎𝑚𝑖𝑛 − 𝑏𝑚𝑎𝑥 , 𝑏𝑚𝑖𝑛 − 𝑎𝑚𝑎𝑥 , 0). (33) 

 
If a distance relation c takes part in M triangles, then every triangle yields a range 
constraint for c. For a relation (i,j) in GMS, the single constraints can be aggregated 
into the following form: 
 

 
𝑑𝑖,𝑗,𝑚𝑎𝑥 = 𝑚𝑖𝑛𝑘(min�𝑑𝑖,𝑘,𝑚𝑎𝑥 + 𝑑𝑗,𝑘,𝑚𝑎𝑥 ,𝐷𝑀�), 

𝑑𝑖,𝑗,𝑚𝑖𝑛 = 𝑚𝑎𝑥𝑘(max�𝑑𝑖,𝑘,𝑚𝑖𝑛 − 𝑑𝑗,𝑘,𝑚𝑎𝑥 ,𝑑𝑗,𝑘,𝑚𝑖𝑛 − 𝑑𝑖,𝑘,𝑚𝑎𝑥 , 0�). 
(34) 

 
It can be seen, that the interval is different from the base range, if exists a containing 
triangle where both other sides have non-base range. These constraints imply the rule  
 

 𝑏𝑚𝑖𝑛 = 0, 𝑏𝑚𝑎𝑥 = 𝐷𝑀  →  𝑐𝑚𝑖𝑛 = 0, 𝑐 = 𝐷𝑀. (35) 

 
This rule is derived from the following consideration: 
 

𝑐𝑚𝑖𝑛 = max(𝑎𝑚𝑖𝑛 − 𝑏𝑚𝑎𝑥, 𝑏𝑚𝑖𝑛 − 𝑎𝑚𝑎𝑥, 0) = max(𝑎𝑚𝑖𝑛 − 𝐷𝑀,−𝑎𝑚𝑎𝑥, 0) = 0 
𝑐𝑚𝑎𝑥 = min(𝑎𝑚𝑎𝑥 + 𝑏𝑚𝑎𝑥,𝐷𝑀) = min(𝑎𝑚𝑎𝑥 + 𝐷𝑀,𝐷𝑀) = 𝐷𝑀. (36) 

 
The interval distance model can be used to measure the uncertainty at a given satura-
tion state of the distance matrix. The first approach is to measure directly the lengths 
of the intervals. Initially, when no distance value is known yet, every value is given 
with [0,DM] where DM denotes the largest possible value. In this case, the uncertainty 
is the largest. If a distance value is set to given value v, the corresponding interval 
contains only one element: [v,v]. For this relation, the uncertainty is zero. To indicate 
the level of aggregated uncertainty of the whole distance matrix, an φ measure is in-
troduced on the following way: 
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𝜙𝑎𝑣𝑔 =  

∑ 𝜙𝑖,𝑗𝑖,𝑗

𝑁2  

𝜙𝑖,𝑗 = 𝑑𝑖,𝑗,𝑚𝑎𝑥 − 𝑑𝑖,𝑗,𝑚𝑖𝑛- 
(37) 

 
The φ measure is the largest at the initial state and it decreases when an previously 
unknown distance is set to shorter range value. For a given relation dij, not every (dij, 
djk, dik

For investigation of the φavg measure function, it is assumed that from (N-2) con-
tainer triangles of a given relation dij, K triangles are near-dominant ones. The shape 
of the measure function depends on the position when one of these dominant triangles 
is selected first. The possibility that in the k-th step is a dominant is first selected:  

) triangle has the same importance. The triangle with extreme value is the dom-
inant one to determine the actual range values. As it can be seen, the range values at a 
given relation change monotonously. Thus the total uncertainty value function must 
be also monotonous.  

 

 �𝑁 − 𝐾
𝑘 � 𝑘! �𝐾1�

(𝑁 − 𝑘 − 1)!

𝑁!
 (38) 

 
Based on the formula, it can be seen that if K is small, the φavg measure function will 
decrease smoothly with a quasi linear shape. Otherwise, if the distance distribution is 
uniform with a small distribution, the function will decrease steeply at the beginning 
of the matrix feeding process.  

Considering the efficiency of the proposed interval-based distance matrix, the 
structure provides a maximum information content. This representation form stores 
more information on the distance values than the strict value representation. The strict 
value mode is a special case of the interval mode. Thus, the benefit of the proposed 
structure is the information gain compared with the traditional representation method. 
The uncertainty factor could be reduced to 40% in our test experiences (see Fig 6.-7.). 
This reduction gain depends on the current saturation level of the distance matrix. The 
weakness of the proposed method is the increased operation costs. The proposed 
model performs a value interval adjustment process. The setting or modification of a 
given distance element in the matrix triggers the modification of other matrix ele-
ments. As only the neighboring relations are affected by a value modification, the cost 
of the triggered adjustment process is in O(N). Although this linear cost can be re-
duced using optimization methods presented in the next section, the interval based 
representation method is not superior in all situations. The model is suitable for those 
cases where the cost of distance calculation is high and the saturation factor of the 
matrix is relative low.     
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6 Optimization of the pivot selection method 

As it was shown, the execution cost of the base local optimization method has a O(N2) 
characteristic. Thus some additional modules were included into the algorithm to 
reduce the cost value. The implemented reduction methods relate to the calculation of 
the µ value as this module has the largest cost portion within the pivot search algo-
rithm. The first optimization step relates to the reduction of the candidate set in selec-
tion of p3 and p4

 

. In the initial version, all objects of the domain belong to the candi-
date set. On the other hand, it follows from the triangle inequality that if  

𝑚𝑖𝑛𝑘��𝑑(𝑥𝑖 , 𝑥𝑘) − 𝑑(𝑥𝑗 , 𝑥𝑘)��  > 𝑑(𝑥𝑖 , 𝑥𝑗) (39) 

is satisfied then the partitioning sets of xi and xj are the same, i.e. the left (right) 
subtrees are the same for both elements. Thus if xi is already tested and xj meets the 
condition (39) then the testing of xj can be omitted.  

In the next table, the cost reduction factor of this elimination step is shown for dif-
ferent object distributions. As it can be seen this step is effective only if the distribu-
tion is bi-polar. The reason of this experience is the fact: the smaller is the relative 
distance dij the higher is the chance that inequality (39) can be used for test elimina-
tion. In the case of bi-polar distribution the chance to have large distance differences 
is greater than in the case of uni-polar distribution.  

Table 2. Reduction values for different distributions 

distribution reduction factor (in percent) 
average deviation 

uni-polar 0.2% 0.04% 
bi-polar 36.4% 5.4% 

 
The second method for candidate set reduction is the application of sampling tech-
nique instead of full scan of the objects. In this method the µ is calculated with 

 𝜇 = 2 ∙
𝑚𝑖𝑛{|𝐵′𝐿|, |𝐵′𝑅|}

|𝐵′𝐿| + |𝐵′𝑅|    (40) 

where B' denotes subset generated by random sampling. The next table (Table 3) 
summarizes the achieved accuracy at different sample sizes (reduction levels). The 
table contains the accuracy error values in percentage. 

Test data show that sampling of the object distribution has some similarity with 
the standard theories of determining the optimal sample size for normal distributions. 
For example, the Cochran's formula [1] gives the sample size as  

 𝛾 =
𝑡2 ∙ 𝑠
𝑑2

   (41) 



36   László Kovács  

where 
 t : value for selected alpha level for each tail 
 s: estimation for variance 
 d: acceptable margin of error 
 

The formula of Krejcie [16] provides a different approach: 

 22

2

)1(4 χ
χ

+−⋅⋅
⋅

=
Nd

Nn  (42) 

where χ2

Table 3. The efficiency of sampling for different sample sizes 

 denotes the Chi-square of the given confidence level. The optimal sample 
size depends on many factors and its value changes only very slow for increase of N. 
For example the optimal sample size for N = 1000 lies between 210 and 270.  In our 
experiment, the optimal sample size is about 140 for N = 1000. 

 
sample 
size 

error for set A (N=200) error for set B (N=1000) 
average deviation average deviation 

sqrt(N) 42% 27% 19% 16% 
2 sqrt(N) 30% 21% 17% 13% 
4 sqrt(N) 15% 7% 7% 6% 
8 sqrt(N) 13% 8% 7% 5% 

16 sqrt(N) - - 7% 5% 
24 sqrt(N) - - 6% 5% 

 
In the computation of the µ fitness value, the distances from a given object x to both 
pivot objects p1, p2 are considered to check which pivot is closer to x. On the other 
hand, the distance value calculation can be omitted in some situations. Let p1, p2 de-
note the current pivot candidate objects. Let q denote the current object to be tested. 
The test returns 1 if q is close to p1, otherwise it returns 2. It is assumed that exists a r 
object for which the distances d(q,r) and d(p2,r) are already known. The distance 
d(p1

 

,q) is known also. It follows from the triangle inequalities that 

|𝑑(𝑝2, 𝑟) − 𝑑(𝑞, 𝑟)| ≤ 𝑑(𝑝2, 𝑞) ≤ |𝑑(𝑝2, 𝑟) + 𝑑(𝑞, 𝑟)|. (43) 

Thus if 

 𝑑(𝑝1, 𝑞) < |𝑑(𝑝2, 𝑟) − 𝑑(𝑞, 𝑟)| (44) 

then 

 𝑑(𝑝1, 𝑞) < 𝑑(𝑝2, 𝑞). (45) 

If  
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 𝑑(𝑝1, 𝑞) > |𝑑(𝑝2, 𝑟) + 𝑑(𝑞, 𝑟)| (46) 

then 

 𝑑(𝑝1, 𝑞) > 𝑑(𝑝2, 𝑞). (47) 

Thus in this cases, the object q can be assigned to the corresponding subset without 
calculating the actual d(p2,q) distance value. 

The next optimization module relates to the interval value distance model. In the 
base model, the modification of a given relation (i,j), will trigger the recalculation of 
the range borders at the neighboring relations (i,k) and (j,k) for every k value. This 
step requires a O(N) cost as number of possible k values is equal to (N-2) and at a 
given k value, the threshold test takes O(1) elementary operations. The only way to 
reduce the total cost is to eliminate the tests in some container triangles. In the pro-
posed system, a treap [20] structure was implemented for test reduction. The treap 
structure is a combination of a search tree and a heap structure. Every node has two 
base attributes: p and k. The symbol p denotes a priority value and k stores the key 
values. If x is the left child node of x then 

 𝑥𝑝 ≤ 𝑦𝑝 , 𝑥𝑘  ≤  𝑦𝑘  (48) 

is met; if x on the left side of the parent, then  

 𝑥𝑝 ≤ 𝑦𝑝 , 𝑥𝑘  ≥  𝑦𝑘  (49) 

holds. In the implementation, the priority attribute contains the required minimum 
change of the base relation distance (dij) in order to became a dominant relation for a 
given target relation (dik or djk). The reduction is based on the following concept: if 
the change at the base relation is less than the p value then the subtree under the target 
element can be eliminated from the processing. The k value corresponds to the identi-
fication of the relations.  

The cost analysis showed that the direct triggering of the recalculations provides a 
near optimum solution as the calculation cost are relatively low compared with the 
costs of the administration of the additional status description data.  

7 Implementation and test results 

In the tests, the average φ and the minimum φ values were investigated during the 
generation of the distance matrix. It is clear, the more values are set the less is the 
uncertainty. The Figures 3 - 5 show the average φ value for increasing number of set 
values (x-axis) for both the uni-polar and the bi-polar object distributions. As the 
figure demonstrates in the case of bi-polar distribution the average uncertainty is less 
than in the case of uni-polar distribution. 
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Fig. 3. Minimum uncertainty values for uni-polar and bi-polar distributions 

The Fig 3 shows the minimum, not zero φ values of the matrix. Based on these re-
sults, it can be seen that the smallest value interval is equal to some percents of the 
average distance value. Thus, if a given level of uncertainty is allowed, some of the 
distance calculations can be eliminated.  

For the case when the distance values are stored with interval values a new defini-
tion of the µ fitness measure is introduced. In this approach, an object may belong to 
both sides with given certainty. Let p1, p2 denote the pivot objects and q denotes the 
current object to be tested. Let E1 denote the event that q is closer to p1 than to p2 and 
E2 is the event that q is closer to p2 than to p1. If the d(q,p1) distance has the value 
[va1, vb1] and d(q,p2) is equal to [va2,vb2], then the probability of E1 and of E2 can be 
calculated with the method of geometric probability. The area of valid value pairs is a 
rectangle with sides corresponding to the intervals. The set of value pairs belonging to 
E2 is a half-plane upper the line  y = x. 

 

 
Fig. 4. Average uncertainty values for uni-polar distribution without interval adjustment and 
with adjustment 
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Fig. 5. Average uncertainty values for bi-polar distribution without interval adjustment and 
with adjustment 

Let pi(E1) denote the probability that the i-th object belongs to the area of p1. The 
pi(E2) is defined on similar way. It can be easily verified that 
 

 𝑝(𝐸1) +  𝑝(𝐸2) = 1 (50) 

for every object. Based on the previous definitions, the µ value is calculated with 
 

 

𝜇 = 2 ∙
𝑚𝑖𝑛{𝑃1,𝑃2}
𝑃1 + 𝑃2

 

𝑃1 = � 𝑝𝑖(𝐸1)
𝑁

𝑖=1
 

𝑃2 = � 𝑝𝑖(𝐸2)
𝑁

𝑖=1
 

(51) 

The redefined fitness function is a generalization of the base fitness function as it 
yields the same value for the strict cases when pi(E1) or pi(E2) is equal to 1. Using the 
redefined fitness function, the presented pivot selection algorithm can be executed on 
the interval-based distance matrix too.  
 

 
Fig. 6. Geometric probability of subtree assignment 
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The Table 4 summarizes the test results for the interval-based matrix and it shows the 
comparison between the strict-valued and the interval-valued matrix approaches.  

Table 4. Efficiency of the interval-based approach 

proportion of 
known distances 

fitness of 
random selec-
tion 

fitness of IV 
selection 

0.01% .65 0.65 
3% .66 0.81 
16% .62 0.96 

 
The performed tests show that the proposed pivot selection with interval-based dis-
tance representation dominates the other methods in accuracy and time if the fullness 
value of the distance matrix is between 3% and 35%. If the fullness factor is lower 
then only few information is available and the random selection can provide the same 
result with less computational cost. Otherwise, if the fullness factor is higher than  
35%,  then the set of already exactly known distances is enough to get a good approx-
imation for the optimal pivot selection. In the given range of the fullness factor, the 
interval-based model can provide so much additional information that improves the 
pivot selection significantly. 

 

 

Fig. 7. Dependency of the efficiency from the fullness factor for the interval-based approach 

 
As the result table Table 4, shows, the efficiency of the interval-valued (IV) method 
depends on the proportion of the known distances that means on the uncertainty of the 
distance matrix. It yields in good fitness value if the uncertainty of the matrix is low. 
The exact and formal analysis of this relationship is the goal of further investigations. 
In the tests, a 16% covering rate resulted in a well balanced tree with a 0.96 balancing 
factor.  
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8 Conclusions 

The paper presented a detailed analysis of optimal pivot selection in general metric 
space from the viewpoint of index tree balancing. The analysis focused on the GHT 
index tree assuming that an index tree node contains a moderate number of objects. In 
the investigation, two main object distributions were tested: the uni-polar and the bi-
polar distributions. The paper proposes a combined heuristic and local search optimi-
zation method for selection of pivot objects. For reduction of the search algorithm, 
some novel optimization methods were introduced. One of the cost reduction methods 
refers to eliminating of object tests within the calculation of balancing factor. Another 
important goal is to reduce the number of distance calculations in the object set. The 
dependencies between the distance values are analyzed in order to eliminate the re-
dundant distance values. Another important reduction method is the application of 
interval values instead of strict values in order to manage the uncertainty of the dis-
tance values. The performed analysis and tests show that the proposed modification 
improves the efficiency of the standard methods significantly. 
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