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Abstract. In this chapter the expression “holonic cyclic manufacturing systems”
refers to complex assembly/disassembly systems or fork/join systems, kanban
systems, and in general, to any discrete event system that transforms raw material
and/or components into products. Such a system is said to be cyclic if it provides
the same sequence of products indefinitely. This chapter considers the scheduling
of holonic cyclic manufacturing systems and describes a new approach using
Petri nets formalism. We propose an approach to frame the optimum schedule
of holonic cyclic manufacturing systems in order to maximize the throughput
while minimize the work in process. We also propose an algorithm to verify the
optimum schedule.

Keywords: Petri net, event graph, holonic cyclic manufacturing system, mini-
mum cyclic time, kanban system.

1 Introduction

The explosive development of information and communication technology networks
(ICTNs) is designing and implementing more sophisticated and flexible approaches for
monitoring and controlling systems; i.e. generically called manufacturing processes as
we assume that every known system is dealing with inputs internal processing param-
eters and resulting outputs. It does this by linking high level systems, such as enter-
prise research planning (ERP) and customer relationship management (CRM) to low-
level, real-time control devices such as digital signal processing (DSP) programmable
logic controllers (PLCs), robots, conveyors, milling machines, etc [1-3]. For these ap-
proaches, the supervisory controllers can be distributed across several different com-
putational devices. Following the holonic approach, the supervisory controller can be



42 Calin Ciufudean, Constantin Filote, and Valentin Vlad

considered as a single holon associated with a physical device, although atomically
it consists of several sub-holons, one for each computational device involved in the
control of physical device [3]. For a whole-parted system Koestler denoted the term
“holon” , derived from the Greek word holos = whole with the suffix on (like neu-
tron or proton) pointing out the part characteristic [4]. A holon could compile strategy
out of its rules, which fits to its intentions and goals and with the interpolation of the
environment. Typical holonic applications or models are applied mostly to the produc-
tion processes, called holonic manufacturing systems (HMSs); we notice that similar
to these approaches, they are modeled domain specifically [5, 6]. A complex holonic
structure has a hierarchical order, rules and strategies framed by communication and
reaction abilities. Most of the time, the hierarchies are looked at as rigid and inflexible
shapes. However, some approaches are not following this like the approaches described
in [7], and the one proposed here. An interesting situation occurs in both designing and
controlling flexible manufacturing systems (FMSs), where there is no hardware sup-
port to ensure synchronization of the common resources flows (e.g. practical situations
where the outcome that changes the states of FMS depends on the global sequence of
events). In order to model and to ensure an optimized control of these situations, we
propose an approach based on fundamental class of Petri nets that are well known to
produce safe models and safe protocols for common flows of resources in large and
complex systems. PNs modelling is more compact than the automata approach and is
better suited for modelling systems with parallel and concurrent activities. In addition,
PN has a friendly graphical representation with a powerful algebraic formulation and
models clearly the synchronization involved in concurrent systems. Thus, it has gen-
erated intense interest from scientists and researchers. In this chapter, we focus our
discussion on techniques for the predicting and verifying the performance of holonic
distributed systems. We consider a holonic distributed system as a loosely or a tightly
coupled processing element working co-operatively and concurrently on a set of related
tasks. In general, there are two approaches for performance evaluation: deterministic
models and probabilistic models. In deterministic models, it is usually assumed that
the task arrival times, the task execution times, and the synchronization involved are
known in advance to the analysis. This approach is very useful for performance eval-
uation of real-time control systems with hard deadline requirements. In probabilistic
models, the task arrival rates and the task service time are usually specified by prob-
abilistic distribution functions. Probabilistic models usually give a gross prediction on
the performance of a system and are usually used for the early stages of system design
when the system characteristics are not well understood. Another recently developed
tool for modelling and simulating distributed control systems is the IEC 61499 stan-
dard [8, 9]. This standard defines a software paradigm built on the basis of FB (Func-
tion Block) that encapsulates data along with its behaviour in a form that is similar to
physical entities, i.e. electronic circuits or hardware elements. In designing and imple-
menting state machine control, Petri nets are suitable for defining the desired sequence
of operations for the controlled machine or process, as well as possible abnormal se-
quences which may occur. The IEC 61499 standard may be used for informal modelling
of the machine or process behaviour, using simulation models, or to define the appro-
priate state-machine controllers, typically as the ECCs (Execution Control Charts) and
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algorithms of basic function block types. This chapter presents the proposed some PN
based model for holonic systems and proposes an under work modelling application
based on the IEC 61499 standard. Some examples will emphasize our approach. This
approach is very useful for performance evaluation of real-time control systems with
hard deadline requirements. In probabilistic models, the task arrival rates and the task
service time are usually specified by probabilistic distribution functions. Probabilistic
models usually give a gross prediction on the performance of a system and are usually
used for the early stages of system design when the system characteristics are not well
understood. We analyze the performance of holonic distributed systems and, in order to
model clearly the synchronization involved in concurrent systems, the Petri net model
is chosen. In this chapter we consider event graphs as Petri nets in which each place has
one input transition and one output transition. It has been shown that distributed systems
can be modeled as event graphs [8, 9]. When the manufacturing times are deterministic
(respectively stochastic), the cycle time (respectively the mean cycle time) of the model
is the period (respectively the mean period) required to manufacture a given set of parts
which fits with the required ratios. The smaller the cycle time (respectively the mean cy-
cle time) the higher the productivity of the system. When the firing times of transitions
are deterministic, it is possible to define the cycle time of an elementary circuit. This is
given by the ratio between the sum of the firing times associated with the transitions of
the circuit and the number of the tokens in the places of the circuit, which is constant
(we consider strongly connected graphs with the number of tokens in any elementary
circuit, constant):

T;
Ci=— 1
=% (M
Where i = 1, 2, ..., n number of elementary circuits of the graph; Ci = cycle time of

elementary circuits i; 7; = Y r; = sum of the execution times of the transition in circuit
i; N; = Y M; = total number of tokens in the places in circuit i.

In this case it has been proven that the cycle time of a strongly connected event graph
is equal to the greatest cycle time of all elementary circuits. Furthermore, given a value
C* greater than the largest firing time of all transitions, an algorithm has been proposed
in [10] to reach a cycle time less than C*, while minimizing a linear combination of the
token number in the places. The coefficients of the linear combination are the elements
of a p-invariant. When the event graph is the model of a ratio-driven distributed system
(such as manufacturing system), C* has to be greater than the largest cycle time of all
command circuits [11]. A command circuit is an elementary circuit, which joins the
transition that models the operations performed on the same machine [23 - 25]. Such a
circuit contains one token to prevent more than one transition firing at any time in each
elementary circuit. In other words, C* must be greater than the time required by the bot-
tleneck machine to perform a sequence of parts which fits with the production ratios.
In the case of random firing times, it is no longer suitable for the elementary circuits to
evaluate the behaviour of the event graph in order to reach a given performance. Thus,
the results presented in this chapter, which aim at reaching a given mean cycle time in
a steady state while minimizing a linear combination of the place markings, are partic-
ularly important at the preliminary design level of manufacturing systems working on a
ratio-driven basis. We also consider a few techniques for scheduling and verifying the



44 Calin Ciufudean, Constantin Filote, and Valentin Vlad

throughput of holonic cyclic manufacturing systems (HCMSs). A holonic cyclic pro-
duction system manufactures a set of products at a constant frequency. We notice that
any holonic cyclic production system can be modeled as an event graph, and therefore it
is possible to drive the optimal throughput using the properties of the event graphs [12
- 14] by scheduling the tasks of the HCMSs in order to minimize the work in process.
One may notice that nowadays often these production systems display a distributed
configuration, e.g. they can be seen as distributed systems. Section 2 frames the op-
timum behaviour of the Petri net model of a holonic cyclic manufacturing system. In
section 3 we give a sufficient condition for optimality, e.g. an algorithm that maximizes
the throughput of scheduling production lines and we propose an algorithm to evaluate
the bounds used to calculate the average cycle time which is exemplified on a kanban
system in section 4. Section 5 introduces the new concept of transductional holonic
formalisms, section 6 establishes the illustrative scenario, section 7 applies some trans-
ductional models to the given scenario, and section 8 concludes the chapter.

2  Framing the Mean Cycle Time

In this chapter we examine the holonic cyclic manufacturing systems (HCMSs), e.g.
production tasks including assembly/disassembly or fork/join ones, with unreliable ma-
chines displayed in Jakson (infinite-capacity) networks and we consider the problem of
maximizing the throughput by achieving a balance among the processing and repair
of all machines under certain economical criteria. It has been proven [14] that in an
event graph a marking belonging to the optimal solution under a periodic operational
mode (POM) is an optimal solution under the earliest operational mode (EOM). So, we
consider the earliest operational mode of the event graph, and we assume only non pre-
emptive transition firings. We further assume that, when the transition fires, the related
tokens remain in the input places until the firing process ends. They then disappear,
and one new token appears in each output place of the transition. We use the following
notations: Mi = the marking of the elementary circuits, i € N; X,k € RT =random
variable generating the time required for the k' firing of the transition t, k € N; I;(n)
= instant of the n'" firing initiation of the transition t; E = set of elementary circuits;
s(e) = sum of the random variables generating the firing; ¥, X/ = sum of times of the
transitions belonging to e; E; = set of elementary circuits containing the transition t.
We assume that the sequences of transition firing times are independent sequences of
integrable random variables. It was proven in [15] that there is a positive constant s(Mp)
so that:

. I,(n
llmn_m% =C, (@)

Where: Cm = the average cycle time of the event graph.
Furthermore, we denote by m; the mean value of Xlk and by ¢; the standard deviation of

. 2
XFie,m =F[Xf] and g7 = F[(X} —m,)"].
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2.1 The Lower Bound of the Mean Cycle Time

The cycle time of the deterministic problem obtained by replacing the random variables
which generate the firing times by their mean values, is a lower bound of the mean cycle
time [16]. The following relation proven in [17] provides a better lower bound for the
value of the mean cycle time than the previous one:

sle *(e)} +my«(,
- { I ”3}05 ”J,mMH 3

C*™* > maxecg F

Where 1*(e) is a transition, belonging to event e, with the greatest average firing time,
i.e., My (o) = max;eemy, and sfe\ {t*(e)}] is the sum of the firing times of the transitions
belonging to e except *(e).

2.2 The Upper Bound of the Mean Cycle Time

With My being the initial marking, we derive a marking M; from M, by leaving the
places which are empty in My, empty in M], and by reducing to one the number of to-
kens in the places containing more than one token in M. Thus, M (p) < My(p) for any
set of places of the strongly connected event graph. An earliest operation mode running
with the initial marking M leads to a greater mean cycle time than the one obtained
when starting from M. Then, starting from M, we apply to the event graph the earliest
operation mode, but we block the tokens as soon as they reach a place already marked
in M. This operation mode is referred to as the constrained mode [18]. We denote by
C* the mean cycle time obtained by using the constrained operation mode when M is
the initial marking. We know [8, 9] that C* is greater than the mean cycle time obtained
by using the earliest operation mode starting from M; which, in turn, is greater than
the mean cycle time obtained with the earliest operation mode when the initial marking
is Mp. Thus, C* is an upper bound of the solution to our problem (i.e. the mean cycle
time obtained starting from My when using the earliest operation mode). The following
relation defines this upper bound:

C* = F[maxez 5(2)] )

Where, Z is the set of directed paths verifying the following properties:
- the origin and the extremity of any path is a marked place;
- there is no marked place between the origin and the extremity of the path.

3 The Evaluation of the Optimum Schedule of a HCMS

The problem is to determine the time at which each task should begin during the cycle.
We assume that the set of tasks does not change, the tasks are not preemptive, and the
task processing is deterministic. We determine two bounds for the mean cycle time of
a Petri net model of a HCMS. The next step is to give an algorithm for optimizing the
Petri net model in order to determine a feasible scheduling for the production cycle and
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to minimize the work in process, e.g. the number of cycles necessary to complete one
item of each product, given that schedule [19-22]. Algorithm:

. The tasks of the HCMS that require resources are scheduled in any order. We notice

by si and by ei the start, respectively the end time of task i. All tasks start in the
interval [0, C*], and the resources can perform maximum one task at a time, where
C* is given by relation (4).

. For each product p =1, 2, ..., n go to step 3 for the first task and go to step 4 for

the rest of the tasks.

. Let i be the first task in the sequence of tasks Tk , k = 1, 2, ..., m necessary to

produce one unit of k. Assign the table Tk(i) = O for this task.

. For each product label task 7;(j) as follows: if 5; > e; then set Ty (j) = T (j) + 1,

otherwise set T (j) = Ti(i).

For each product calculate the production time as follows:

Cp, = [T,(1)T,(f)] - Cmed + 51 — 55, where f is the first task, and 1 is the last one, in
the sequences of tasks Ty, and Cmed = (C x +C x x) /2, with C** and C* given by
relation (3) , respectively relation (4).

. . . . C
For the entire production the total average work in process is Y. C—”[ , where
med

p=1, 2, ..., n is the number of products in a complete production cycle.

In the reminder of the previous section, we compare the previous bounds with the ex-
isting ones. Under the assumption of non-preemptive transition firing, it was proven in
[16] that:

C*™* > maxecg F lmax{

sle \ {*(e)} +mpo
Mo(e)

,m,*(e)}] =old lower bound (5)

< th =old upper bound (6)
7

The following relations show that the new bounds are better than the old ones. But how
close are they to the optimal solution? In order to answer this question we give the
next algorithm, inspired from the operational research area, for verifying the systems
performance:

a)

b)

Express the token loading in a(pxp) matrix P, where p is the number of places in
the Petri net model of the system. Entry (A, B) in the matrix equals x if there are
x tokens in place A and place A is connected directly to place B by a transition;
otherwise (A, B) equals 0.

Express the transition time in a (p x p) matrix Q. The entry (A, B) in the matrix
equals to the mean values of the random variables which generate the firing times
(.e., X,k) if A is an input place of the transition “i” and B is its output place. Entry
(A, B) contains the symbol “w” if A and B are not connected directly as described
above.
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¢) Compute matrix Cmed - P — Q(with p —w = oo, and C.q = (C* + C**)/2, for
p € N), than use Floyds algorithm to compute the shortest distance between ev-
ery pair of nodes using matrix CP-Q as the distance matrix.

The result is stored in matrix S. There are three cases.

1) All diagonal entries of matrix S are positive (i.e.,Cpeq - Ny Tx > 0 for all circuits -
see relation (1)) the system performance is higher than the given requirement;

2) Some diagonal entries of matrix S are zeros and the rest are positive (i.e.,Cpeq -
N Ty, = Ofor some circuits, and C,,eq - Nx T > 0 for the other circuits) - the system
performance has just reached the given requirement;

3) Some diagonal entries of matrix S are negative (i.e.,Cyeq - Ni i < O for some cir-
cuits) - the system performance is lower than the given requirement.

In addition we may say that when a decision-free system runs at its highest speed,
Cined - Ny equals to T; for the bottleneck circuit. This implies that the places in the
bottleneck circuit will have zero diagonal entries in matrix S. The system performance
can be improved by reducing the execution times of some transitions in the circuit,
or introducing more concurrency in the circuit (by modifying the initial marking), or
increasing the mean cycle time (by choosing another average value for it).

4 The Evaluation of Kanban Systems

As we well know, an event graph can be used to model a kanban system. An example of
a simple production line will be used to exemplify the above discussed problems. The
production line consists of two machining tools (M1 and M2), two robot arms and two
conveyors. Each machining tool is serviced by a dedicated robot arm, which performs
load and unload tasks. One conveyor is used to transport work-pieces, a maximum of
two at a time. The other conveyor is used to transport empty pallets. There are three
pallets available in the system. Each work-piece is processed on M1 and M2, in this
order. The stochastic timed Petri net model of this system is shown in Fig.1. The initial
marking of the net is (300012111)”. When the time delays are modeled as random
variables, it has become a convention to associate the time delays with the transition
only. The involved transition has the associated time delays expressed in time units. The
random variables X1, X, X3, X4 are assigned to the transitions t1,#,, 13,14, respectively. X;
is uniformly distributed on [0.2], X, and X3 are random variables with F[X;] = 11t.u.
and F[X3] =1 t.u. X4 is a constant and equals to 17 t.u. The Petri net model contains
four loops.
The time delays associated with these loops, as well as their token contents are:

1) loop: t; patrp — 3t3patapity, loop delay: 30 u.t., token sum: 3, cycle time: 10 u.t.
2) loop: t pataps(orps)t, loop delay: 12 u.t., token sum: 1, cycle time: 12 u.t.

3) loop: tap3t3psta2, loop delay: 2 u.t., token sum: 2, cycle time: 1 u.t.

4) 1oop: t3patap7(0rpy)ts, loop delay: 18 u.t., token sum: 1, cycle time: 18 u.t.

Thus, the minimum cycle time is 18 time units. This means that it takes a minimum of
18 time units to transform a raw workpiece into a final product. Computing the lower-
bound and the upper bound of the cycle time of the event graph from Fig.1. by using
the relations (3) and (4) , we obtain the values: C** 12 u.t.; C* 18 u.t.
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Fig. 1. Stochastic Petri net model for a manufacturing system

5 Transductional Holonic Formalisms

Holonic manufacturing systems (HMS) represent a novel paradigm based on concepts
developed by Arthur Koestler to living organisms and social organizations [1]. The basic
elements of a HMS are called holons, a term coined from the Greek words holos” (the
whole) and “on” (a particle). This combination reflects the fact that a holon may act
both as an autonomous entity (the whole attribute) and as a part of a larger whole (the
particle attribute) As it is shown in [2] at least three separate information processing
levels can be distinguished in a factory entirely based on holonic principles:

1) real-time control, tightly connected with the physical level of manufacturing equip-
ment;

2) production planning and scheduling;

3) supply chain management, integrating the particular plant with its external entities
(suppliers, customers, partners, etc.).

Based on these levels, there are several architectures proposed for holons that combine
both real-time control technologies (like the IEC 61499 standard [12]) and Multi-Agent
Systems (MAS) technologies (for reasoning activities and high-level communication).
Such an architecture is presented in Fig.2. In a holon equipped with both a lower level
real-time component and a higher-level intelligent component, three communication
channels should be considered [3]:

1) intra-holon communication between the function block part and the intelligent
component;

2) inter-holon communication that is aimed at communication between the intelligent
components of multiple holons;

3) a direct communication channel between real-time components of neighboring
holons.
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Fig. 2. Holonic architecture combining both real-time and MAS technologies (from [2])

Our chapter is focused on some aspects of formal modelling and verification of low-
level interaction between holons, taking as a practical example the control and com-
munication mechanism between three production facilities sharing a common resource.
This work is inspired from [4], where the authors introduced a Petri net based approach
for defining robust and reliable communication between the high and low-level sub-
holons within a device holon. In this chapter we developed the formal modelling ex-
ample by means of two kinds of Petri nets: Place/Transition Petri net, and Net Condi-
tion/Event Systems (NCESs), as a more effective modelling method.

5.1 Net Condition/Event Systems

For computer science formal verification provides the correctness of programs by using
mathematical methods and models. Unlike testing via simulation the formal verifica-
tion can explore complete set of systems state space and mathematically prove that no
undesirable or dangerous behaviour occurs [6]. Formal verification is applied to a previ-
ously built model using an appropriate finite-state or hybrid formalism, e.g. finite-state
machines, Petri nets, etc. Petri nets are widely used in formal modelling as a method
for synthesizing and specifying control programs [4]. There are many different kinds of
Petri nets, each one having its advantages and limitations and being more appropriate
for a specific domain or application: Elementary Net systems, Place/Transition systems,
Net Condition/Event systems (NCESs) [6, 7], etc. For our work we have chosen as main
method the Net Condition/Event systems, given the similarities between these systems
and the IEC 61499 standard. The formalism of Net Condition/Event systems was in-
troduced by Rausch and Hanisch [10] as a modular extension of Signal-net systems
(SNSs), informally described in the next section.
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5.2 Signal-Net Systems

This section briefly gives some informal definition of Signal-net systems, according to
[6]. More formal definition may be found in [11]. A Signal-net system is a place/transition
model similar to Petri nets. Basic artifacts of the place/transition models are: places,
which bear tokens; (net) transitions, and arcs connecting places with transitions and
transitions with places, known as token flow arcs. SNS in addition have two types of
arcs: event arcs from transitions to transitions and condition arcs from places to transi-
tions.

Semantics The semantics of Signal-net systems is defined by the firing rules of net
transitions. There are several conditions to be fulfilled to enable a net transition to fire.
First, as in the ordinary Petri nets, an enabled transition has to have a token concession,
i.e. all the flow arcs from its pre-places have to be enabled. A flow arc is enabled when
the token number in its source place is not less than its weight. In addition to the flow
arcs from places, transitions may have incoming condition arcs from places and event
arcs from other transitions. A transition is enabled by condition signals if all source
places of the condition signals are marked by at least one token. With respect to incom-
ing event arcs a transition can have either OR or AND mode (event signal sensitivity
mode). In the OR mode to fire a transition it is necessary that at least one event arc lead
a signal-event whilst in the AND mode all event arcs must lead a signal-event. Several
SNS transitions can fire simultaneously. A set of simultaneously firing net transitions is
called step. A step is formed by first picking up a nonempty subset of enabled sponta-
neous transitions, and then by adding as many as possible enabled transitions which are
forced to fire by event signals produced by the transitions already included in the step.

Discrete timing The concept of discrete timing is applied to the SNS as follows: to
every pre-arc [p, ] of the transition t we attach an interval [/, 4] of natural numbers with
0 <[ < h <. The interval is also referred to as permeability interval. The interpretation
is as follows: every place p bears a clock u(p) which is running if the place is marked
(m(p) > 0), and is switched off otherwise. The clocks run at the same speed measuring
the time the token status of its place has not been changed. If a firing transition # removes
a token from the place p or adds a token to p, the clock of p is turned back to 0. A
(marking-enabled) transition 7 is time-enabled only if for any pre-place p of ¢, the clock
at place p shows a time u(p) such that I(p,t) < u(p) < h(p,t).

5.3 Net Condition/Event Systems NCES

The general idea of Net Condition/Event formalism is to design a system as a set of
modules with a particular dynamic behaviour and their interconnections via signals
[6]. Once designed, the modules can be re-used over and over again. Each module
has inputs and outputs of two types: (1) condition inputs/outputs carrying information
on marking of places in other modules, and (2) event inputs/outputs carrying infor-
mation on firing transitions in other modules. Condition input signals as well as event
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input signals are connected with transitions inside the module. The NCES concept pro-
vides a basis for a compositional approach to build larger models from smaller com-
ponents. The “composition” is performed by connecting the inputs of one module to
the outputs of another module, as shown in Fig. 3. The result of the composition of
two NCES,NandN,,isanNCESN|, obtained as a union of the components. If such a
module has no external inputs then it represents a Signal-net system (SNS). NCES can

composition arc (condition)

Module 1 Module 1

composition arc (event)

4

Module 1+2

Fig. 3. Example of modular composition (from [9])

precisely follow the structure of popular block diagram modelling and implementation
languages, such as state flow of MATLAB/Simulink and the function blocks of the IEC
61499 standard [9].

6 The Working Scenario

As we already have mentioned in the Introduction, our chapter is focused on an example
of defining a formal model for a control and communication mechanism which has to
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assure the exclusive access of three production facilities to a shared resource. The con-
sidered example is built around a Bosch Rexroth conveyor with three flows, presented
in Fig. 4a. Along the conveyor belts three production facilities, called as A, B and C are
considered to be placed, as is illustrated in Fig. 4b. Each production facility is placed

(2]

31 32 X

54 85 36

Fig. 4. a) Bosch Rexroth conveyor with three flows; b) Schematic of the system

alongside a stop gate with two proximity sensors. Considering the case of machine A, it
is placed alongside the stop gate VE4, which have attached the proximity sensors Sg and
S10- A working scenario for the machine A may by as follows: when a pallet arrives, it is
stopped by the gate VE,4 and its presence is detected by the sensor Syg. Now the produc-
tion facility can execute some operations to the components transported on the pallet.
After finishing its work, the production facility A will set free the pallet by opening the
gate. The departure of the sensor is confirmed by the activation of the sensor Sig. Its
activation will cause the gate to go back in the blocked state in order to stop the next ar-
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riving pallet. When a pallet leaves a production facility it enters in a shared route area,
marked in the Fig. 4b with the gray color. The critical route area is considered to be
formed by the routes between each production facility (A, B and C) and the proximity
sensors Sy5 and Sj¢. In order to avoid the collision of the pallets released by production
facilities, their access in the shared area must be controlled such as one pallet enters
at a time. Once this pallet leaves the critical area, another pallet can be released by a
production facility. As a result, a mechanism for communi-cation and control must be
developed, which has to assure the correct access of production facilities to the shared
route area. The next sections will present some formal models for such a mechanism.

7 Transductional Formal Models

7.1 Formal Model Based on Place/Transi-tion Systems

Based on the concepts presented in [4] a model for the communication and control
mechanism was firstly developed, using as formal method a classical form of Petri nets:
Place/Transition systems. This model is depicted in Fig. 5 and the notations for the
PNs are mentioned in Table 1. The control mechanism is consisting of four distributed
software components: three of these are considered to be placed into the production
facilities controllers, and the fourth, having the role of a supervisor, may be located into
a different embedded device.

Fig. 5. Model of the access control mechanism based on P/T systems
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Places/transitio Description
ns
Pas Pss Pro Shared places having the meaning of messages passed from
production facilities A, B and C to the supervisory component.
Through these messages the production facilities may request
access to the shared route.
P3sPes Pii Shared places having the meaning of messages passed from the
supervisory module to the production facilites A, B and C
respectively. Through these messages the machines are granted
with access to the shared route in order to deliver one pallet.
Tataaly Transitions meaning that a new pallet has became ready to be
delivered. As a consequence, the corresponding production facility
has to send a message to the supervisor component in order to get
access to the shared route.

Is.lgaly Transitions through that the supervisor component grants the
route access to a certain production facility.

1y tyato Transitions inside the models of production facilities, signifying
the action of releasing a ready pallet.

Ps After granting the route access to a production facility, the

supervisor component will wait in this state for the shared route to
become free. This will happen when the pallet occupying the route
will pass one of the proximity sensors S;s and S4.

1y Transition meaning that the shared route has become free.

Table 1. The notations for the PNs depicted in Fig. 5

7.2 Formal Model Based on NCES

A more effective and intuitive way for modelling the above presented mechanism is
to use the NCES models. The condition and event signals, available in NCES allow a
more clear specification of the messages passed between modules. Also, the modularity
of NCES improves the models development process due to the possibility of reusing
previously defined models. In Fig.6 is depicted the NCES version of the communication
and control mechanism.

The components implied in the control mechanism are modelled as modules, called
as AccessCtrl A, AccessCtrl B, AccessCtrl C and Access Supervisor. The first three
modules, considered to be located in the production facilities controllers, are identical.
Using the NCES tools one can build a single model of this type, save it into a library and
then use its instance as often as is needed. The modules have interfaces for signal inputs
and outputs, which allow them to be connected with each other. Also, these signals
enhance the clarity in modelling of modules behaviour. For example, considering the
case of AccessCtrl A module, the condition input CmpFin has the role to inform the
module whether there is or there is not a pallet waiting to be released (i.e. to inform the
module if the production facility A has finished its operation to the current pallet). This
signal serves as incoming condition for the transition #1. In other words the transition
t; can be enabled only if there is a token load in the place p; (the modelled software
component is not busy) and the CmpFin signal is true. In this case the transition fires (it
is a spontaneous transition) and the token pass form place p; to place p,. As a result,
the condition output AccessRQ will become true, informing the supervisory module that
the production facility A needs access to the shared route.
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The AccessRQ output of the AccessCtrl A module serves as incoming condition for the
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CmmeE Access_1
Access_3
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Fig. 6. Formal model of the control mechanism based on NCES

transition 75 inside the Access Supervisor module. That means that the transition #5 may
become enabled only if the place p; contains a token (the software component is not
busy) and the AccessRQ signal is true. Firing of the transition #5 leads to the generation
of the event Access_I, and the token from the place p; will pass to the place p,. The
event Access_I serves as incoming event for the transition #, of the module AccessCtrl
A and may be interpreted as a message through which the supervisory module grants
the route access to the production facility A. The event forces the firing of transition #,,
which may be seen as an action through that the production facility A release the waiting
pallet. After the firing of transition #, the condition output AccessRQ becomes false (the
token is no longer in p,) and the module enters in a waiting state for a new pallet to
be ready (now the token is in the place p; ). The conflict generated by the simultaneous
activation of more than one transition from the set {rs,#,#7} is assumed to be solved
by an internal algorithm of the supervisory module. Finally, the place p, represents the
state where the supervisory module waits for the shared route to become free. Outgoing
from this state is possible by firing of transitions #4 or #7, i.e. through the activation of
one of the proximity sensors S;5 and Syg.
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7.3 The Autonomous NCES Model

In order to analyze an NCES module it has to be an autonomous one, i.e. to have no
external inputs. Such a module represents a Signal-net system. It may be seen that the
model depicted in Fig. 6 is not autonomous because it has five not assigned inputs,
subject of external signals. Therefore we added to our model four modules (Sim_A,
Sim_B, Sim_C and CnvModel), such as the resulted model do not need any external
signal (see Fig. 7). The modules of type Sim_X simulate in a simple manner the activity
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Fig. 7. The autonomous model of the control mechanism

of the production facilities A, B and C, considering the processing time corresponding
to each machine being 5, 4 and 3 time units respectively. A pair of modules Sim_X and
AccesCtrl X are grouped and encapsulated in a new module having the type Machine X.
The module CnvMode is designed to model the conveyor behaviour since a production
facility releases a pallet until it leaves the shared route (moment signalized through the
activation of one of the condition output Sjsand S¢). The time for transporting a pallet
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from any production facility to the proximity sensors Sj5 orS;¢ is considered to be 4
time units.

8 Conclusion

This work establishes a necessary relation between diagnosis and performances of
holonic distributed systems, such as discrete event manufacturing systems. We have
proposed a new architecture for the diagnosis and performance evaluation of holonic
distributed systems using Petri nets formalisms and their properties [19, 20]. The pro-
posed approach can be applied to the modelling and analysis of manufacturing systems,
supply chains, job scheduling in a chain management system, such as flexible man-
ufacturing systems, etc. The novelty of the approach is that the construction of large
Petri nets is not required. Formal methods are widely used in modelling of distributed
and concurrent systems in order to assure the correct system behaviour by means of
formal verification techniques. This chapter has exemplified the use of Petri net based
formal methods for modelling the low-level interaction between holons (in our example
represented by the production facilities and their associated intelligence). It was shown
that NCESs represent an appropriate modelling solution for this problem due to their
particular characteristics: modularity and synchronization of transitions by means of
signals. An important result in this chapter is that it is always possible to reach a mean
cycle time as close as possible to the greatest mean firing time using a finite marking,
assuming that a transition cannot be fired by more than one token at each time. This
result holds for any distribution of the transition firing time. An algorithm for verifying
the distributed systems performance was introduced. An approach for computing the
upper and lower bounds of the performance of a conservative general system is men-
tioned. However, the bounds produced may be loose. Further research will focus on the
conditions under which a mean cycle time can be reached with a finite marking.
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