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Abstract. National Metrology Institutes such as the National Physical Labora-
tory provide the scientific and technical framework to ensure measurements are
traceability to standard units or references. Many of the procedures developed
for ensuring traceability involve measurements in laboratory conditions, whereby
environmental factors such as temperature are closely controlled, andusing in-
struments whose responses are well-characterised by validated models. However,
many societal challenges relating climate and environment, energy and sustain-
ability, health and well-being necessarily involve measurements outside labora-
tory conditions. In such circumstances, the mathematical and statistical modelling
tools need to be strengthened so that concepts of traceability, uncertainty evalu-
ation and calibration can also be applied outside the laboratory. In particular, we
need to develop tools that account for uncertainties associated with the models
of the system, for we can no longer be certain that we understand all aspects of
the response of a potentially complex system. One such challenge is the mea-
surement of air quality. Air quality has a significant impact on quality of life and
many regulations now apply to controlling pollution. In order to ensure compli-
ance to regulations, it is necessary to monitor air quality. However, measurement
of air quality can only be made at a finite number of sites while the regulations
apply to the complete air quality field. In this paper, we consider approaches for
accounting for model uncertainty and the use of Gaussian processes tomodel the
temporal and spatial and correlation in order to estimate the air quality field and
its associated uncertainty.

Keywords: Traceability, Sensor Networks, Uncertainty, Gaussian Processes

1 Introduction

A primary role of a National Metrology Institute is to ensurethat measured data is
traceable to standard units. One aspect of establishing traceability is valid uncertainty
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evaluation. Standard methodologies such as The Guide to theExpression of Uncer-
tainty in Measurement (the GUM [2]) were developed to provide a probabilistic basis
for a coherent and consistent approach to evaluating uncertainty, now adopted world-
wide.The current metrology paradigm of standards, calibration and traceability, how-
ever, is designed for the measurement of a single quantity using a single, dedicated
measuring instrument or system, e.g., measuring the lengthof an artefact using a laser
interferometer. Many societal challenges relating climate and environment, energy and
sustainability, health and well-being necessarily involve measurements outside labora-
tory conditions. In such circumstances, the mathematical and statistical modelling tools
need to be strengthened so that concepts of traceability, uncertainty evaluation and cal-
ibration can also be applied outside the laboratory.

For example, much of environmental monitoring involves networks of sensors mea-
suring a number of different quantities at several locations and at different times. Whether
the characteristic being measured is an air pollutant level, acoustic noise (associated
with an airport, for example), or sea water salinity, etc., measurements at particular spa-
tial and time locations are used to make inferences at other individual spatial and time
locations or are aggregated to make inferences over a regionor time period. The qual-
ity of the inferences made will depend on how well the networkis designed and how
the sensor information is used. Currently, the impact of sensor network data is severely
limited by the lack of a methodology for calibration, traceability and uncertainty eval-
uation applicable to sensor networks. The measurement community needs to develop a
much more comprehensive approach to uncertainty quantification, in which uncertainty
contributions associated with models and computation are also taken into account.

In section 2, we provide an overview of the concepts of traceable measurement
and measurement uncertainty while in section 3 we describe how model selection and
model averaging can be used to take account uncertainties associated with models. In
section 4, we consider uncertainty evaluation associated with models having spatio-
temporal correlation and consider opportunities to calibrate sensor networks using the
spatio-temporal correlation. Our concluding remarks are given in section 5.

2 Traceable measurement

Metrology is the science of measurement. Its central aim is to ensure that stated mea-
sured values have an unambiguous interpretation. This is achieved by defining stan-
dard units and providing procedures that enable a quantity being measured, e.g., the
mass of an artefact, to be compared with the appropriate standard unit in a traceable
way. “Metrological traceability” is defined in the International Vocabulary of Metrology
(VIM [3]) as “the property of a measurement result whereby the result can be related
to a reference through a documented unbroken chain of calibrations, each contributing
to the measurement uncertainty”. In the same document, “measurement uncertainty”
is defined as a “non-negative parameter characterizing the dispersion of the quantity
values being attributed to a measurand, based on the information used”. This definition
allows considerable scope for interpretation. Since the publication of the Guide to the
Expression of Uncertainty in Measurement (GUM [2]) in the mid 1990’s, measurement
uncertainty is defined in terms of probability distributions. The result of a measurement
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is a probability distributionp(a) associated with the quantity being measuredA, the
measurand.

The best estimate of the measurand is taken to be the mean of the probability distri-
bution and the standard uncertainty associated with the measurand (or sometimes said
to be associated with the estimate of the measurand) is takento be its standard deviation,
assuming that both the mean and standard deviation exist. Often there is an assumption
that the probability distribution associated with the measurand is a Gaussian or at least
is approximated well by a Gaussian. The assigned probability distribution allows infer-
ences about the ‘true value’a∗ of the quantity to be made, e.g., the probability of that
the true value lies in the interval[L,U ] is estimated by

Pr(L ≤ a∗ ≤U) =
∫ U

L
p(a)da.

The probability distribution is referred to as a ‘state of knowledge’ distribution.
It is usually derived in a deterministic way from datay and hypothesized model and
assumptions which we denote collectively byH . If required, we denote the state of
knowledge distribution asp(a|y,H ) to reflect the dependence on data and assumptions.

2.1 Traceability chain

A traceability chain is perhaps most easily described in terms of a sequence of Bayesian
updates. We associate to the standard unita0 the Diracδ distribution at 1, since by
definition the unit has no uncertainty. We perform a comparison of artefactA1 with the
standard unit gathering measurement datay1 with likelihood p(y1|a1,a0), e.g.,

y∼ N(a1−a0|σ1).

Assigning a (usually noninformative) priorp(a1) for a1, we determine the posterior
distribution

p(a1,a0|y1) ∝ p(y1|a1,a0)p(a1)p(a0),

which is marginalised to determinep(a1|y1). At the kth stage we record datayk with
associated likelihoodp(yk|,ak,ak−1), leading to joint posterior distribution

p(ak,ak−1|yk,yk−1) ∝ p(yk|ak,ak−1)p(ak)p(ak−1|yk−1),

and associated marginalised distribution

p(ak, |yk) =
∫

R

p(ak,ak−1|yk,yk−1)dak−1.

The chain is traceable if the likelihoodp(yk|ak,ak−1) is assigned appropriately at each
stage. If the likelihood is of the form

yk|ak,ak−1 ∼ N(ak−ak−1,σ2
k ), k= 1, . . . ,n,

corresponding to a simple comparison of artefacts subject to Gaussian noise, then the
posterior distributionp(an|yn) is the multivariate Gaussian distribution N(â,V) where



80 Alistair B. Forbes

â solves the linear set of equationsCa= z, involving the bi-diagonal observation matrix
C and data vectorz with
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The variance matrixV associated the estimateâ is given by

V = (CTC)−1

If σk = σ , then the uncertainty associated with thekth artefact isk1/2σ and the cor-
relation coefficient associated with artefactsk and j > k is ck j = (k/ j)1/2. Thus, the
best estimates of pairs of quantities that have a common artefact in their traceability
chains will be statistically correlated. In practice, calibrations further down the trace-
ability chain are less accurate than those higher up so the strength of the correlations
will be much less than for the caseσk = σ .

In the case of mass measurement, the standard unit of mass is (currently) defined
by a physical artefact, known as the International Prototype Kilogram (IKP), kept at the
Bureau International des Poid et Mesures (BIBM) in Sevres, near Paris. The BIPM has
a number of copies of the IPK made of the same material, a 90-10% alloy of platinum
and iridium, and over 30 countries have national copies. TheUK has copy no. 18. In
theory and, to a large extent, in practice, all mass measurements in the UK are traceable
to the calibration of copy no. 18 against the IKP, and therefore, practically all estimates
of mass in the UK are statistically correlated.

2.2 Inter-laboratory comparisons (ILCs)

Traceability depends on the reliable assignment of uncertainties associated with the var-
ious comparisons that underpin the traceability chain. These uncertainties are assigned
on the basis of best practice such as that defined in the GUM andthat associated with
the scientific domain. However, there is no guarantee that this best practice are based
on models that provide an exact characterisation of the physical systems involved. The
inter-laboratory comparison is an important tool in demonstrating the validity of the
methodologies. Typically, such an inter-comparison involves the measurement of one
or more artefacts by a number of laboratories and the resultsanalysed to determine if
the spread of estimates is consistent with the stated uncertainties.

3 Model selection and model averaging

In many data-fitting and modelling problems, we often face the challenge to find the best
model to best-fit a given data set [5, 20]. This choice is complicated by the fact there may
be different and competing models. Loosely speaking, modelselection is a process of
choosing one appropriate model among many possible modelsM1,M2, ...,MK , with
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the aim of balancing goodness-of-fit with minimising complexity of the model. For
example,Mk could represent the space of polynomials of degree at mostk and, in
general, we would want to choose the polynomial of minimal degree that fits the data
reasonably well.

3.1 Model selection according to information criteria

We consider a standard model in which data is generated according to the model

y= φ(x,a)+ ε , ε ∈ N(0,σ2),

where the functionφ(x,a), depending on parametersa= (a1, . . . ,an)
T, models the re-

sponse of a system. For Gaussian noise, the least squares estimateâ of the parameters
a minimises

F(a) =
m

∑
i=1

(yi −φ(xi ,a))
2,

and corresponds to the maximum likelihood estimate, i.e., maximises

p(y|a) ∝ exp

{

−
F(a)
2σ2

}

.

Let RSS= F(â).
Suppose there are in factK competing models defined by functionsφk(x,ak) involv-

ing parameter vectorsak of lengthnk. For a given data set{(xi ,yi)}
m
i=1, for each model

space we can calculate the least squares best estimateâk of the model parameters and
RSSk = F(âk), the residual sum of squares at the least squares estimate. The issue is to
select the model that provides an adequate fit to the data, as measured by RSS, while at
the same time is not overly complex, as measured bynk, the number of parameters, for
the number of observationsm.

There are a number of criteria that are commonly used for this. For example, root
mean square residual RMS given by

RMSk =

√

RSSk

m−nk
,

is often used. Here, we use a related indexmlogRMS which we write as

mlogRMS= mlog(RSSk/m)+mlog

(

m
m−nk

)

. (1)

Other criteria used are the Akaike information criterion [1], for this case given by

AIC = mlog(RSSk/m)+2nk,

often with a correction for small number of degrees of freedom [16],

AICc = mln(RSSk/m)+2nk
m

(m−nk−1)
,
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or the Bayes Information Criterion [27].

BIC = mln(RSSk/m)+nk lnm.

Written in this way, all the criteria above have the same term representing the good-
ness of fit but different terms penalising the complexity of the model. The model se-
lected is the one that minimises the criterion value.

3.2 Bayesian Model Averaging

For a given set of dataD, the data can arise from one of many possible modelsM1,M2, ...,MK .
Loosely speaking, model averaging is the process of estimating some quantitya of in-
terest under each modelMi , and subsequently averaging the estimates according to how
likely each model is [15, 25]. The Bayesian approach is to tryto calculate the posterior
probability P(Mi |D) for each model, and thenwi = P(Mi |D) is used as the weights
in the model averaging. The aim of the model selection is to select the model with the
maximumP(Mi |D).

For Bayesian model averaging , the posterior distribution of a is

P(a|D) =
K

∑
i=1

P(a|Mi ,D)P(Mi |D), (2)

where the posterior probability of modelMi is given by

P(Mi |D) =
P(D|Mi)P(Mi)

∑K
j=1P(D|M j)P(M j)

. (3)

3.3 Application to inter-laboratory comparisons

As discussed in section 2.2, the inter-laboratory comparison is a major tool in validating
the methodologies used to derive measurement results and their associated uncertain-
ties. In addition to this validation role, the ILC can be usedmore diagnostically to deter-
mine systematic laboratory effects similar to that performed in an analysis of variance
[6, 13, 17] or to determine a consensus or reference value fora quantity on the basis of
a number of different experiments [7]. In any of these applications, it is necessary (or at
least extremely advisable) to assess the self-consistencyof data (values and associated
uncertainties) input into the ILC.

Consider the standard model (after weights have been applied)

yi |a∈ N(a,1), i = 1, . . . ,n. (4)

Setȳ= (1/n)∑m
i=1yi . If the prior distribution fora is noninformative,p(a) ∝ 1, then

the posterior distribution fora is such that

a|y ∼ N(ȳ,1/n). (5)
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We note that ¯y is the least squares estimate ˆa of a. The model (4) also predicts that
the residual sum of squares

F =
n

∑
i=1

(yi − â)2

associated with the least squares fit is drawn for aχ2
ν distribution withν = n−1 degrees

of freedom. So, for example [7], if Pr(χ2
ν > F)≥ 0.05, then the input data is judged to

be consistent with the model and that it safe to make inferences abouta on the basis of
the posterior distribution (5). In particular the best estimate or reference value fora is
â= ȳ, and the associated uncertainty isu(a) = n−1/2.

If the χ2 test fails, then what is to be done? There are many papers thatconsider ap-
proaches to adjusting the input uncertainties in order to bring about consistency. There a
number of one parameter adjustment models [8, 30, 31]. Supposey ∼ N(ae,V0), where
e= (1, . . . ,1)T. The idea is to replaceV0 with a variance matrixV(τ) depending on a
single parameterτ. For the modely ∼ N(ae,V(τ)), the least squares estimated is given
by

â(τ) =
eTV(τ)−1y
eTV(τ)−1e

,

the observedχ2 value is given by

F(τ) = (y− â(τ)e)TV(τ)−1(y− â(τ)e).

The adjustment is made by choosingτ so thatF(τ) = n−1, i.e., is chosen so that
the observedχ2 value is the same its expected value. The simplest approach is to scale
all the input uncertainties by(1+ τ), i.e.,V(τ) = (1+ τ)V0. This approach is some-
times referred to in the metrology field as the Birge adjustment procedure [4] after
Birge who used it in the analysis of data associated with the fundamental constants. A
second approach used in metrology is to setV(τ) = V0+ τI , sometimes referred to as
the Mandel-Paule method [24]. Bayesian approaches have also been considered [8, 18,
21, 22, 28, 29].

The approach described by Cox in [9] to the analysis of inconsistent ILC data is
akin to a model selection approach. If the complete set of data is inconsistent then
participants are removed from the exercise until a consistent subset is determined. The
algorithmic approach efficiently determines a subset of theparticipants which is self-
consistent according to theχ2 criterion and no other subset with the same or greater
number of participants has a smaller observedχ2 value. (Exceptionally, this subset
might not be unique.) Each subset of the participants can be thought of defining a model
in which the uncertainties provided by the selected participants is regarded as reliable
and those associated with the excluded participants are not. The largest consistent subset
(LCS) defines the selected model.

Here we describe a model averaging approach to the analysis of inconsistent ILC
data; see also [11]. We assume that there is a prior possibility that one or more partici-
pants have underestimated their uncertainty by a factor of three, say, and that the fraction
of such participants follows a binomial distribution defined by parameter 0< λ < 1.
The hyper-parameterλ is assigned a prior Beta distributionB(α,β ). Thus, the prior
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expected value ofλ is α/(α +β ) and prior variance associated withλ is

αβ
(α +β )2(α +β +1)

.

We assume a prior that all participants have the same probability of supplying un-
reliable uncertainty estimates. LetM0 be the model in which all reported uncertainties
are reliable,Mi than in which participanti only has an unreliable uncertainty estimate,
Mi j , where participantsi and j are unreliable, etc., leading to 2n models in all, labelled
by an indexq, say.

The assignment of a prior toλ assigns a joint prior distributionp(q,λ )= p(q|λ )p(λ ).
The likelihoodp(y|a,q,λ ) is easy to calculate, so that

p(a,q,λ |y) ∝ p(y|a,q,λ )p(q|λ )p(λ )p(a).

The posterior distributions are given by marginalisation,e.g.,

p(a|y) =
2n

∑
q=1

{

∫ 1

0
p(y|a,q,λ )p(q|λ )p(λ )p(a)dλ

}

,

and

p(q|y) =
∫ ∞

−∞

∫ 1

0
p(y|a,q,λ )p(q|λ )p(λ )p(a)dλda.

We illustrate the behaviour of these approaches on three simulated data setsyk,
k= 1,2,3. Figure 1 shows simulated datay1 involving 10 participants. The uncertainty
bars represent± two standard deviations. The result from participant 6 seems outlying
and is deemed so according to theχ2 test. The largest consisted subset [9] is determined
by the remaining nine participants. Figure 4 shows the posterior distributionsp(a|y)
for various adjustment procedures: ‘mixture’ denotes the model averaging approach,
‘input’ denotes the case where all input uncertainty estimates are regarded as reliable,
‘Birge’ the Birge adjustment procedure and ‘LCS(9)’ the distribution associated with
the largest consistent subset. Figure 7 shows the prior and posterior distributions forλ
determined using the model averaging approach.

Table 1 shows the posterior probabilitiesp(q|y1) for the most likely models in-
dexed byq. All other models are associated with the probabilities less than 0.01. The
model best supported by the data by far is the model in which participant 6 alone is
regarded as unreliable. This accounts for the moderately good agreement between the
model averaging approach and the LCS approach. Table 2 showsthe prior and posterior
probabilities ofk participants being considered unreliable.

Figure 2 shows a second set of simulated datay2 involving 10 participants. The data
is similar to that in figure 1, only that both participants 6 and 10 seem potentially outly-
ing. The largest consistent subset is judged to have nine participants with participant 6
excluded as before. The observedχ2 value is 15.0 compared with a test value of 16.9. If
participant 10 is excluded instead, the correspondingχ2 value is 18.9. From this point of
view there is a case for participant 6 or 10 or both participants 6 and 10 being excluded.
Figure 5 shows the posterior distributionsp(a|y2) for various adjustment procedures as
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Fig. 1. Simulated datay1 involving 10 ILC participants. The result from participant 6 seems
outlying.
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Fig. 2. Simulated datay2 involving 10 ILC participants. The result from participant 6 and 10 are
potentially outlying.
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Fig. 3.Simulated datay3 involving 10 ILC participants. The result from participants 10 and 6 are
potentially outlying.
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Fig. 4. Posterior distributionsp(a|y1) for a according to different adjustment procedures deter-
mined from the data in figure 1. The label ‘mixture’ denotes the model averaging approach,
‘input’ denotes the case where all input uncertainty estimates are regarded as reliable, ‘Birge’ the
Birge adjustment procedure and ‘LCS(9)’ the distribution associated withthe largest consistent
subset.
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Fig. 5.Posterior distributionsp(a|y2) for a as in figure 4 but for data in figure 2.
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Fig. 6.Posterior distributionsp(a|y3) for a as in figure 4 but for data in figure 3.
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Fig. 7.Posterior and prior distributions forλ for a determined from the datay1 in figure 1 .

in figure 4 but for the datay2. The LCS approach in this case is significantly differ-
ent from the model averaging approach. The LCS posterior distribution is constructed
on the basis the selected model, participant 6 is unreliable, is certain, while the model
averaging approach takes into account other possibilities. Table 1 shows the posterior
probabilitiesp(q|y2) for the most likely models indexed byq for datay2. It is seen that
the three models most supported by the data are those that relate to 6, 10, or both being
assessed as unreliable. Table 2 shows the posterior probabilities of k participants being
considered unreliable for this dataset.

Figure 3 shows simulated datay3 similar to datay2 in that both participants 6 and
10 seem potentially outlying but in this case the largest consistent subset is judged
to have nine participants with participant 10 excluded. Figure 6 shows the posterior
distributionsp(a|y3) for various adjustment procedures as in figure 4 but for the datay3.
Again, the LCS approach is significantly different from the model averaging approach.
Comparing figures 5 and 6, we see that the LCS approach give rise to significantly
different distributions for the two data setsy2 andy3, although the two data sets are
similar. This is because of the discrete nature of the model selection process. The model
averaging approach gives a smooth response to the changes inthe data sets. Table 1
shows the posterior probabilitiesp(q|y3) for the most likely models indexed byq for
datay2. The results are similar to those for datay2 but with the roles of participants 6
and 10 interchanged. Table 2 shows the posterior probabilities of k participants being
considered unreliable for this dataset.
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p(q|y1)/0.01 1 2 3 4 5 6 7 8 9 10
53 0 0 0 0 0 1 0 0 0 0
11 0 0 0 0 0 1 0 0 0 1
8 0 0 0 0 0 1 0 1 0 0
4 0 0 0 0 0 1 0 0 1 0
4 0 0 0 0 1 1 0 0 0 0
4 0 0 0 0 0 1 0 1 0 1
3 0 1 0 0 0 1 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0

p(q|y2)/0.01 1 2 3 4 5 6 7 8 9 10
31 0 0 0 0 0 1 0 0 0 1
21 0 0 0 0 0 1 0 0 0 0
10 0 0 0 0 0 1 0 1 0 1
6 0 0 0 0 0 0 0 0 0 1
4 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 1 0 0 1 1
3 0 0 0 0 1 1 0 0 0 1
3 0 0 0 0 0 1 0 1 0 0

p(q|y3)/0.01 1 2 3 4 5 6 7 8 9 10
30 0 0 0 0 0 1 0 0 0 1
21 0 0 0 0 0 0 0 0 0 1
9 0 0 0 0 0 1 0 1 0 1
8 0 0 0 0 0 0 0 1 0 1
6 0 0 0 0 0 1 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 1 0 0 1 1
3 0 0 0 0 1 1 0 0 0 1

Table 1. Posterior percentage probabilities associated with the most likely models determined
from the datayk, k= 1,2,3, in figures 1–3. A ‘1’ in a column indicates the corresponding partic-
ipant’s uncertainty statement is considered unreliable.

k p(k) p(k|y1) p(k|y2) p(k|y3)

0 39 3 4 3
1 39 54 28 27
2 17 31 42 43
3 5 10 21 21
4 1 2 5 5
6 0 0 1 0
7 0 0 0 0

Table 2. Percentage probabilities of observingk participants judged to be unreliable. The sec-
ond column is the prior assignment, the remaining three columns give the posterior assignments
determined from the datay1, y2 andy3, in figures 1–3, respectively.
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4 Sensor networks and Gaussian processes

Model selection and model averaging go some way to accounting for the fact that the
model of the underlying physical system may be only partially known. However, both
still rely on defining a set of models to select from or to average over. If the selected set
of models, e.g., polynomials, splines, etc., does not matchwell the actual behaviour of
the physical system, then inferences based on the selected set of models could well be
unreliable. Often, some of the aspects of the model are well understood and captured
in a physical model but that there other systematic effects that are present that are not
well understood but are expected to vary smoothly, i.e., theresponse is correlated with
the stimulus variables [19, 12]. Often the response is correlated over space and/or over
time. The idea of a Gaussian process model is to model the correlation behaviour in
a flexible way and to let the measurement data define the actualform of the response.
Often, the data is gathered by a network of sensors distributed spatially or temporally.

Sensor networks represent a new measurement paradigm with applications across
environmental monitoring, earth observation, structuralhealth monitoring, etc. The
paradigm involves multiple sensors, acting collaboratively through wireless communi-
cations and internet services, to provide raw data that is converted to information-based
products, e.g., a map of air quality in a region. To convert these information products
into metrology products, it is necessary to provide an acceptable calibration, traceabil-
ity and uncertainty framework. Gaussian processes presenta modelling approach that
can address this requirement. We first give a summary of the basic approach, sometimes
known as universal Kriging.

4.1 Universal Kriging

Universal Kriging can be developed in a classical estimation or Bayesian framework;
see e.g., [10, 26]. Suppose

[

η
ζ

]

|α ∼ N

([

C
D

]

α,V

)

,

with

V =

[

V11 VT
21

V21 V22

]

= LLT, L =

[

L11

L21 L22

]

,

so thatL21 =V21L
−T
11 . We also write this model as

η |α =Cα +L11ε1, ζ |α = Dα +L21ε1+L22ε2 ε1,ε2 ∼ N(0, I).

In an example application,η represents the response of the system at a set of loca-
tions that depends on model parametersα but also on systematic effectsε1. Similarly ζ
represents the response at a different set of locations thatdepends onα, ε1 andε2. The
common dependence onε1 characterises the spatial correlation between the two setsof
locations. Suppose observationsy of η are made. What can be said aboutα andζ on
the basis on the information supplied byy?
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The best estimatea of α is given the solution of the Gauss-Markov problem, namely

a=
(

CTV−1
11 C

)−1
CTV−1

11 y, Va =
(

CTV−1
11 C

)−1
.

In addition, the best estimate ofε1 is e= L−1
11 (y−Ca) and the best estimate ofε2 is

e2 = 0. Therefore, the best estimatez of ζ is z= Da+L21e. From a Bayesian point of
view, assuming noninformative priors forα , etc.,

ζ |y ∼ N(z,Vz),

where termsz andVz can be evaluated as

z=V21V
−1
11 y+Ea, Vz =V22−V21V

−1
11 VT

21+EVaET.

with
E = D−V21V

−1
11 C.

The Cholesky factor [14] ofV11= L11LT
11 can be used to evaluate these expressions.

For spatial applications, for example, the observed responses at one set of locations
allows us to estimate the responses at other locations.

4.2 Spatio-temporal correlation models

The principle of the Gaussian process approach used here is that the readings from a
group of sensors reflect a signal that is correlated spatially, temporally or both. The
general formulation is as follows. Lety = (y1 . . . ,ym)

T be a set of measured values. As-
sociated to each measured valueyi are spatio-temporal coordinates(xi , t i) representing
the spatial locationxi of the sensor that produced the measured value and the timeti the
measurement was taken. We model the system that gave rise to these data asy =Ca+e
wherea are parameters specifying the systematic behaviour according to a known and
validated model ande represents random effects which we assume are drawn from
a multivariate Gaussian distribution,e∈ N(0,Vσ ) with mean zero andm×m variance
matrixVσ that encodes the spatio-temporal correlation. The correlation behaviour is de-
termined by the second set of parametersσ , known as hyper-parameters that, together
with the spatio-temporal coordinates(xi , t i), determine the variance matrixVσ .

We give an example of how we can characterise this correlation relating to two
spatial dimensions and one temporal dimension. For any two measurementsyi andy j ,
the covarianceVσ (i, j), σ = (σ ,σ0,λ ,τ)T, associated with the corresponding random
effectsei andej is given by

Vσ (i, j) = k(xi ,xj , t i , t j |λ ,τ) = σ2k(xi ,xj |λ )k(t i , t j |τ), i 6= j , (6)

andV(σ)(i, i) = σ2+σ2
0 . Here,

k(x,x′|λ ) = exp

{

−
1

2λ 2 (x−x′)T(x−x′)
}

(7)
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is a kernel that encodes the spatial correlation and dependson a length scale parameter
λ , and, similarly,

k(t, t ′|τ) = exp

{

−
1

2τ2 (t − t ′)2
}

(8)

encodes the temporal correlation and depends on a time scaleparameterτ. The term
σ2 gives the variance of the correlated effects andσ2

0 the variance associated with
repeatability, i.e., random effects that occur over very short spatial and temporal scales.
These effects could be associated with either the signal, the measuring sensor or both.

It is also possible to use kernels that encode more complex behaviour. For example,
correlation involving diurnal or other periodical cycles can be encoded in a kernel of
the form

k(t, t ′|τ1,τ2) = exp

{

−
1

2τ2
1

[t − t ′]21−
1

2τ2
2

[t − t ′]22

}

where[t − t ′]1 is the time difference modulo a cycle and[t − t ′]2 is time difference in
terms of number of cycles.

4.3 The Kalman filter

The Kalman filter can be seen as an example of a Gaussian process operating over the
temporal domain. We consider here the simplest example governed by

ak|ak−1 ∼ N(ak−1,σ2
P), yk|ak ∼ N(0,σ2

M), p(a0) ∝ 1. (9)

The first relationship shows how the quantityak is predicted with uncertaintyσP on
the basis on knowingak−1. The second relationship defines the likelihood associated
with a measurement ofak. The posterior distribution fora= (a1, . . . ,an)

T depends on
the measurement information and the predictive capability. Estimates of the system
parameters are determined by solving the linear least squares systemCa≈ z with

C=
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with w= 1/σP andv= 1/σM. The QR factor [14] of C can be determined sequentially
with thekth update step having the form





r22 0
w −w
0 v



 7→

[

r̃11 r̃12

0 r̃22

]

.
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This Kalman filter converges in the sense that eventually thebottom 2×2 upper triangle
is unchanged. The requirement that









s11 s12 0
0 s22 0
0 w −w
0 0 v









7→





s11 s12 0
0 s11 s12

0 0 s22



 ,

leads to the relations

s11s12 =−w2, (s11+s12)
2 = v2, s2

22 = s2
11−w2,

from which we derive

s11 =−
1

21/2σP

(

2+
σ2

P

σ2
M

+
σP

σM

(

4+
σ2

P

σ2
M

)1/2
)1/2

,

and

s12 =−
1

s11

σ2
P

σ2
M

, s22 =

(

s2
11−

σ2
P

σ2
M

)1/2

.

The upper triangular factorR of the observation matrix is a bi-diagonal matrix
whose diagonal elementsrkk converge tos11 and above diagonal elements converge
to s12 and rnn converges tos22 asn increases. If the filter has converged then, at the
kth stage, the uncertainty associated with the estimate ofak is 1/s11. However, subse-
quent steps will help to improve this estimate since the measurement at the(k+1)th
and subsequent steps provide additional information aboutak.

The variance matrix associated the fitted parameters is given by (RTR)−1 and the
uncertainty associated with thekth parameter is given by the‖gk‖ wheregk is such
thatRTgk = ek whereek is thekth column of then×n identity matrix. If the filter has
converged, thengk solves
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We havegk( j) = 0 if j < k, gk(k) = 1/s11, gk(k+1) = −s12/s2
11, gk(k+2) = s2

12/s3
11,

etc., so that the elements ofgk form a geometric series. From this fact, we know that the
norm ofgk is such that

u2(ak) = ‖gk‖
2 =

1

s2
11−s2

12

. (10)
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Thus, the asymptotic behaviour of the filter can be determined analytically in terms of
σP andσM. If σP is sufficiently smaller thatσM so thatσ4

P/σ4
M ≈ 0, then the uncertainty

u(ak) associated with thekth parameter is such that

u2(ak)≈
σPσM

2
.

For σP ≫ σM, u(ak)≈ σM, as would be expected. The term

neff =
σ2

M

u2(ak)
(11)

with u(ak) given by (10) represents how many independent repeated measurements
would be required to determine the same uncertainty associated withak as that achieved
by exploiting the predicative capability in the filter.

Figure 8 shows the uncertaintyu(ak) as a function ofk for the caseσM = 1 and (a)
σP = 0.2, top, and (b)σP = 0.1, bottom. ForσP = 0.2, corresponding to weaker predic-
tive capability, the asymptotic value of the uncertaintyu(ak) is larger but is attained in
few time steps. Figure 9 shows the asymptotic value ofu(ak) given by (10) as a function
of σP.

The analysis for this simple Kalman filter model shows the extent to which correla-
tion over time or the spatial domain can be used to improve theuncertainties associated
with the fitted parameter estimates.
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Fig. 8. Uncertaintyu(ak) as a function ofk associated with the simple Kalman filter (9) for the
caseσM = 1 and (a)σP = 0.2, top, and (b)σP = 0.1, bottom.



Traceable Measurements using Sensor Networks 95

10
−4

10
−2

10
0

10
2

10
−3

10
−2

10
−1

10
0

σ
P

u(
a)

Fig. 9. Asymptotic value ofu(ak) given by (10) as a function ofσP for the caseσM = 1.

4.4 Estimating the hyper parameters

In general, the hyperparameters associated with the spatio-temporal correlation have to
be estimated from the data and we use a Bayesian formulation to define this compu-
tational approach. We assume that some prior information about the hyperparameters
σ is available and encoded in a densityp(σ). Given the observed datay, the posterior
joint distributionp(a,σ |y) for a andσ is such that

p(a,σ |y) ∝ p(y|a,σ)p(a)p(σ)

involving the likelihoodp(y|a,σ) and the priors. The fact that the likelihood is Gaussian
and that the model parameters occur linearly in the model means that the maginalised
posterior distributionp(σ |y) for σ , given by

p(σ |y) =
∫

A
p(a,σ |y)da,

can be evaluated analytically. Ifâ= aσ is the least squares solution that minimises

(y−Ca)TV−1
σ (y−Ca),

then the marginalised distributionp(σ |y) is such that

p(σ |y) ∝ p(σ)|Vσ |−1/2|CTV−1
σ C|−1/2exp

{

−
1
2

F(σ)

}

,
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whereF(σ) is the residual sum of squares

F(σ) = (y−Câσ )V−1
σ (y−Câσ ). (12)

Theσ that maximisesp(σ |y) can be found be minimising− logp(σ |y) or equivalently,
minimising

E(σ |y) =
1
2

(

F(σ)+ log|Vσ |+ log|CTV−1
σ C|

)

− logp(σ). (13)

4.5 Analysis of air quality data

We have applied a spatio-temporal Gaussian process model (GP) defined by (6–8) to
air quality data extracted from the London Air Quality Network (LAQN) [23] over an
eight week period starting on 28th February 2011. The results reported here relate to
the measurement of NO2 gathered from five sites in central london within an area of
approximately 5 km radius. The measurements were taken hourly. Estimates of the four
hyperparameters were determined by minimisingE(σ |y) in (13) and the fitted values
wereσ = 15.1 µg m−3, σ0 = 4.5 µg m−3, λ = 6.5 km, andτ = 2.5 hr. The value of the
length scale parameter suggests that there is significant spatial correlation in the data.
Figure 10 shows the Gaussian process model fitted to the data from week 1; the spatial
correlation is reflected in the similarity in the data series. The figure also shows the±
two standard deviations uncertainty band associated with the fitted model.

The spatial correlation enables predictions to be made for missing data. Figure 11
shows on the top the GP model fitted to a complete set of 7 days for a site (top) and the
predicted results on the basis of the first three days and the results from neighbouring
sites for all seven days (middle). It is seen that the prediction for the last four days is
almost the same as model fit to all the data (top).

The spatial correlation also enables the inter-calibration of sensors. We can simulate
an experiment in which, after a number of days, a calibrated sensor is replaced by an
uncalibrated sensor with an unknown offseta0 to be determined as part of the model
fitting process. The bottom graph in figure 11 shows the fitted GP model for one urban
background site for days 5 to 7 on basis of days 1 to 3 and data from days 5 to 7 subject
to an unknown calibration offset compared to the actual measured data. The actual
offset applied to the data for days 5 to 7 was 20µg m−3 with an associated uncertainty
of 1.0 µg m−3, demonstrating that an accurate cross-calibration is possible.

5 Summary and concluding remarks

The impact of metrology in addressing societal challenges depends on being able to
develop appropriate concepts of traceability, uncertainty and calibration for complex
systems, in particular, accounting for the uncertainty associated with the modelling of
such systems. In this paper, we have provided an overview of the concept of traceability
from a statistical modelling point of view, and looked at howtools such as model se-
lection and model average can provide a coherent approach toassessing the uncertainty
associated with models. Finally, we have used a Gaussian process model to help develop
estimates of the air quality field on the basis of sensor network data and implement a
cross-calibration scheme of sensors.
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Fig. 10.Gaussian process model fitted to NO2 data for week 1.
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Fig. 11.Prediction and calibration for NO2 data for week 1.
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