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Abstract. National Metrology Institutes such as the National Physical Labora-
tory provide the scientific and technical framework to ensure measuntsnare
traceability to standard units or references. Many of the proceduresoped

for ensuring traceability involve measurements in laboratory conditionsrety
environmental factors such as temperature are closely controlled)samgl in-
struments whose responses are well-characterised by validated nttolets/er,
many societal challenges relating climate and environment, energy atairsu
ability, health and well-being necessarily involve measurements outsidextabo
tory conditions. In such circumstances, the mathematical and statistidalling
tools need to be strengthened so that concepts of traceability, uncertahty e
ation and calibration can also be applied outside the laboratory. In partiagar
need to develop tools that account for uncertainties associated with thelsmod
of the system, for we can no longer be certain that we understand alitaspf

the response of a potentially complex system. One such challenge is the mea
surement of air quality. Air quality has a significant impact on quality of lifd a
many regulations now apply to controlling pollution. In order to ensure demp
ance to regulations, it is necessary to monitor air quality. However, measnt

of air quality can only be made at a finite number of sites while the regulations
apply to the complete air quality field. In this paper, we consider appredonhe
accounting for model uncertainty and the use of Gaussian processesl& the
temporal and spatial and correlation in order to estimate the air quality fidld an
its associated uncertainty.
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1 Introduction

A primary role of a National Metrology Institute is to ensufeat measured data is
traceable to standard units. One aspect of establishingabdlity is valid uncertainty
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evaluation. Standard methodologies such as The Guide t&xpeession of Uncer-
tainty in Measurement (the GUM [2]) were developed to prevadprobabilistic basis
for a coherent and consistent approach to evaluating wiogrtnow adopted world-
wide.The current metrology paradigm of standards, cdlifimeand traceability, how-
ever, is designed for the measurement of a single quantitgss single, dedicated
measuring instrument or system, e.g., measuring the lexfgth artefact using a laser
interferometer. Many societal challenges relating cleretd environment, energy and
sustainability, health and well-being necessarily ineaweasurements outside labora-
tory conditions. In such circumstances, the mathematiwdiktatistical modelling tools
need to be strengthened so that concepts of traceabilitgriainty evaluation and cal-
ibration can also be applied outside the laboratory.

For example, much of environmental monitoring involveswweks of sensors mea-
suring a number of different quantities at several locatiamd at different times. Whether
the characteristic being measured is an air pollutant J@austic noise (associated
with an airport, for example), or sea water salinity, eteeasurements at particular spa-
tial and time locations are used to make inferences at otig@ridual spatial and time
locations or are aggregated to make inferences over a regitime period. The qual-
ity of the inferences made will depend on how well the netwisrdesigned and how
the sensor information is used. Currently, the impact o§senetwork data is severely
limited by the lack of a methodology for calibration, trab@igy and uncertainty eval-
uation applicable to sensor networks. The measurement coitymeeds to develop a
much more comprehensive approach to uncertainty quatitfican which uncertainty
contributions associated with models and computation lacetaken into account.

In section 2, we provide an overview of the concepts of traleeaneasurement
and measurement uncertainty while in section 3 we descolerhodel selection and
model averaging can be used to take account uncertainsesiated with models. In
section 4, we consider uncertainty evaluation associaiéd models having spatio-
temporal correlation and consider opportunities to catidisensor networks using the
spatio-temporal correlation. Our concluding remarks arergin section 5.

2 Traceable measurement

Metrology is the science of measurement. Its central airo ensure that stated mea-
sured values have an unambiguous interpretation. Thishieaed by defining stan-
dard units and providing procedures that enable a quangitygbmeasured, e.g., the
mass of an artefact, to be compared with the appropriat@atdrunit in a traceable
way. “Metrological traceability” is defined in the Interiatal Vocabulary of Metrology
(VIM [3]) as “the property of a measurement result whereby tsult can be related
to a reference through a documented unbroken chain of atiblis, each contributing
to the measurement uncertainty”. In the same document, surement uncertainty”
is defined as a “non-negative parameter characterizing igpeision of the quantity
values being attributed to a measurand, based on the infiormgsed”. This definition
allows considerable scope for interpretation. Since th#igation of the Guide to the
Expression of Uncertainty in Measurement (GUM [2]) in thalrh®90’s, measurement
uncertainty is defined in terms of probability distributsoiThe result of a measurement
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is a probability distributionp(a) associated with the quantity being measufedhe
measurand.

The best estimate of the measurand is taken to be the meam fdhability distri-
bution and the standard uncertainty associated with thesunaad (or sometimes said
to be associated with the estimate of the measurand) is takerits standard deviation,
assuming that both the mean and standard deviation exist @fere is an assumption
that the probability distribution associated with the measd is a Gaussian or at least
is approximated well by a Gaussian. The assigned probabifitribution allows infer-
ences about the ‘true valua® of the quantity to be made, e.g., the probability of that
the true value lies in the intervfl U] is estimated by

PrlL<a"<U) = /LU p(a)da.

The probability distribution is referred to as a ‘state obwhedge’ distribution.
It is usually derived in a deterministic way from dataand hypothesized model and
assumptions which we denote collectively &&. If required, we denote the state of
knowledge distribution ap(aly, .##) to reflect the dependence on data and assumptions.

2.1 Traceability chain

A traceability chain is perhaps most easily described im$sof a sequence of Bayesian
updates. We associate to the standard agpithe Diracd distribution at 1, since by
definition the unit has no uncertainty. We perform a comparisf artefactd; with the
standard unit gathering measurement gataith likelihood p(y1|ai,a0), €.9.,

y~ N(as — ag|01).

Assigning a (usually noninformative) prigi(a;) for a;, we determine the posterior
distribution

p(ar,a0ly1) O p(y1las, a0) p(as) p(ao),

which is marginalised to determingas|y1). At the kth stage we record dagg with
associated likelihoog(yy|, ax, ak—_1), leading to joint posterior distribution

P(ay, ax—1|Yi, Yk-1) O P(yk|ak, a-—1) P(ak) pP(ak-1|yk-1),

and associated marginalised distribution

p(ak, [yk) = A) Pk, ak—1Yk, Yk—1)dak_1.

The chain is traceable if the likelihogalyk|ax, ax—1) is assigned appropriately at each
stage. If the likelihood is of the form

yila a1~ N(a —ax_1,07), k=1,...,n,

corresponding to a simple comparison of artefacts subje@aussian noise, then the
posterior distributiorp(an|yn) is the multivariate Gaussian distribution&\V) where
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asolves the linear set of equatio@ia = z, involving the bi-diagonal observation matrix
C and data vectaz with

o wi(a0+y1)
W W 1(80+ Y1
Wa W W2Y2
C= 33 , Z= . , Wk = 1lok.
WnYn

—Wn Whp
The variance matri¥ associated the estimades given by
vV=(C'c)?

If o, = o, then the uncertainty associated with #ik artefact isk'/2¢g and the cor-
relation coefficient associated with artefaktand j > k is cxj = (k/j)¥/2. Thus, the
best estimates of pairs of quantities that have a commofaettia their traceability
chains will be statistically correlated. In practice, baditions further down the trace-
ability chain are less accurate than those higher up so teagth of the correlations
will be much less than for the casg = 0.

In the case of mass measurement, the standard unit of massgrierly) defined
by a physical artefact, known as the International Pro®tgiiogram (IKP), kept at the
Bureau International des Poid et Mesures (BIBM) in Sevrear Raris. The BIPM has
a number of copies of the IPK made of the same material, a 9%-aloy of platinum
and iridium, and over 30 countries have national copies. JKehas copy no. 18. In
theory and, to a large extent, in practice, all mass measmenn the UK are traceable
to the calibration of copy no. 18 against the IKP, and theeefpractically all estimates
of mass in the UK are statistically correlated.

2.2 Inter-laboratory comparisons (ILCs)

Traceability depends on the reliable assignment of unicgiga associated with the var-
ious comparisons that underpin the traceability chain s€hencertainties are assigned
on the basis of best practice such as that defined in the GUMhan@ssociated with
the scientific domain. However, there is no guarantee thsitoist practice are based
on models that provide an exact characterisation of theighlysystems involved. The
inter-laboratory comparison is an important tool in dent@atgg the validity of the
methodologies. Typically, such an inter-comparison imgelthe measurement of one
or more artefacts by a number of laboratories and the reanéysed to determine if
the spread of estimates is consistent with the stated wictes.

3 Model selection and model averaging

In many data-fitting and modelling problems, we often faeedallenge to find the best
model to best-fit a given data set [5, 20]. This choice is carap#d by the fact there may
be different and competing models. Loosely speaking, mseleiction is a process of
choosing one appropriate model among many possible modgls#5, ..., .#x, with
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the aim of balancing goodness-of-fit with minimising conxitie of the model. For
example,.# could represent the space of polynomials of degree at kasid, in
general, we would want to choose the polynomial of minimarde that fits the data
reasonably well.

3.1 Model selection according to information criteria

We consider a standard model in which data is generateddingdo the model
y=@(x,a)+€, £eN(0,0?),

where the functiop(x,a), depending on parameteas= (ay, ..., a,)", models the re-
sponse of a system. For Gaussian noise, the least squaneatestof the parameters

aminimises .

F(a) = Z\(yi —0(xi,2))%,

and corresponds to the maximum likelihood estimate, i.aximises

p(yla) O exp{—gg}-

Let RSS=F(a).

Suppose there are in fa€¢tcompeting models defined by functiopgx, ax ) involv-
ing parameter vectowm of lengthny. For a given data s€t(x;,y;) }{";, for each model
space we can calculate the least squares best estinatehe model parameters and
RS& = F(&), the residual sum of squares at the least squares estintaéssue is to
select the model that provides an adequate fit to the datagasured by RSS, while at
the same time is not overly complex, as measuredibthe number of parameters, for
the number of observatioms.

There are a number of criteria that are commonly used for Bas example, root
mean square residual RMS given by

| R
RMSc= mfikk’

is often used. Here, we use a related indégg RMS which we write as

mlogRMS= mIog(RSL*“k/m)erlog(mmn > 1)
— N
Other criteria used are the Akaike information criteriof far this case given by
AIC = mlog(RS&/m) + 2y,
often with a correction for small number of degrees of freed6],

m
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or the Bayes Information Criterion [27].
BIC = mIn(RS&/m) + ngInm.

Written in this way, all the criteria above have the same tepnesenting the good-
ness of fit but different terms penalising the complexity e tmodel. The model se-
lected is the one that minimises the criterion value.

3.2 Bayesian Model Averaging

For a given set of dafa, the data can arise from one of many possible mad#ls #5, ..., #x .
Loosely speaking, model averaging is the process of estigjabme quantitya of in-
terest under each mode#;, and subsequently averaging the estimates according to how
likely each model is [15, 25]. The Bayesian approach is tadryalculate the posterior
probability P(.#;|D) for each model, and them = P(.#|D) is used as the weights
in the model averaging. The aim of the model selection is kecs¢he model with the
maximumP(.#;|D).

For Bayesian model averaging , the posterior distributioais

K
PaD) = 3 P(al. 4, D)P(4D), (2)

where the posterior probability of modef; is given by

o PDLA)P(A)
P(.4|D) 5K, P(D|.#))P(4)}) ?

3.3 Application to inter-laboratory comparisons

As discussed in section 2.2, the inter-laboratory comparis a major tool in validating
the methodologies used to derive measurement results airdaisociated uncertain-
ties. In addition to this validation role, the ILC can be ugsate diagnostically to deter-
mine systematic laboratory effects similar to that perfednn an analysis of variance
[6, 13, 17] or to determine a consensus or reference value doiantity on the basis of
a number of different experiments [7]. In any of these appions, it is necessary (or at
least extremely advisable) to assess the self-consistdraata (values and associated
uncertainties) input into the ILC.
Consider the standard model (after weights have been djpplie

vilae N(a, 1), i=1,...,n 4)

Sety=(1/n) 3", vi. If the prior distribution fora is noninformativep(a) 0 1, then
the posterior distribution faa is such that

aly ~ N(y, 1/n). (5)
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We note thay/ is the least squares estimaef’a. The model (4) also predicts that

the residual sum of squares
n

F= _;(Yi —8)?

associated with the least squares fit is drawn fipf distribution withv = n— 1 degrees
of freedom. So, for example [7], if Px2 > F) > 0.05, then the input data is judged to
be consistent with the model and that it safe to make infe®about on the basis of
the posterior distribution (5). In particular the best mstie or reference value faris
4=y, and the associated uncertaintyig) = n-/2,

If the x? test fails, then what is to be done? There are many papersdahsider ap-
proaches to adjusting the input uncertainties in orderitmlabout consistency. There a
number of one parameter adjustment models [8, 30, 31]. Sggpe N(ae, Vo), where
e=(1,...,1)T. The idea is to replace, with a variance matri¥/ (1) depending on a
single parameter. For the modey ~ N(ae,V (1)), the least squares estimated is given
by

. e'v(r)~ly
A1) = erVv(r)-le’

the observeg? value is given by
F(1) = (y—&(1)e) V(1) "y —&(1)e).

The adjustment is made by choosingo thatF(7) =n—1, i.e., is chosen so that
the observeg? value is the same its expected value. The simplest appredotscale
all the input uncertainties byl + 1), i.e.,V(1) = (1+ T)Vp. This approach is some-
times referred to in the metrology field as the Birge adjustinm@rocedure [4] after
Birge who used it in the analysis of data associated with tinddmental constants. A
second approach used in metrology is to\sét) = Vp + 71, sometimes referred to as
the Mandel-Paule method [24]. Bayesian approaches havdaén considered [8, 18,
21,22,28,29].

The approach described by Cox in [9] to the analysis of incsteist ILC data is
akin to a model selection approach. If the complete set i dainconsistent then
participants are removed from the exercise until a consisigbset is determined. The
algorithmic approach efficiently determines a subset ofgidaicipants which is self-
consistent according to the? criterion and no other subset with the same or greater
number of participants has a smaller obserygdvalue. (Exceptionally, this subset
might not be unique.) Each subset of the participants cahdigght of defining a model
in which the uncertainties provided by the selected pgaicis is regarded as reliable
and those associated with the excluded participants ar& netargest consistent subset
(LCS) defines the selected model.

Here we describe a model averaging approach to the analysisamsistent ILC
data; see also [11]. We assume that there is a prior posgithiit one or more partici-
pants have underestimated their uncertainty by a factbwreét say, and that the fraction
of such participants follows a binomial distribution defingy parameter & A < 1.
The hyper-parametek is assigned a prior Beta distributi@d(a, 3). Thus, the prior
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expected value of is a/(a + ) and prior variance associated withis

apB
(a+B)2(a+B+1)

We assume a prior that all participants have the same pHitipadfisupplying un-
reliable uncertainty estimates. Lefy be the model in which all reported uncertainties
are reliable,#; than in which participantonly has an unreliable uncertainty estimate,
j, where participantsand j are unreliable, etc., leading t8§ thodels in all, labelled
by an indexg, say.

The assignment of a prior foassigns a joint prior distributiop(g,A) = p(g|A)p(A ).
The likelihoodp(y|a,g,A) is easy to calculate, so that

p(a,g,Aly) O p(yla,g,A)p(qlA)p(A)p(a).

The posterior distributions are given by marginalisateu,,

2n 1
plaly) = 3 { [ plyia.q 0 pa pih ptaieh |

and
pay) = [ [ pyia.a 1) plaiA)p(d)pe)crca

We illustrate the behaviour of these approaches on thresalaieu data setgy,
k=1,2,3. Figure 1 shows simulated datainvolving 10 participants. The uncertainty
bars represent two standard deviations. The result from participant 6 seeutlying
and is deemed so according to fretest. The largest consisted subset [9] is determined
by the remaining nine participants. Figure 4 shows the piastdistributionsp(aly)
for various adjustment procedures: ‘mixture’ denotes tloeleh averaging approach,
‘input’ denotes the case where all input uncertainty eséimare regarded as reliable,
‘Birge’ the Birge adjustment procedure and ‘LCS(9)’ thetdisition associated with
the largest consistent subset. Figure 7 shows the prior asteqior distributions foa
determined using the model averaging approach.

Table 1 shows the posterior probabilitiegg|ys1) for the most likely models in-
dexed byg. All other models are associated with the probabilities libgn 0.01. The
model best supported by the data by far is the model in whicticgzant 6 alone is
regarded as unreliable. This accounts for the moderatelg ggreement between the
model averaging approach and the LCS approach. Table 2 shewsior and posterior
probabilities ofk participants being considered unreliable.

Figure 2 shows a second set of simulated giatavolving 10 participants. The data
is similar to that in figure 1, only that both participants @ld) seem potentially outly-
ing. The largest consistent subset is judged to have niniipants with participant 6
excluded as before. The obserygdvalue is 15.0 compared with a test value of 16.9. If
participant 10 is excluded instead, the correspongfhgalue is 18.9. From this point of
view there is a case for participant 6 or 10 or both particip&and 10 being excluded.
Figure 5 shows the posterior distributiop&]|y2) for various adjustment procedures as
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data
[

-3F

iy l‘l}

0 2 4 6 8 10 12
participant index/1

Fig. 1. Simulated datgy; involving 10 ILC participants. The result from participant 6 seems
outlying.

il ’1‘1

_6 1 1 1
0 2 4 6 8 10 12

participant index/1

Fig. 2. Simulated datg, involving 10 ILC participants. The result from participant 6 and 10 are
potentially outlying.
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-6 . . . . .
0 2 4 6 8 10 12

participant index/1

Fig. 3. Simulated datgs involving 10 ILC participants. The result from participants 10 and 6 are
potentially outlying.

14
mixture
| . coocinput
1.2 P - = =Birge
N == LCS(9)
1r i
0.81 1
©
o
0.61 1
0.4r 1
0.2r 1
0 L i
-3 -2 2 3

Fig. 4. Posterior distributionp(aly1) for a according to different adjustment procedures deter-
mined from the data in figure 1. The label ‘mixture’ denotes the modelagueg approach,
‘input’ denotes the case where all input uncertainty estimates are ezfjasdeliable, ‘Birge’ the
Birge adjustment procedure and ‘LCS(9)’ the distribution associatedtthttargest consistent
subset.
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Fig. 5. Posterior distributionp(aly) for a as in figure 4 but for data in figure 2.

14 w
mixture
| v input
12 HEAY - = = Birge
B = = LCS(9)
1r J
0.8r ]
©
[
0.6 ]
0.4r 1
0.21 1
O . %
-3 -2 2 3

Fig. 6. Posterior distributiong(alys) for a as in figure 4 but for data in figure 3.
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9 T T T T T T T

1 — p(Aly)
8 —\‘ == =p(A) ||
7t .

Fig. 7. Posterior and prior distributions fdr for a determined from the data in figure 1 .

in figure 4 but for the datg,. The LCS approach in this case is significantly differ-
ent from the model averaging approach. The LCS posteritrilalision is constructed
on the basis the selected model, participant 6 is unreliglkertain, while the model
averaging approach takes into account other possibilifigisle 1 shows the posterior
probabilitiesp(q|yz) for the most likely models indexed lyfor datays,. It is seen that
the three models most supported by the data are those thtd tel6, 10, or both being
assessed as unreliable. Table 2 shows the posterior plitibaluf k participants being
considered unreliable for this dataset.

Figure 3 shows simulated dayg similar to datay» in that both participants 6 and
10 seem potentially outlying but in this case the largestsistent subset is judged
to have nine participants with participant 10 excluded.uFég6 shows the posterior
distributionsp(alys) for various adjustment procedures as in figure 4 but for theyda
Again, the LCS approach is significantly different from thedwrl averaging approach.
Comparing figures 5 and 6, we see that the LCS approach geédaisignificantly
different distributions for the two data sets andys, although the two data sets are
similar. This is because of the discrete nature of the maaetton process. The model
averaging approach gives a smooth response to the chantfes data sets. Table 1
shows the posterior probabilitiggqg|ys) for the most likely models indexed hyfor
datay,. The results are similar to those for dgtabut with the roles of participants 6
and 10 interchanged. Table 2 shows the posterior prokabilif k participants being
considered unreliable for this dataset.
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Table 1. Posterior percentage probabilities associated with the most likely modelsnitetd

89

from the datayy, k=1,2,3, in figures 1-3. A ‘1’ in a column indicates the corresponding partic-
ipant’s uncertainty statement is considered unreliable.

p(k) p(kly1) p(kly2) p(klys)

k
0
1
2
3
4
6

7

39
39
17
5
1
0
0

3 4 3
54 28 27
31 42 43
10 21 21

2 5 5
0 1 0
0 0 0

Table 2. Percentage probabilities of observikgparticipants judged to be unreliable. The sec-

ond column is the prior assignment, the remaining three columns give gterjpo assignments
determined from the data, y» andys, in figures 1-3, respectively.
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4 Sensor networks and Gaussian processes

Model selection and model averaging go some way to accaufainthe fact that the
model of the underlying physical system may be only paytikiown. However, both
still rely on defining a set of models to select from or to ageraver. If the selected set
of models, e.g., polynomials, splines, etc., does not matdhthe actual behaviour of
the physical system, then inferences based on the selesitefimodels could well be
unreliable. Often, some of the aspects of the model are welérstood and captured
in a physical model but that there other systematic effé@sdre present that are not
well understood but are expected to vary smoothly, i.e.rékponse is correlated with
the stimulus variables [19, 12]. Often the response is taigé over space and/or over
time. The idea of a Gaussian process model is to model thelatian behaviour in
a flexible way and to let the measurement data define the dotualof the response.
Often, the data is gathered by a network of sensors disttbspatially or temporally.

Sensor networks represent a new measurement paradigm ppiticaions across
environmental monitoring, earth observation, structdmahlth monitoring, etc. The
paradigm involves multiple sensors, acting collabor#givlerough wireless communi-
cations and internet services, to provide raw data thatrigaxted to information-based
products, e.g., a map of air quality in a region. To convegsthinformation products
into metrology products, it is necessary to provide an aatse calibration, traceabil-
ity and uncertainty framework. Gaussian processes pressmddelling approach that
can address this requirement. We first give a summary of tsie baproach, sometimes
known as universal Kriging.

4.1 Universal Kriging

Universal Kriging can be developed in a classical estinmatioBayesian framework;
see e.g., [10, 26]. Suppose
la ~N ( a,V) ,

V— [VlleTl] —LT, L= {Lll ]’

C
D

n
{
with

V21 Voo Lo1 L2

so thatly; = V21L51T . We also write this model as
nja =Ca+Li1e1, {|a=Da+Lzie1+Lxer €1,62~N(O,I).

In an example applicatiom represents the response of the system at a set of loca-
tions that depends on model parametetsut also on systematic effeats. Similarly ¢
represents the response at a different set of locationslémends owr, €1 andes. The
common dependence @n characterises the spatial correlation between the twa$ets
locations. Suppose observationsf n are made. What can be said abauand{ on
the basis on the information supplied Yy
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The best estimat@of a is given the solution of the Gauss-Markov problem, namely

a=(C'vzlc) ‘cvyly, Va=(CTvglc) ™.

In addition, the best estimate of is e = Ll’ll(y —Ca) and the best estimate e} is
e = 0. Therefore, the best estimat®f { is z= Da+ Ly;e. From a Bayesian point of
view, assuming noninformative priors far, etc.,

{ly ~N(z,Vy),
where termz andV, can be evaluated as
_ -1 _ —I\/T T
Z= V21Vll y+Ea, V=V —V21V11 V21—|— EVLE'.

with
E=D-VaV;'C.

The Cholesky factor [14] o0¥11 = L11LL can be used to evaluate these expressions.
For spatial applications, for example, the observed resgoiat one set of locations
allows us to estimate the responses at other locations.

4.2 Spatio-temporal correlation models

The principle of the Gaussian process approach used henatithe readings from a
group of sensors reflect a signal that is correlated spatiginporally or both. The
general formulation is as follows. Lgt= (y; ...,ym)" be a set of measured values. As-
sociated to each measured vajuyare spatio-temporal coordinates, tj) representing
the spatial location; of the sensor that produced the measured value and thé, tinee
measurement was taken. We model the system that gave risesdata ag=Ca+e
wherea are parameters specifying the systematic behaviour aicgptol a known and
validated model an@ represents random effects which we assume are drawn from
a multivariate Gaussian distributioac N(0,Vg) with mean zero anth x mvariance
matrixVg that encodes the spatio-temporal correlation. The cdioalaehaviour is de-
termined by the second set of parameter&nown as hyper-parameters that, together
with the spatio-temporal coordinatés, tj), determine the variance mati .

We give an example of how we can characterise this correlagating to two
spatial dimensions and one temporal dimension. For any ta@sorementg andy;,
the covarianc&q (i, j), 0 = (0,00,A,T)T, associated with the corresponding random
effectsg ande; is given by

Vo (i, j) = KXi, X, ti, 4 A, T) = a2k (xi, % [A)K (L, §]T), i #], (6)

andV(0)(i,i) = 0%+ g3. Here,

K(x,X'|A) = exp{z)\lz(xx’)T(xx’)} (7)
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is a kernel that encodes the spatial correlation and degemeddength scale parameter
A, and, similarly,

k(t,t'|T) = exp{—ziz(t —t’)z} (8)

encodes the temporal correlation and depends on a time paaeeterr. The term
o2 gives the variance of the correlated effects argdthe variance associated with
repeatability, i.e., random effects that occur over veyrsbpatial and temporal scales.
These effects could be associated with either the sigraimtasuring sensor or both.

It is also possible to use kernels that encode more complesvieur. For example,
correlation involving diurnal or other periodical cyclesncbe encoded in a kernel of
the form

Slt-tE -t

k(t,t'|11, T2) = expd ——
(t.t]n, o2) p{ 212 213

where[t —t']; is the time difference modulo a cycle afid-t']; is time difference in
terms of number of cycles.

4.3 The Kalman filter

The Kalman filter can be seen as an example of a Gaussian propesating over the
temporal domain. We consider here the simplest examplergesidy

ala1 ~ N(a_1,08), Ylac~N(0,0%), p(ag) 1. (9)

The first relationship shows how the quant#yis predicted with uncertaintgp on

the basis on knowingk_1. The second relationship defines the likelihood associated
with a measurement @l. The posterior distribution foa = (ay, ... ,an)T depends on
the measurement information and the predictive capabHistimates of the system
parameters are determined by solving the linear least sgsgstenta ~ z with

[w —w
v [0]
W —WwW Y1
\Y 0
C= , Z=V Y2 ,
W —W
Y 0
W —W | Yn |
. V_

with w=1/0p andv = 1/0u. The QR factor [14] of C can be determined sequentially
with thekth update step having the form

f2 0 11 f12
W —w H[ i ]

r
0 v 22
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This Kalman filter converges in the sense that eventuallipthiom 2x 2 upper triangle
is unchanged. The requirement that

sisiz 0 11812 0
882\,\2,_\2 = | Osiisiz |,
00 v 0 0%

leads to the relations

SS12= W, (S11+s12)2 =V, =8 W,

from which we derive
1/2
_ i 2+Oj+$ 4+0£ 1/2 /
U= T o2, o4  Om o ’

2
1 03 ( a,%)l/
SiI2=—_—""—>%, 2= - .
s Gl\zll %l 2

and

The upper triangular factdr of the observation matrix is a bi-diagonal matrix
whose diagonal elementg, converge tos;; and above diagonal elements converge
to s12 andry, converges ta, asn increases. If the filter has converged then, at the
kth stage, the uncertainty associated with the estimaég isf 1/s;1. However, subse-
quent steps will help to improve this estimate since the oressent at thék + 1)th
and subsequent steps provide additional information adgout

The variance matrix associated the fitted parameters is diyé R'R)~* and the
uncertainty associated with theh parameter is given by thiggk|| wheregy is such
thatR" gy = g whereg is thekth column of then x n identity matrix. If the filter has
converged, thegy solves

S12 $11
S12 S11
S12 S11 Ok =

S12 S11
S12 S11

We havegy(j) = 0 if j <k, gu(k) = 1/s11, gk(k+ 1) = —s12/%;, G(k+2) = ST,/s3;,
etc., so that the elements@fform a geometric series. From this fact, we know that the
norm ofgy is such that

Pla) = lad? = 5 (10)

ETRE
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Thus, the asymptotic behaviour of the filter can be detercharalytically in terms of
op anday. If gp is sufficiently smaller thatiy so thatoé/a,(‘,, ~ 0, then the uncertainty
u(ax) associated with thkth parameter is such that

OpO}
u?(ay) ~ PZM_

For op > 0w, u(ax) =~ o, as would be expected. The term

2
Om

T W@(a)

with u(ax) given by (10) represents how many independent repeatedunesasnts
would be required to determine the same uncertainty agsdoidgthay as that achieved
by exploiting the predicative capability in the filter.

Figure 8 shows the uncertaintyay) as a function ok for the caseoy = 1 and (a)
op = 0.2, top, and (bp = 0.1, bottom. Forop = 0.2, corresponding to weaker predic-
tive capability, the asymptotic value of the uncertainggy) is larger but is attained in
few time steps. Figure 9 shows the asymptotic valug af) given by (10) as a function
of op.

The analysis for this simple Kalman filter model shows themeixto which correla-
tion over time or the spatial domain can be used to improveitizertainties associated
with the fitted parameter estimates.

Neff (11)

0-5 T T T T T

0.45} |
S 04 |
35

0.35} |

0 10 20 30 40 50 60
k

0.4 : : : : :

0.35} |
S 03f 1
=

0.25} 1

0-2 L L L L L

0 10 20 30 40 50 60
k

Fig. 8. Uncertaintyu(ayk) as a function ok associated with the simple Kalman filter (9) for the
casegy = 1 and (a)op = 0.2, top, and (bpp = 0.1, bottom.
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10_ ! !
10 10 10 10

%

Fig. 9. Asymptotic value ofi(ax) given by (10) as a function afp for the casegy = 1.

4.4 Estimating the hyper parameters

In general, the hyperparameters associated with the sigatiporal correlation have to
be estimated from the data and we use a Bayesian formulatidefine this compu-

tational approach. We assume that some prior informatiautathhe hyperparameters

o is available and encoded in a dengityo). Given the observed data the posterior
joint distributionp(a, oly) for aando is such that

p(a,aly) U p(yla,o)p(a)p(o)
involving the likelihoodp(y|a, o) and the priors. The fact that the likelihood is Gaussian

and that the model parameters occur linearly in the modehmtwat the maginalised
posterior distributiorp(oly) for o, given by

p(aly) = [ pla.oly)da,
can be evaluated analytically.df= ag is the least squares solution that minimises
(y—Ca)'Vg'(y —Ca),

then the marginalised distributigi{oy) is such that

P(oly) 0 p(@)Val 2CTVgCl V2exp{ - 5F(0) .
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whereF (o) is the residual sum of squares

F(0) = (y—Cag)Vg'(y—Cao). (12)
Theo that maximisep(a|y) can be found be minimising log p(oly) or equivalently,
minimising

E(oly) = = (F(0) +log|Vg| +log|C"Vg'C|) —logp(0). (13)

NI =

4.5 Analysis of air quality data

We have applied a spatio-temporal Gaussian process mo&ld&ined by (6-8) to
air quality data extracted from the London Air Quality Netw@LAQN) [23] over an
eight week period starting on 28th February 2011. The resafiorted here relate to
the measurement of NQgathered from five sites in central london within an area of
approximately 5 km radius. The measurements were takemyh&stimates of the four
hyperparameters were determined by minimidi{@|y) in (13) and the fitted values
wereo =151 pugm-3, gp = 4.5 ug m—3, A = 6.5 km, andr = 2.5 hr. The value of the
length scale parameter suggests that there is significatinbporrelation in the data.
Figure 10 shows the Gaussian process model fitted to the daaneek 1; the spatial
correlation is reflected in the similarity in the data seriEse figure also shows the
two standard deviations uncertainty band associated hétfitted model.

The spatial correlation enables predictions to be made fesing data. Figure 11
shows on the top the GP model fitted to a complete set of 7 daysdite (top) and the
predicted results on the basis of the first three days andethédts from neighbouring
sites for all seven days (middle). It is seen that the predidor the last four days is
almost the same as model fit to all the data (top).

The spatial correlation also enables the inter-calibradiicsensors. We can simulate
an experiment in which, after a number of days, a calibratedar is replaced by an
uncalibrated sensor with an unknown offsgtto be determined as part of the model
fitting process. The bottom graph in figure 11 shows the fittBd@del for one urban
background site for days 5 to 7 on basis of days 1 to 3 and datadays 5 to 7 subject
to an unknown calibration offset compared to the actual omeglsdata. The actual
offset applied to the data for days 5 to 7 wasi&Pm 2 with an associated uncertainty
of 1.0 ug m—3, demonstrating that an accurate cross-calibration isifpless

5 Summary and concluding remarks

The impact of metrology in addressing societal challenggsedds on being able to
develop appropriate concepts of traceability, unceryaamtd calibration for complex

systems, in particular, accounting for the uncertaintyeiséed with the modelling of

such systems. In this paper, we have provided an overvieheafdancept of traceability

from a statistical modelling point of view, and looked at htmels such as model se-
lection and model average can provide a coherent approadséssing the uncertainty
associated with models. Finally, we have used a Gaussiaegsanodel to help develop
estimates of the air quality field on the basis of sensor nétwata and implement a
cross-calibration scheme of sensors.
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Fig. 10.Gaussian process model fitted to pN@ata for week 1.
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Fig. 11.Prediction and calibration for N{data for week 1.
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