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Abstract. Similarity search is a core functionality in many data mining algo-
rithms. Over the past decade algorithms were designed to mostly work with hu-
man assistance to extract characteristic, aligned patterns of equal length and scal-
ing. We propose the shotgun distance similarity measure that extracts, scales,
and aligns segments from a query to a sample time series. This greatly simplifies
the time series analysis task of those time series produced by sensors. We show
the applicability of our shotgun distance in the context of hierarchical cluster-
ing of heraldic shields, and human motion detection. A time series is segmented
using varying lengths as part of our shotgun ensemble classifier. This classifier
improves the best published accuracies on case studies in the context of bioacous-
tics, human motion detection, spectrographs or personalized medicine. Finally, it
performs better than state of the art on the official UCR classification benchmarks.

Keywords: Time Series, Distance Measure, Similarity, Classification, Hierarchi-
cal Clustering, Shotgun Analysis, Segments

1 Introduction

Time series result from recording data over time. The task of analyzing time series
data [1–3] is difficult as the data may be recorded at variable lengths, and are erro-
neous, extraneous due to noise, dropouts, subtle distinctions and highly redundant due
to repetitive (sub-)structures. Application areas include ECG [4] or EEG signals, human
walking motions [5], or insect wing beats [6], for example.

Empirical evaluation suggests that distance measures like the Euclidean distance
(ED) or dynamic time warping (DTW) are hard to beat [1, 2]. However, these have
some known shortcomings. The ED does not provide horizontal alignment or support
variable length time series. DTW provides warping invariance which is a peak-to-peak
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and valley-to-valley alignment of two time series, which fails if there is a variable num-
ber of peaks and valleys.

Figure 1 shows a hierarchical clustering of a synthetic dataset. It consists of three
types of shapes, which have variable lengths and phase shifts. Even though the dataset is
very simple, the distinguishing powers of both the ED and DTW distance measures are
very disappointing. The ED fails to separate the shapes as it neither supports horizontal
alignment nor variable lengths. Neither does DTW result in a satisfying clustering as
it fails to separate the triangles from the sine waves. Our shotgun distance clusters all
shapes correctly. This toy example illustrates some of the difficulties resulting from
time series similarity. In general, several sources of invariance like amplitude/offset,
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Fig. 1: A hierarchical clustering of a synthetic dataset based on three similarity mea-
sures. There are three types of curves: sine, square, triangle.

warping, phase, uniform scaling, occlusion, and complexity have been identified [7].
Both, ED and DTW calculate the distance between two entire time series to determine
their similarity. To make these applicable a significant amount of time and effort has
to be spent by a domain expert to filter the data and extract equal-length, equal-scale,
and aligned patterns. In our toy example the shapes have to be aligned and trimmed to
equal-length for the ED and DTW distance measures to give meaningful results. Human
assistance significantly eases the subsequent data mining task both in terms of the cost
of the execution time and the complexity of the algorithm. However, human assistance is
often too time consuming and expensive [8, 9]. Only few algorithms exist that deal with
the data ’as is’. These algorithms are based on matching time series by their structural
similarity [10, 11]. The idea is to deliberately ignore some data, by extracting local,
representative time segments from a time series. Ignoring the appropriate data is a non-
trivial task. As traditional data mining algorithms are not easily applicable to raw data-
sets, international competitions were staged like identifying whale calls [12], human
walking motions [12] and flying insects [6].

Our work introduces a simple and novel similarity measure for time series simi-
larity search. Shotgun distance vertically and horizontally aligns time series segments
(subsequences) of a query to a sample time series (Figure 2). Thereby it avoids prepro-
cessing the data for alignment, scaling or length. This is achieved by breaking the query
into disjoint subsequences of fixed length first. Next, each query subsequence is slid
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(a) shotgun query windows
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Fig. 2: Shotgun distance consists of segment extraction, horizontal and vertical align-
ment, and scaling.

along a time series sample to find the best matching position in terms of minimizing a
distance measure (horizontal alignment). These distances are aggregated. The sample
that minimizes this aggregated distance is the 1-nearest-neighbor (1-NN) to a query and
most similar. Normalization is applied prior to each distance computation, to provide
the same vertical alignment and scaling of each subsequence. Our contributions are as
follows:

– Section 2 presents the motivation and related work on time series analysis.
– We introduce the shotgun distance that provides vertical scaling and horizontal

alignment in Section 3.
– We present the shotgun ensemble classifier, which is an ensemble of 1-NN classi-

fiers utilizing the shotgun distance at multiple subsequences lengths in Section 3.4.
– Two pruning strategies are presented which significantly reduce the computational

complexity by one order of magnitude in Section 3.5.
– We present case studies for hierarchical clustering and classification in Section 4.

Our classifier is significantly more accurate than state of the art on 5 case studies
and the UCR benchmark datasets.

A preliminary version of this paper has been published in [13]. In addition this paper
contains:
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Fig. 3: Matching the gait cycles in the query to the sample is complicated due to differ-
ent amplitudes, phase-shifts, variable lengths and noise.

– an extended description of the shotgun ensemble classifier,
– experiments using hierarchical clustering and model data,
– an analysis of the shotgun distance parameter space,
– new results for computational bioacoustics,
– a discussion on the impact of the design decisions.

2 Motivation & Related Work

The utility of the shotgun distance is tied to the observation that a multitude of signals
are composed of characteristic patterns. Consider human walking motions [5] as a con-
crete example. The data was captured by recording the z-axis accelerometer values of
either the right or the left toe. The difficulties in this dataset result from variable-length
gait cycles, gait styles and pace due to different subjects throughout different activities.
Figure 3 illustrates the walking motion of a subject, that is composed of 4 gait cycles.
Classifying walking motions is difficult, as the samples are not preprocessed to have an
approximate alignment, length, scale or number of gait cycles and are typically noisy.

Shotgun distance reduces the need for cost-ineffective preprocessing by vertically
aligning and horizontally scaling the query to a sample time series. It is an analogy to
Shotgun Sequencing [14], the process of breaking up a sequence into numerous small
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segments which are resembled based on overlaps. Figure 3 (bottom) illustrates the result
of this process. The distance between the 4 gait cycles in the query and the sample are
minimized, even though these differ in scale, have a variable length, and a phase-shift
and noise occur.

The quality of the shotgun distance is subject to two parameters (Figure 2):

1. horizontal alignment using the window length: an integer parameter which is lim-
ited by the length of the longest query.

2. vertical alignment using the mean: a Boolean parameter which defines if the mean
should be subtracted prior to the distance calculations. The standard deviation is al-
ways normed to 1 to obtain the same scaling. Surprisingly, the mean normalization
has not been considered to be a parameter before in literature.

The window length parameter controls the length of the segments and depends on the
length of the characteristic patterns in the dataset. Furthermore, it regulates how much
information on the ordering of the values within the time series is incorporated into
the matching-process. For long window lengths the whole query will be treated as a
single pattern. This mostly happens with signals which were preprocessed by a human
for alignment and length. In contrast, human motions contain repetitive gait cycles.
Aligning any gait cycle in the query to any gait cycle in the sample is equivalent. Thus,
the ordering information is less relevant, resulting in a window length that should be
roughly equal to one gait cycle.

2.1 Related Work

Time series similarity search is a complex task for a computer. It is non trivial to ex-
tract a general statistical model from time series as these may show varying statistical
properties with time. Classical machine learning algorithms degenerate due to the high
dimensionality of the time series and noise [15]. Approaches can be characterized by
(a) they try to find a similarity measure that resembles our intuition of similarity in
combination with 1-NN classification (shape-based) or (b) they transform the data into
an alternative data space to make existing data mining algorithms applicable (structure-
based) [1, 16, 17]. The UCR time series classification datasets [3] have been established
for reference [1–3, 16, 11].

Shape-based techniques include 1-NN Euclidean Distance (ED), or 1-NN DTW [18,
19] and are used as the reference [2]. However, shape-based techniques fail to classify
noisy or long data.

Structure-based techniques [1, 10, 16, 11, 20, 21] are based on data mining algo-
rithms such as SVMs, decision trees, or random forests in combination with feature ex-
traction. Feature extraction techniques include DFT [22], PLA [23], SFA [24], SAX [25],
or shapelets. By transforming time series data into an alternative space (i.e. using func-
tional data analysis) the performance of classifiers can be improved [1]. However, the
authors failed to show a significant improvement over 1-NN DTW. Shapelet classi-
fiers [11, 20, 21] extract representative variable-length subsequences (called shapelets).
A decision tree is build using these shapelets within the nodes of the tree and distance
threshold for branching. One algorithms deals with classification on raw data [10]. The
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shotgun classifier is inspired by shotgun sequencing introduced to find an alignment
of two DNA or protein sequences [14]. Shotgun sequencing was used to find the hori-
zontal displacements of steel coils [26]. To find the horizontal displacement the authors
use the median on the differences of the calculated starting positions for every pair of
subsequences.

3 Shotgun Distance

3.1 Definitions

A time series consists of a sequence of real values:

T = (t1, . . . , tn) (1)

This time series is split into subsequences (time segments) using a windowing func-
tion.

Definition 1. Windowing: A time series T = (t1, . . . , tn) of length n is split into fixed-
length windows Sw(a) = (ta, . . . , ta+w−1) with length w and offset a in T . Two consec-
utive windows can overlap within an interval of [0,w). Given the overlap, there are

(n−w)
(w−overlap) windows in T :

windows(T,w,overlap) =

(n−w)
(w−overlap)⋃

i=0

Sw(i · (w−overlap)+1) (2)

To vertically align two samples, the query window and the sample window are typ-
ically z-normalized by subtracting the mean and dividing by the standard deviation:

ω̂(T,w,overlap) = z−norms(windows(T,w,overlap)) (3)

However, the mean normalization is treated as a parameter of our model and can
be enabled or disabled. For example, heart beats have to be compared using a common
baseline but the pitch of a bird sound can be significant for the species. Commonly,
the similarity of two time series is measured using a distance measure. The shotgun
distance is a distance measure that minimizes the Euclidean distance between each
disjoint window in the query Q and the sliding windows in a sample S. For example,
each gait cycle is slid along a longer walking motion to find the best matching positions
by minimizing the Euclidean distance.

Definition 2. Shotgun distance: the shotgun distance Dshotgun(Q,S) between a query
Q and a sample S is given by aggregating the minimal Euclidean distance D(Qa,Sb)
between each disjoint query window Qaεω̂(Q,w,0) and each offset b in S, represented
by the sliding windows Sbεω̂(S,w,w−1):

Dshotgun(Q,S) =
len(ω̂(Q,w,0))

∑
a=1

min{D(Qa,Sb) | Sbεω̂(S,w,w−1)} (4)
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Algorithm 1 The shotgun distance.

I n p u t : que ry : t ime s e r i e s
sample : t ime s e r i e s
W_LEN : t h e window l e n g t h
MEAN_NORM: boolean p a r a m e t e r t o norm t h e mean

Outpu t : The d i s t a n c e between que ry and sample

double S h o t g u n D i s t a n c e ( query , sample , W_LEN, MEAN_NORM)
( 1 ) t o t a l D i s t = 0 . 0

/ / f o r each d i s j o i n t query window
( 2 ) f o r q i n d i s j o i n t _ w i n d o w s ( query ,W_LEN,MEAN_NORM)
( 3 ) q D i s t = MAX_VALUE

/ / f i n d t h e p o s i t i o n t h a t m i n i m i z e s t h e d i s t a n c e
( 4 ) f o r s i n s l i d i n g _ w i n d o w s ( sample , W_LEN, MEAN_NORM)
( 5 ) q D i s t = min ( qDis t , E u c l i d e a n D i s t ( q , s ) )
( 6 ) t o t a l D i s t += q D i s t
( 7 ) re turn t o t a l D i s t

This definition resembles the extraction of characteristic patterns (i.e. the gait cy-
cles), and the scaling and aligning of the patterns. The latter provides invariance to the
time ordering of the patterns and allows for comparing variable length time series. The
shotgun distance is equal to the Euclidean distance for n equal to w.

The shotgun distance is not a distance metric as it neither satisfies the symmetry
condition nor the triangle inequality. This is a result of the use of disjoint query windows
and sliding sample windows. As a consequence the shotgun distance does not allow for
indexing (triangle inequality) and the nearest neighbor of X may not be the nearest
neighbor of Y (symmetry).

3.2 Shotgun Distance Algorithm

The shotgun distance in Algorithm 1 makes use of the Euclidean distance, and can be
tuned by the two parameters window length W_LEN and mean normalization MEAN_NORM
(the standard deviation of q and s is always normed to 1 regardless of MEAN_NORM).
It first splits the query into disjoint windows (line 2) and searches for the position in
the sample that minimizes the Euclidean distance (line 4-5). Finally, the distances are
accumulated for each query window (line 6).

Complexity: The computational complexity is quadratic in the length of the time series
Q and S: for each query window, all sample windows are iterated and the Euclidean
distance for each pair of windows is calculated. There are |Q|w disjoint query windows
and |S|−w+1 sliding windows for window length w:

T (Shotgun Distance) = O

 |Q|
w︸︷︷︸

disjoint windows

·w · (|S|−w+1)︸ ︷︷ ︸
sliding windows

 (5)

for n = max(|Q| , |S|)⇒ O
(
n2−nw

)
(6)
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Algorithm 2 The Shotgun Classifier.

I n p u t : que ry : t ime s e r i e s
sample s : a s e t o f t ime s e r i e s
W_LEN : t h e window l e n g t h
MEAN_NORM: boolean p a r a m e t e r

Outpu t : The p r e d i c t e d l a b e l of t h e que ry

S t r i n g p r e d i c t ( query , samples , W_LEN, MEAN_NORM)
( 1 ) ( d i s t , nn ) = (MAX_VALUE, NULL)
( 2 ) f o r sample i n samples
( 3 ) D = S h o t g u n D i s t a n c e ( query , sample , W_LEN, MEAN_NORM)
( 4 ) i f D < d i s t
( 5 ) ( d i s t , nn ) = (D, sample )
( 6 ) re turn nn . l a b e l

I n p u t : s ample s : a s e t o f t ime s e r i e s
MEAN_NORM: boolean p a r a m e t e r

Outpu t : a l i s t o f t u p l e s [ ( accu racy , l e n g t h ) ]

[ ( i n t , i n t ) ] f i t ( samples , MEAN_NORM)
( 1 ) s c o r e s = [ ]

/ / s e a r c h f o r b e s t window l e n g t h s i n p a r a l l e l
( 2 ) f o r l e n = maxLen down t o minLen
( 3 ) c o r r e c t = 0
( 4 ) f o r query i n samples
( 5 ) nnLabe l = p r e d i c t (

query , s ample s \ { que ry } , l en ,MEAN_NORM)
( 6 ) i f ( nnLabe l == query . l a b e l ) c o r r e c t ++

/ / s t o r e s c o r e s f o r each window l e n g t h
( 7 ) s c o r e s . push ( ( c o r r e c t , l e n ) )
( 8 ) re turn s c o r e s

Note that for large window lengths w∼ n this complexity is close to linear in n (like
the Euclidean distance). For small window lengths w� n the complexity is quadratic
in n2 (like DTW).

3.3 Shotgun Classifier

The shotgun classifier is based on 1-NN classification and the shotgun distance. Given
a query, the predict-method (Algorithm 2) searches for the 1-NN to a query within the
set of samples (line 3–5). Finally, the query is labeled by the class label of the 1-NN nn.

The fit-method (Algorithm 2) performs a grid-search over the parameter space using
leave-one-out cross-validation (lines 4–8). It obtains the parameters that maximize the
accuracy on the train samples. The accuracies for all window lengths starting from the
maxLen (the length of the longest time series) down to minLen (line 7) are recorded.
The MEAN_NORM-parameter is a Boolean parameter, which is constant for a whole
dataset as opposed to setting it per sample or window.

3.4 Shotgun Ensemble Classifier

By intuition every dataset is composed of substructures at multiple window lengths
caused by different walking motions, heart beats, duration of vocals, length of shapes.
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95 67

106 1-NN: 2, 1, 1
Majority vote: 1
Best match:

Fig. 4: The shotgun ensemble classifier using three window lengths: 67, 95 and 106.
The 1-NN is searched for each query within the 9 samples. The matching positions are
illustrated within each sample. This result in the nearest neighbors highlighted by the
red rectangles: 2, 1, 1.

Algorithm 3 The shotgun ensemble classifier.

I n p u t : que ry : t ime s e r i e s
sample s : a s e t o f t ime s e r i e s
b e s t S c o r e : t h e b e s t a c c u r a c y
windows : a l i s t o f t u p l e s [ ( accu racy , l e n g t h ) ]
MEAN_NORM: boolean p a r a m e t e r

Outpu t : The p r e d i c t e d l a b e l of t h e que ry

S t r i n g p r e d i c t E n s e m b l e (
query , samples , b e s t S c o r e , windows , MEAN_NORM)
/ / s t o r e s f o r each window l e n g t h a l a b e l

( 1 ) windowLabels = [ ]
/ / d e t e r m i n e t h e l a b e l f o r each window l e n g t h

( 2 ) f o r ( c o r r e c t , l e n ) i n windows
( 3 ) i f ( c o r r e c t > b e s t S c o r e∗ f a c t o r )
( 4 ) windowLabels [ l e n ] = p r e d i c t (

query , samples , l en , MEAN_NORM)
( 5 ) re turn most f r e q u e n t l a b e l from windowLabels
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For example, each human may have a different length of a gait cycle. To allow for
datasets that contain patterns of different window lengths, we extend the shotgun clas-
sifier algorithm to support multiple window lengths, therewith making it an ensem-
ble technique and further add to the robustness of the classifier. Figure 4 illustrate the
shotgun ensemble classifier applied to walking motions using three different window
lengths: 67, 95 and 106. The query is split into disjoint windows of the corresponding
lengths and the 1-NN is searched within the 9 samples. Each window length results in
its own 1-NN. A majority vote leads to the time series illustrated in the bottom right.

Algorithm 2 describes the shotgun classifier for one fixed window length. The en-
semble classifier is defined in Algorithm 3, which allows for different substructural sizes
within the time series. The fit-method in Algorithm 2 returns a list of scores, each one
resulting from a different window length on the train samples. The shotgun ensemble
classifier (Algorithm 3) classifies a query using the best window lengths from the list of
scores. The best accuracy on the train samples is given by bestScore. Using a constant
parameter factorε (0,1] and this bestScore, the optimal window lengths are given by:

correct > bestScore · factor

For each of these window lengths the label is recorded (line 4). Finally, the most fre-
quent class label is chosen from these labels (line 5). While it might seem that we add
yet another parameter factor, the training of the shotgun ensemble classifier depends
solely on the factor and mean parameters. The shotgun ensemble classifier model is
derived from these two parameters using the fit-method, which returns the list of win-
dow scores. These scores are used as the model and to predict the label of an unlabeled
query. In our experiments factors in between 0.92 to 1.0 were best throughout most
datasets.

3.5 Pruning the Search Space

The rationale of search space pruning is to early abandon computations, as soon as these
can not result in finding a new optimum. Previous work aims at stopping Euclidean dis-
tance calculations when the current distance exceeds the best distance found so far [11,
20, 21].

Early Abandoning: The purpose of the ShotgunDistance-method (Algorithm 4) is to
accumulate the Euclidean distances for each query window. The Euclidean distance
computations are pruned by reusing the best result qDist of the previous calculations
(line 5). The ShotgunDistance-method is executed multiple times for each pair of query
and sample. Passing the distance to the current calculation as bestDist allows for prun-
ing calculations as soon as this bestDist is exceeded (line 7). Otherwise the sample is
a new nearest-neighbor candidate and the distance is used to prune subsequent calls to
ShotgunDistance. In the best case scenario, we have to compute the distance between
one pair of time series and all other distance computations stop after one iteration of the
for-loop in line 7.
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Algorithm 4 Pruning techniques based on early abandoning.

double E u c l i d e a n D i s t ( query , sample , b e s t D i s t )
( 1 ) f o r i = 1 t o l e n ( que ry )
( 2 ) d i s t += ( sample [ i ] − que ry [ i ] ) ^2

/ / e a r l y abandoning
( 3 ) i f ( d i s t > b e s t D i s t ) re turn MAX_VALUE
( 4 ) re turn d i s t

double S h o t g u n D i s t a n c e ( query , sample , W_LEN, MEAN_NORM, b e s t D i s t )
( 1 ) t o t a l D i s t = 0
( 2 ) f o r q i n d i s j o i n t _ w i n d o w s ( query , W_LEN, MEAN_NORM)
( 3 ) q D i s t = MAX_VALUE
( 4 ) f o r s i n s l i d i n g _ w i n d o w s ( sample , W_LEN, MEAN_NORM)

/ / e a r l y abandoning
( 5 ) q D i s t = min ( qDis t , E u c l i d e a n D i s t ( q , s , min ( qDis t , b e s t D i s t ) ) )
( 6 ) t o t a l D i s t += q D i s t

/ / e a r l y abandoning
( 7 ) i f ( t o t a l D i s t > b e s t D i s t ) re turn MAX_VALUE
( 8 ) re turn t o t a l D i s t

S t r i n g p r e d i c t ( q , samples , W_LEN, MEAN_NORM)
[ . . . ]
( 2 ) f o r sample i n samples
( 3 ) D = min (D, S h o t g u n D i s t a n c e ( q , sample , W_LEN, MEAN_NORM, D) )
[ . . . ]

Algorithm 5 Use an upper bound on the current accuracy.

[ ( i n t , i n t ) ] f i t ( samples , MEAN_NORM)
( 1 ) s c o r e s = [ ] , b e s t C o r r e c t = 0
( 2 ) f o r l e n = maxLen down t o minLen
( 3 ) c o r r e c t = 0
( 4 ) f o r q i n [ 1 . . l e n ( samples ) ]
( 5 ) nnLabe l = p r e d i c t (

s ample s [ q ] , s ample s \ { sample s [ q ] } , l en , MEAN_NORM)
( 6 ) i f ( nnLabe l == samples [ q ] . l a b e l ) c o r r e c t ++
( 7 ) i f ( c o r r e c t +( l e n ( samples )−q ) ) < b e s t C o r r e c t∗ f a c t o r
( 8 ) break
( 9 ) b e s t C o r r e c t = max ( b e s t C o r r e c t , c o r r e c t )
[ . . . ]

Upper Bound on Accuracy: While lower bounding on distance computations aims at
reducing the complexity in the length n, we present a novel optimization that also aims
at reducing the complexity in the number of samples N. For each window length, the
best achievable accuracy at any point is given by:

correct≤ (current correct + remaining samples) = N (7)

Thus, we do not need to obtain the exact accuracy for a window length in Algorithm 5
(lines 7–8), if the remaining samples will not result in finding a better accuracy (or at
least within factor to the best accuracy).

4 Experimental Evaluation

The utility of the shotgun distance is underlined by case studies and the UCR time se-
ries classification benchmark datasets [3]. Each dataset is split into two subsets: train



14 Patrick Schäfer

Euclidean Distance

30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

DTW

30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

Shotgun Distance

30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

Sine

Triangle

Square

Fig. 5: Hierarchical clustering of a synthetic dataset based on three similarity measures.
There are three types of curves: sine, square, triangle.

and test. By the use of the same train/test splits the results are comparable those previ-
ously published [1, 7, 2, 11, 20]. In all experiments we optimized the parameters of the
classifiers based on the train dataset. The optimal set of parameters is then used on the
test dataset. Our web page [27] contains a spreadsheet with all raw numbers and source
codes. All benchmarks were performed on a shared memory machine running Linux
with 8 Quad-Core AMD Opteron 8358 SE and Java JDK x64 1.7.

4.1 Hierarchical Clustering

In [7] five kinds of invariances for distance measures were presented:

1. Amplitude/offset invariance resulting from different scales like Celsius or Fahren-
heit.

2. Local scaling (warping) invariance resulting from local distortions of a signal.
3. Uniform scaling invariance resulting from global distortions of a signal.
4. Phase invariance resulting from horizontal misalignment due to phase-shifts of pe-

riodic signals.
5. Occlusion invariance resulting from missing data.

The shotgun distance accounts for amplitude, local scaling, phase, local scaling and
occlusion invariances. This is underlined by the following case studies. Unfortunately,
good clustering results do not imply good classification results and vice versa, as the
symmetry condition is not satisfied by the shotgun distance.

Hierarchical Clustering of Synthetic Data: We use a synthetic dataset to illustrate the
utility of the shotgun distance in comparison to the Euclidean Distance (ED) and Dy-
namic Time Warping (DTW). The data consists of three types of shapes: square, trian-
gle, sine waves. Each shape accounts for a separate class. The generated data has phase
shifts, variable lengths, variable frequencies and a rising trend. A similarity measure
needs to provide amplitude/offset, warping and phase invariance to separate the data
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Fig. 6: Hierarchical clustering of a walking motions. There are two types of walking
motions: normal and abnormal walk.

successfully. Figure 5 shows a hierarchical clustering of these wave forms. The ED per-
forms very poorly at clustering the data. It clusters data with the same trend (signals
1-6) or length (10-12, 13-15, 19-21, etc.) independent of the form of the shape. Even
though DTW provides invariance to local scaling, its performance is marginally bet-
ter than that of the ED. Wave forms are clustered based on the number of valleys and
peeks rather than their shape (signals 3-4, 5-6, 15-16, etc.). This is a know limitation of
DTW. In contrast, our shotgun distance successfully separates all types of shapes. Each
is clustered within separate branches of the dendrogram.

Hierarchical Clustering of Walking Motions: Figure 6 shows a hierarchical clustering
of walking motions [5]. Each motion was categorized by the labels normal walk (green)
and abnormal walk (orange). The difficulties in this dataset result from variable length
gait cycles, gait styles and paces due to different subjects throughout different activi-
ties including stops and turns. A normal walking motion consists of multiple repeated
similar patterns. The ED fails to identify the abnormal walking styles, as these are not
separated from the normal walking motions. DTW provides invariance to phase shifts
by a peak-to-peak and valley-to-valley alignment of the time series. This still does not
result in a satisfying clustering as the abnormal and normal walking patterns are mixed
within the same branches of the hierarchical clustering. Out shotgun distance separates
the normal walking motions from the abnormal walking motions much clearer with just
the 3rd and 15th walking motion being out of place.

Hierarchical Clustering of Heraldic Shield: Figure 7 shows a hierarchical clustering
of the shape of heraldic shields [28]. There shields come from three countries: Spanish
(purple), Polish (orange), French (green). The shape of the shields differ greatly based
on their origin. The method used to transform the shape of a shield to a time series is
described in [28]. Other than the previous two case studies, these time series do not have
any periodicity. The dataset requires warping and scaling invariances for successful
clustering.
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Fig. 7: Hierarchical clustering of a heraldic shield outlines. There are three types of
shields: Spanish, Polish and French.

The ED clusters the time series based on their length and not based on their shape,
which results in a visually unpleasant clustering. The DTW perfectly clusters the Span-
ish shields but fails to distinguish the Polish from the French shields. Our shotgun dis-
tance in the only one to separate all shields correctly.

4.2 Classification Accuracy

Personalized Medicine: The BIDMC Congestive Heart Failure Database [4] con-
sists of ECG recordings of 15 subjects, which suffer from severe congestive heart fail-
ures (Figure 8). The recordings contain noisy or extraneous data, when the recordings
started before the machine was connected to the patient. ECG signals show a high level
of redundancy due to repetitive heart beats but even a single patient can have multiple
different heart beats. To deal with these distortions a classifier has to be invariant to
amplitude, uniform scaling, phase shifts and occlusion. The total size of this dataset is
equal to 9 million data points (10 hours sampled at at 250 Hz). We used the train/test
split provided by [10]. To the best of our knowledge, the best rivalling approach re-
ported a test accuracy of 92.4% [10] and 1-NN DTW scores 62.8%. The shotgun en-
semble classifier obtains a much higher test accuracy of 99.3%. This is a result of the
design of the shotgun distance: ECG signals are composed of recurring patterns, which
are distorted by all kinds of noise. To obtain this score, training the shotgun ensemble
classifier took roughly 2 days as all window lengths have to be evaluated. Prediction on
the 600 test samples took roughly 1.5 hours in total.

Human Walking Motions: The CMU [5] contains walking motions of 4 subjects.
Each motion was categorized by the labels normal walk and abnormal walk (Figure 8).
The data were captured by recording the z-axis accelerometer values of either the right
or the left toe. The difficulties in this dataset result from variable-length gait cycles,
gait styles and pace due to different subjects throughout different activities including
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Fig. 8: Four sample representing each class of the case studies: abnormal and normal
walking motions, wheat spectrographs, ECG signals, and starlight curves.

stops and turns. To make our results comparable to [21], we used the data provided by
their first segmentation approach. We search for normal or abnormal walking patterns.
Training the shotgun ensemble classifier took less than a minute. This results in a test
classification accuracy of 96.9%, due to the repetitive nature of the data. The accuracy
is significantly higher than that of the best rivalling approach in [21] with an accuracy
of 91% or 1-NN DTW that scores 66.2%.

Spectrographs: Wheat [21] is a dataset of 775 spectrographs of wheat samples grown
in Canada. The dataset contains different wheat types like Canada Western Red Spring,
Soft White Spring or Canada Western Red Winter (Figure 8). The class labels define
the year in which the wheat was grown. This makes the classification problem much
more difficult, as the same wheat types in different years belong to different classes.
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The best rivalling approach [21] reported a test accuracy of 72.6% on this dataset and
1-NN DTW obtains a test accuracy of 72.6%. Our shotgun ensemble classifier obtains
a significantly higher test accuracy of 80.69%.
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Fig. 9: The time required to execute the shotgun fit-method on the StarLightCurves
dataset using the presented pruning strategies.

Astronomy / Scalability: While it is easy to get large amounts of data, it can be very
time consuming to obtain labels for each data item. Thus, it is difficult to obtain large
amounts of labelled data. We test the scalability using the largest dataset in the UCR
time series archive [3]. This dataset contains three types of star objects: Eclipsed Bi-
naries, Cepheids and RR Lyrae Variables. The Cepheids and RR Lyrae Variables have
a similar shape and are hard to separate (Figure 8 top and bottom). To the best of our
knowledge, the highest reported test accuracy is 93.68% [20] with 52 minutes for train-
ing and 1-NN DTW scores 90.7%. The test accuracy of our shotgun ensemble classifier
is 95.3%.

Scalability: To test the scalability of the shotgun fit-method, we iteratively doubled
the number of samples from 100 to 1000, each of length 1024, and measured the prun-
ing strategies presented in this paper. Figure 9 shows that the time of the brute force
algorithm grows quadratically to approximately 9 hours for 1000 samples. Early aban-
doning reduces this by a factor of 7 and in combination with the upper bound by a
factor of 12 to only 41 minutes. Both pruning strategies combined significantly reduce
the run-time for training when the number of samples is increased.

Parameter Space: Figure 10 shows the parameter space for different window lengths
and a sample time series for each of the classification case studies. The optimal window
lengths correlate with the substructures contained in the time series and no general
trend can be observed. The best window length for the astronomy dataset is around
300, for the walking motions around 100, for the spectrographs close to 250, and for the



Experiencing the Shotgun Distance for Time Series Analysis 19

200

400

600

800

1000

W
in

d
o
w

 L
e
n

g
th

Astronomy

0.48
0.54
0.60
0.66
0.72
0.78
0.84
0.90

A
cc

u
ra

cy

0 200
400

600
800

1000
1200

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5
Sample time series

50

100

150

200

250

300

350

W
in

d
o
w

 L
e
n

g
th

Walking-Motions

0.40

0.48

0.56

0.64

0.72

0.80

0.88

0.96

A
cc

u
ra

cy

0 50100
150

200
250

300
350

400

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Sample time series

200

400

600

800

1000

W
in

d
o
w

 L
e
n

g
th

Spectrography

0.16
0.24
0.32
0.40
0.48
0.56
0.64
0.72
0.80

A
cc

u
ra

cy

0 200
400

600
800

1000
1200

0.4

0.6

0.8

1.0

1.2
Sample time series

0

500

1000

1500

2000

2500

3000

3500

W
in

d
o
w

 L
e
n

g
th

Personalized-Medicine

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

A
cc

u
ra

cy

0 500
1000

1500
2000

2500
3000

3500
4000

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.1

0.2
Sample time series

Fig. 10: Top: a heatmap illustrating the optimal window length for each case study. Red
indicates the window length with the highest accuracy. Bottom: a sample time series.

personalized medicine around 130. The window length of 100 for the walking motions
is roughly equal to the length of one gait cycle. The length of 130 in the personalized
medicine dataset correlates with the length of one heartbeat.

4.3 Computational Bioacoustics:

Producers set up traps in the field that lure and capture pests, in order to detect and
count these. Manual inspection of traps is a procedure that is both costly and error
prone. Repeated inspection must be carried manually, sometimes in areas that are not
easily accessible. A novel recording device has been recently introduced [6]. The core
idea is to embed a device in an insect trap to record the fluctuations of light received
by a photoreceptor as an insect passes a laser beam and partially occludes light. The
samples are recorded at 16 kHz and 1s long but the insect motion within each sample
is typically only a few hundredths of a second long. The bandwidth between 0.2-4 kHz
is most characteristic. There are three datasets with 5, 9 and 10 insects species [29]
available. We focus on the first dataset D1 that was collected from 5 insects, namely:
Aedes aegypti male, Fruit flies mixed sex, Culex quinquefasciatus female, Culex tarsalis
female, Culex tarsalis male. It consists of a train/test split with 500 and 5000 recordings.
Figure 11a shows two of those insect recordings.

To connect time series analysis with bioacoustics, we use the Symbolic Fourier Ap-
proximation (SFA) [24]. Its symbolic and thus compact representation of a time series
has shown to be capable of exact similarity search and to index terabyte-sized datasets.
Our workflow consists of feature extraction and feature matching. SFA is applied to ex-
tract features, which are then passed to the shotgun classifier. SFA reduces noise by the
use of low pass filtering and quantization. It can be thought of as the chromatic scale.
Pitch levels are mapped to an alphabet of symbols. For example: {C-D-E-F-G-A-H}
for the C major scale. In SFA adjacent frequency ranges are mapped to an alphabet of
symbols. The SFA transformation results in a character string (see Figure 11b). Each
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(a) An insect passes the laser multiple times, causing an echo. The shotgun classifier aligns these
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0 130 260 390 520 650 780 910
0.6

0.4

0.2

0.0

0.2

0.4

0.6

A
m
p
li
tu
d
e

Query

0 130 260 390 520 650 780 910

nmmlmnlmjm
lpnplonnlm
pnomniokpk
okommllkim
jolpmnmnnn
qjmnqnjqog
lonnn

nmllmnkmjm
lpnolnnnlm
onomniokoj
nkommmlkhm
ipkqmnlolo
pklopnirmh
komnm

nkmkmmjmjh
kqmpknnokl
noommiolol
nkpmmlklin
iolqmokomo
pklopojrnh
kpmom

npmtkirlkg
moppmnpnnn
sloloipiqj
pltloinjkl
lnpoplompk
tiqltkmnse
olrjp

nhngtqingk
jqmplqjokn
oononkjkmk
mokokmimfp
fqirkpgpkr
mmirnpgukj
hriqj

nnknhkqmlj
kqoqmlnnmn
pmpkoinjqj
pgqknjljlk
lmopomonpk
siplsllore
nmqko

nkmknpjnim
ipnolopnmm
pnnmmilknj
mmqnmomkhm
iolqmolomo
pkloqnjqnh
komnm

SFA Words

0 130 260 390 520 650 780 910
0.8
0.6
0.4
0.2
0.0
0.2
0.4
0.6

A
m
p
li
tu
d
e

inverse SFA(b) The query is cut into windows, and the SFA representations are calculated.

Fig. 11: Computational Bioacoustics.
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Fig. 12: Classifier accuracies on the test dataset.

symbol represents an interval in the frequency domain. The interested reader is referred
to [30, 24] for details on the SFA algorithm.

In particular, noise is generated by the angle and the speed of an insect passing
the photoreceptor. This affects the recorded intensities. SFA’s noise reduction accounts
for these differences in the intensity. By introducing the shotgun classifier for feature
matching, we obtain invariance to the time of the insect passage. Shotgun distance fur-
ther deals with outliers like multiple insects passing the laser within a short time frame
(see Figure 11a).

We compared the shotgun distance to common feature vectors in computational
bioacoustics like MFCCs, the Klatt spectrum, the Spectral distance, Complex GMM,
and Cepstral Distance [29]. Using a small window length of 132, 120 SFA features and
22 SFA symbols performed best. Our approach scores the highest test accuracy with
94% (Figure 12).

This shows that the shotgun distance in combination with SFA are applicable to
computational bioacoustics.

4.4 UCR Classification Benchmark Datasets

We used a standardized benchmark [3] to evaluate our approach. There are three types
of datasets:

– synthetic: these were created by a scientist.
– real: these were recorded from a sensor.
– shape: representing time series which were generated by processing the shape (con-

tour) of an object.

All samples in these datasets were preprocessed by a domain expert to have an approx-
imate alignment of the objects and fixed length. Each dataset consists of a train and
a test subset. The shotgun ensemble classifier is compared to state of the art time se-
ries classifiers like shapelets [11], fast shapelets [20], 1-NN classifiers using Euclidean
distance or dynamic time warping (DTW) with the optimal warping window, support
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Fig. 13: Accuracy of the shotgun ensemble classifier vs. rivalling approaches.

vector machines (SVM) with a quadratic and cubic kernel, and a tree based ensemble
method (random forest). We followed the setup in [11, 20]. The authors in [1] used
data transformations (i.e. functional data analysis) to improve classifiers performance.
However, they failed to show a significant improvement over 1-NN DTW. We omit data
transformations prior to classification for the sake of brevity. The scatter plots in Fig-
ure 13 show a pair-wise comparison of each classifier with the shotgun classifier. Each
dot represents the test accuracies of the two classifiers on one concrete dataset. Dots
below the diagonal line indicate that the shotgun ensemble classifier is more accurate.

The shotgun ensemble classifier is better than fast shapelets and shapelets on the
majority of the datasets. We conclude that this is a result of the sensitivity to the over-
fitting of the shapelet classifiers and the decision tree in particular, where the difference
between the train and test accuracy makes up for up to 50 percentage-points. In con-
trast the shotgun classifier is more robust towards overfitting (see web page [27]). 1-NN
DTW is the established benchmark classifier [2]. Our shotgun ensemble classifier is bet-
ter than 1-NN DTW or 1-NN Euclidean distance on the majority of datasets by a large
margin in terms of accuracy. DTW provides invariance to local scaling (time warp-
ing). Shotgun distance does not explicitly provide this invariance. However, the results
imply that either (a) most UCR datasets do not require local scaling or (b) the shot-
gun distance provides some local scaling invariance. This will be part of future work.
The shotgun distance is equal to Euclidean distance, if the window length is equal to
the query length. Thus, the shotgun ensemble classifier performs better than the 1-NN
Euclidean distance. SVMs and the shotgun ensemble classifier complement each other
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quite well as one classifier is good on a dataset in which the other performs badly. So, at
least for datasets which were preprocessed for approximate alignment and fixed length,
the choice of the classifier depends on the dataset. When comparing the shotgun ensem-
ble classifier with random forests, the results suggest that the former is more accurate
by a large margin. Note that the UCR datasets were preprocessed for approximate align-
ment and length. Still our shotgun classifier performs significantly better than rivalling
state of the art classifiers on a majority of datasets.

4.5 Impact of Design Decisions
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Fig. 14: Classifier accuracies on test subsets for the shotgun ensemble classifier.

The shotgun classifier is based on two design decisions:

1. Building an ensemble of shotgun classifiers.
2. Mean normalization as a parameter as opposed to always normalizing the mean of

all windows.

We chose to use 1-NN classification as it doesn’t introduce any new parameters for
model training which allows us to focus on the shotgun ensemble classifier. Overall the
shotgun ensemble classifier showed a better or equal accuracy on 22 out of 32 datasets
when compared to the shotgun classifier using one fixed window length (Figure 14). It
improves by up to 10 percentage points on the Motes dataset. As for mean normalization
the accuracies increased by up to 2.3 percentage points when treated as a parameter.

5 Conclusion

The time series classification task is complicated by noise, dropouts, subtle distinctions,
variable lengths or extraneous data. The shotgun distance is a novel distance measure
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based on the characteristic patterns in time series. Shotgun distance utilizes time seg-
ments which are vertically and horizontally aligned and scaled between the query and a
sample, and thereby simplifying the preprocessing. Based on an ensemble of 1-nearest-
neighbor classifiers the shotgun ensemble classifier is presented. To deal with the in-
creased complexity, two pruning strategies for the length and the number of time series
are presented. This reduces the computational complexity by one order of magnitude. In
our experimental evaluation we show that the shotgun distance performs better than ri-
valling methods in the context of hierarchical clustering and classification for use cases
in computational bioacoustics, human motion detection, spectrographs, astronomy, or
personalized medicine. This is underlined by the best classification accuracy on stan-
dardized benchmark datasets.
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