
Transactions on Machine Learning
and Data Mining
Vol. 8, No. 1 (2015) 3-39
ISSN 1864-9734
ISBN: 879-3-942952-33-0

Machine Learning in Security Applications

Davide Ariu, Igino Corona, Roberto Tronci, and Giorgio Giacinto

Department of Electrical and Electronic Engineering, University of Cagliari,
[davide.ariu, igino.corona, roberto.tronci,

giacinto]@diee.unica.it

Abstract. One of the most important assets to be protected is information, as
every aspect of the life of a society deeply depends on the available information.
Nowadays, information is stored, processed, and communicated by computers.
It turns out that computers represent the most critical tool in modern society. A
number of protection mechanisms are available so far, such as antivirus software
tools, and biometric access control systems. For their effectiveness, frequent up-
dates are needed, due to the rapid evolution of attack patterns. In fact, attacks are
often devised and spread by running computer programs, which can produce new
effective attacks in a short time frame. It turns out that machine learning tech-
niques with their generalization capability are one of the favorite approaches to
deploy protection and attack detection mechanisms. In this paper, we discuss the
approaches that should be followed when devising machine learning techniques
for security applications. In particular, we will focus on testing methodologies,
performance measures, and techniques aimed at reducing the intrinsic variabil-
ity of performance that often machine learning application exhibit in real-world
scenarios.

Keywords: Machine Learning, Computer Security, Security Tests, Security by
Design

1 Introduction

It is commonly recognized that nowadays we live in an information society as people
continuously share opinions, findings, and discuss about their ideas. Internet is at the
origins of this revolution that began less than twenty years ago. Modern people also
travel a lot worldwide. They do it for both pleasure and work. As a consequence of
these aspects, each individual gets continuously in touch with a large number of people
whose reciprocal knowledge is often quite limited.

4 Davide Ariu, Igino Corona, Roberto Tronci, and Giorgio Giacinto

Under these premises, to provide people a feeling of security is fundamental in
order to let them living fine within this context. Among all the elements that contribute
to generate this feeling, we consider two of them as particularly relevant. One element is
the feeling of security provided by the places where people live or spend their time. This
is especially true in the case of crowded places, such as airports or train stations. The
second one is the trust into the systems people commonly use in their daily activities
such as ATM machines, the Internet, the mobile-phone network, etc.

A plenty of different systems and solutions is implemented to provide people secu-
rity within all these contexts. Video-surveillance cameras, as well as biometric authenti-
cation systems (based on fingerprints, iris, etc.) are commonly installed in critical places
such as airports or banks. A number of solutions is also implemented to provide secure
surfing on the Internet: almost everybody has an anti-virus software installed on his
own computer. More critical infrastructures, such as enterprise networks, also deploy
firewalling mechanisms for traffic filtering, and Intrusion Detection (and or Prevention)
appliances to guarantee network and computer security.

In this scenario of high-risk applications Machine Learning algorithms play a fun-
damental role, especially in applications related to biometrics and computer security.

1.1 Biometrics

One of the main problems in today’s networked society, is to obtain a correct, and
reliable verification of the identity of a person. However, “traditional” methods such as
passwords, and PIN (Personal Identification Number), are unreliable because a personal
code (a sequence of letters or digits) can be stolen or duplicated, and used by other
people for illegal aims. In this context, biometrics is a very active research field. Its aim
is to find reliable personal identification techniques based on human characteristics such
as face, fingerprint, retina, signature, iris, gait and so on. A biometric system assures a
more reliable identification of a person, since fingerprint, face etc. are unique for each
person and cannot be stolen or easily duplicated [32, 33].

A biometric system can be built to face two different problems: the “authentica-
tion” (or verification) of a user, or the “recognition” (or identification) of a user. The
authentication refers to the problem of confirming or denying a person’s claimed iden-
tity. Recognition refers to the problem of establishing a subject’s identity, for example
in forensic applications.

The most faced problem in daily activities is the “authentication” one:

– at first, a biometry is acquired from a user by the biometric system, and the raw
data are extracted (e.g. the image of a fingerprint or a face);

– then, the raw data is enhanced through the use of different algorithms to improve
the quality of the data and remove the noise;

– from this enhanced data, the biometric system extracts the features (for example
from a fingerprint image features regarding the minutiae can be extracted);

– when the features are available, a matching algorithm is run;
– the matching algorithm, with respect to the identity claimed by the user, compares

the extracted features to those stored in the system and associated to the genuine
identity. Finally, according to the outcome of the matching process, a decision is
taken, and the identity is authenticated or not.

Machine Learning in Security Applications 5

In order for the biometric system to work properly, machine learning algorithms are
typically employed. In fact, different aspects have to be taken into account within the
identification process: enhancing and parsing the raw data, feature extraction, feature
selection, and identity matching [33].

1.2 Computer Security

Reason why machine learning is important for computer security applications are dif-
ferent. At present, the most part of the computer security issues involves Web Applica-
tions. The reason for this is that Web-based services and social networking platforms
are quite common, and their number is still increasing as the Web-based architecture is
the most frequently used in software deployments. The results of a recent study by the
X-Force team show that approximately 50% of vulnerabilities discovered during 2010
affected Web applications [31]. In consequence of this, the security of Web applications
is a key topic in computer security. In order to protect them, Web Application Firewalls
are one of the most frequently used protection tools. Typically, they rely on a set of
rules written by the administrator, who therefore must have an in-depth knowledge of
the applications to be protected. Even if there are solutions as ModSecurity [1] that of-
fer automated rule update functionalities, tools that rely only on rule-based approaches
do not seem to guarantee sufficient protection to Web applications. The main reason is
that zero-day attacks are particularly critical for Web applications, because exploiting
a vulnerability in an application with a large number of users might allow to quickly
infect a large number of victim clients (e.g., the so-called drive by download attacks).
In our opinion, anomaly detection approaches based on machine learning techniques
allow addressing the limitation of rule-based systems, thus providing for an effective
solution.

Anomaly-based systems rely on a model of the normal behavior of Web applica-
tions. We share the definition of “normal behavior” provided by Maggi et. al. in [43]:
the term normal behavior generally refers to a set of characteristics (e.g., the distri-
bution of the characters of string parameters, the mean and standard deviation of the
values of integer parameters) extracted from HTTP messages that are observed dur-
ing normal operation. Starting from this definition, it is quite straightforward defining
“anomalous” all those behaviors that significantly deviate from the statistical model of
the normal activity. Obviously this allows anomaly based IDS to fight off also zero-day
attacks. Initially, the main obstacle to the large scale deployment of anomaly based so-
lutions has been the too high false positive rate, as not all the detected anomalies are
actually related to attack attempts. Nowadays anomaly detection mechanisms are also
deployed within some commercial products [2–4].

1.3 Contributions of this work

This book focus on the problem of Machine Learning Methods and the problem that
arises from the Standardization point of view when systems are learnable. From this
point of view, in the scenario of high-risk applications, is difficult to define “standards”.
This is a consequence of the constant rapid evolution of sensor and algorithms (e.g.

6 Davide Ariu, Igino Corona, Roberto Tronci, and Giorgio Giacinto

some times a solution to a specific problem have a short life time), and to the fact the
context of security problems are in a continuous evolution.

In the rest of this chapter, we will make use of the following definitions:

– A Biometric Access Control System (shortly a “Biometric System”) will be intended
as a system that disciplines the user access to a given asset by using biometrics (e.g.
a fingerprint, the face, the iris). For the purpose of this analysis the nature of the
asset to be protected will be not of interest: then, it could be indifferently a computer
system, a bank account, or even a restricted area of a building.

– A “Computer Security System” will be meant as a system aimed at detecting or pre-
venting software attacks against a single computer or a computer network. Without
any regard of the compromised system, attacks can be distinguished depending on
their effects. Very common examples are those attacks that can guarantee unautho-
rized access to a given resource (e.g. unauthorized access to a bank account), or
that can compromise the availability of a given resource (a “denial of service” at-
tack), or that can hijack the activity of a computer system (e.g. a malware infects a
computer and opens a back-door for malicious remote access). Intrusion Detection
(and/or Prevention) Systems, Anti-virus, and Firewalls are the Computer Security
Systems the most commonly deployed for protecting computer networks.

The rest of this chapter will be organized as follows. Section 2 will discuss the
issues concerning the application of Machine Learning algorithms in security applica-
tions. Section 3 will describe the performance measures typically used for the evalua-
tion of biometric and computer security systems. Section 4 will provide an overview of
the possible sources of variability for the performance of systems working in security-
related applications. Section 5 will introduce the Multiple Classifiers Systems paradigm
and will show some of the most commonly used combination strategies. Section 6 will
provide the experimental results that concretely show which benefits can descend (in
terms of performance) from using multiple classifiers in security applications. Finally,
conclusions will be drawn in Section 7.

2 High Risk Applications in Machine Learning

In this section, we discuss the issues that must be taken into account when machine
learning algorithms are applied to high-risk applications. Machine Learning algorithms
are implemented within both Anomaly-based (Computer Security) systems, and Biomet-
ric Systems to perform a statistical Pattern Recognition task.

Unfortunately, the deployment of these systems in real-scenarios requires them be-
ing able to meet hard and often conflicting constraints. In particular, Computer Security
systems are typically required to generate a very low number of false alarms and, at
the same time, to be very accurate in detecting attack attempts. On the other side, “us-
ability” is particularly important in biometric systems, since users can not be asked
to follow too complicated procedures in order to make themselves recognized by the
system. Obviously, usability must be achieved without affecting the capability of the
biometric system to provide a strong and reliable authentication mechanism.

Machine Learning in Security Applications 7

These requirements can be successfully met only if the system designer carefully
considers several critical issues related to the choice of the most suitable statistical
model used to represent (and to solve) the problem. In particular, the issues we identified
are the following:

1. What is the most appropriate model for the problem? In security applications
we typically want to assess if a given object has to be considered as “normal” (that
is legitimate) or as “anomalous” (that is as an attack). In order to solve this problem
we can:

– Make use of our knowledge of both the normal and anomalous patterns. In this
case the system learns the differences among the two classes of patterns, and
creates a rule that allows separating these two classes as better as possible. A
similar approach is suitable for malware detection applications, where we can
easily obtain both large amounts of malware samples and “benign” (that is non
malicious) executables. Therefore, since the availability of a large amount of
samples from both populations is not a problem, we can easily represent the
problem with a two-classes model [56]. For what concerns biometric, “recog-
nition” problems too arise to this category, since the identity of a single user is
checked against those of all the remaining users into the database.

– Make use of our knowledge of the normal class only. In this case the system
creates a statistical model of the normal class: all those patterns which distance
from normal patterns exceeds a pre-defined threshold are labeled as anomalous.
A typical case is that of web applications security, where it is quite simple to
collect large amounts of “legitimate” patterns whereas it is indeed more diffi-
cult to obtain representative datasets of attacks, given that attacks are specific
for each application. In a similar situation a one-class model that is built on
the basis of legitimate requests only represents the most reasonable choice.
Patterns labeled as attacks are those that are statistically too diverse from the
normal ones [14].

2. Which kind of pattern we should look at to detect attempts of intrusion? Let us
assume that we want to build a biometric system to restrict the access to a particular
area of a building. In biometrics it is well known that looking at the iris or at the
fingerprint is a good way to verify the identity of a person [33]. It is also known
that both iris and fingerprints are definitely better than other biometric properties,
such as for example the voice or the hand geometry [33]. And this is substantially
due to the “amount of information” about the identity which is larger in iris and
fingerprint with respect to that within other biometric properties. But what about
Intrusion Detection? If we want to protect a web application it is better to look at
the HTTP traffic incoming to the web server or to monitor the log files? Whatever
the choice, it seems a quite artificial dilemma because neither the network traffic
nor the web server logs are an “inner property” of the web application such as
fingerprints for a person.

3. Given a pattern, what is the best choice of features? Obviously this is a concern
not only for anomaly-based IDS but it is a general question which involves the de-
sign of every Pattern Recognition System. Suppose that we decided to monitor the
network traffic toward a web server to detect attacks against web applications that

8 Davide Ariu, Igino Corona, Roberto Tronci, and Giorgio Giacinto

it is hosting. It is enough to model only the HTTP payload or should we consider
also informations within the IP header? Assumed that we decided to model just the
HTTP payload, is an analysis of the bytes’ distribution enough or should we put
into the model the a priory knowledge about the structure of the HTTP payload?
This is not a trivial question to answer. In general, the more a priory knowledge is
used, the more accurate the resulting system is in classifying patterns. It is worth
noting, however, that the amount of false alarms and the detection rate are not the
only parameters that must be considered in the evaluation of an IDS. For example a
network based IDS has to meet severe real time constraints, and this means that the
representation of the pattern into the features space can’t be computationally too
expensive. Anyway a discussion of the choice of features goes beyond the focus of
this work.

4. Which is the algorithm the most suitable? The choice of the most suitable algo-
rithm to separate normal and malicious patterns is tricky and heavily depends on
the features chosen. Typically, the two options are supervised, and unsupervised
algorithms. Successful applications of both supervised [55] and unsupervised [76]
methods exist. For example, in [40] the authors show that in network intrusion
detection problems, supervised methods provide superior performances. Once a
choice has been made between a supervised or an unsupervised approach, a fur-
ther choice has to be made for a specific algorithm: a variety of alternatives exists.
The expertise of the designer together with a clear understanding of the problem
domain, and with a in-depth knowledge of the algorithms, are the only factors that
can drive this choice.

5. Is a single classifier sufficient or should the IDS be designed using an ensemble
of classifiers? Classifier ensembles are generally used to increase the classifica-
tion accuracy with respect to that of a single classifier. The price that must be paid
for this gain in accuracy is an increased complexity of the resulting system. This
complexity might cause, for example, an increase of the computational cost. In
security-related applications this might become a critical issue: a system such as a
network IDS must be able to keep up with the network speed; a biometric authen-
tication system must be able to produce a decision within the time frame allocated
for the task. Thus, the trade-off between complexity and computational cost must
be carefully evaluated.
A critical review on the popularity of the approach based on multiple classifiers has
been expressed by Ho [29]:

Instead of looking for the best set of features and the best classifier, now we
look for the best set of classifiers and then the best combination method.
One can imagine that very soon we will be looking for the best set of
combination methods and then the best way to use them all. If we do not
take the chance to review the fundamental problems arising from this chal-
lenge, we are bound to be driven into such an infinite recurrence, dragging
along more and more complicated combination schemes and theories and
gradually losing sight of the original problem.

Nevertheless, the combination of classifiers has been deeply investigated and many
successful applications exist in fields such as intrusion and spam detection or bio-
metrics [10,15,19,23,26,35,39,48,55]. In biometrics, intrusion and spam detection,

Machine Learning in Security Applications 9

the employment of multiple classifiers is further motivated by the fact that not only
the classification accuracy, but also the robustness against attempts of evasion is a
crucial parameter to evaluate a system. Usually, it is more difficult for an attacker
to evade multiple classifiers instead of a single one. In Section 5 we will provide
a brief description of Multiple Classifiers Systems and we will illustrate how they
can improve performances in high-risk applications.

2.1 One vs. Two-classes Pattern Classification

The aim of a security system is generally that of detecting (or even blocking) any kind
of malicious activity leaving as much as possible undisturbed all the normals. Within
the computer security community the malicious objects are usually referred to as “at-
tacks”, whereas in biometrics the term“impostors” is typically used. Malicious objects
are also referred to as“Positive” patterns both in computer security and in biometrics.
On the other hand, the legitimate (that is “negative”) patterns are usually referred to as
“normal” patterns in computer security, and “genuine” in biometrics.

Basically, every statistical pattern recognition system requires two different phases:

– A training or learning phase, where the parameters of the models are estimated.
– An operational phase, that is the phase where a system performs its activity in a

real world scenario, and provides the desired functions (attacks detection, in the
case of an IDS, or user authentication, in the case of a biometric system).

During the training phase, the models’ parameters are estimated based on a population
of examples that represent the objects the system has to classify. In principle the training
set, i.e., the data used in the training phase, should provide a good representation of the
real data: that is it should contain a number of samples of each class large enough to ob-
tain a good estimate of the distribution of the real population. This is generally true for
what concerns patterns of the normal class, since in computer security it is quite simple
to obtain large volumes of samples of legitimate patterns (e.g., network traffic traces,
web-server log files). Unfortunately this is not always true in the case of the positive
class: we mentioned in the previous section that might be reasonably simple collecting
samples of malware whereas to collect attacks against a web application might be not
so easy. This might be true also in the case where it is actually possible to collect a large
number of malicious samples, but this number is negligible with respect to the number
of possible attacks.

Thus, depending on the availability of attack samples, two different approaches can
be adopted to train the classifier:

– If we have enough samples of the positive and negative classes, a two-classes model
might be employed. During the training phase, the classifier models both the normal
and the attack class. During the detection phase, the pattern is assigned to one of
the two classes.

– If we do not have enough samples for the attack class, a one-class model might
be employed. During the training phase, the classifier learns how to model patterns
belonging to the normal class. During the detection phase, it estimates if the pattern
belongs to the normal class and, if it does not, it is considered as anomalous.

10 Davide Ariu, Igino Corona, Roberto Tronci, and Giorgio Giacinto

As a consequence of the above discussion, it should result clear why an anomaly
based system is able to deal and identify never-before seen attacks. The reason is that
the system does not make any assumption about the distribution of the attacks within
the features’ space, but it only represents the distribution of legitimate patterns. Then,
during the detection phase, it labels as anomalous all the patterns that do not fit within
the model created for this distribution.

In the following subsections 2.1 and 2.1 we will discuss in more details the two-
classes and one-class classification approaches.

Normal

Attack

Decision Boundary

Fig. 1. A possible representation of the problem of Intrusion Detection as a two class problem. In
this case the two distributions of patterns are perfectly separable with a linear classifier.

Two-classes Pattern Classification In figure 1 we propose a possible representation
of a two class problem. We have two populations of samples, one representing normal
patterns, and the other representing attacks.

During the training phase, the classifier estimates a decision boundary which sepa-
rates as better as possible the two classes. In this example, the problem is quite simple
given that even a linear classifier can separate the two classes perfectly. Unfortunately,
the scenario depicted in 1 is almost unrealistic. In fact, in real cases a certain overlap
usually exists between the two classes we aim to separate.

An additional example is presented in figure 2. Here the two distributions are not
linearly separable and a more sophisticated classifier is necessary to separate the two
classes. By using the boundary drawn in the figure, the classifier results quite accurate in
separating the two classes. In fact, only two patterns out of two thousands are misclassi-
fied. In spite of this result (that would be great for a large number of real applications),
a system designer should be aware of several issues that, once the system is deployed
in the real environment, can affect the performance estimated during the training phase.
In order to better clarify this point, let us focus on Figure 3 which depicts a detail of the
features’ space taken from Figure 2.

What is important to notice is that there are several points from both classes that
are classified correctly but that are very close to the boundary. We indicated patterns

Machine Learning in Security Applications 11

Normal

Attack

Decision Boundary

Fig. 2. A possible representation of the problem of Intrusion Detection as a two class problem.
The two classes are separated with a K-Neirest Neighbor classifier. A more detailed view of the
region within the rectangle is proposed in figure 3.

from the normal class that are in this situation such as False Positive Candidates. The
presence of these points close to the boundary means that a little change in the behavior
of normal patterns might produce a high increase in the rate of false positives. In the
case of a network-based Intrusion Detection System (IDS) this might be a very risky
situation, since that, with high volumes of traffic, the amount of false alarms might
become very large. In addition, an attacker might decide to exploit this situation sending
“fake attacks” that are not dangerous at all but that make the IDS generating a huge
number of alarms [74]. Despite this is not strictly dangerous since these attacks do not
produce any damage, the false alarms represent noise that an attacker could cause to
masquerade the real attacks.

Normal

Attack

Decision Boundary

False Positive

Candidates

False Negative
Candidates

Fig. 3. A detail of the figure 2. The presence of several points very close to the decision boundary
indicates that the system is neither resilient to attempts of evasion nor robust respect to variations
of the normal patterns.

12 Davide Ariu, Igino Corona, Roberto Tronci, and Giorgio Giacinto

P(normal | x)

P(attack | x)

False Positives

False Negatives

Threshold

Fig. 4. Posterior probabilities distribution for a two-classes one-dimensional problem.

On the contrary, the presence of attack patterns close to the boundary is dangerous
for what concerns the robustness of the system against attempts of evasion. We indi-
cated these patterns as False Negative Candidates. The proximity of these attacks to the
boundary represents for an attacker a great opportunity of evading the system with little
modifications of the attack patterns. A practical example is that of “polymorphic en-
gines” (e.g. CLET [18]) that can be used to modify the statistical properties of intrusive
network traffic so that they resemble those of the normal traffic and are consequently
able to evade a network-based IDS.

A simple mathematical model of the two-class problem is that based on the Bayesian
Decision Theory [20]. Class-labels are assigned by a Bayesian classifier on the basis of
the a posteriori probabilities. Given a generic class “c” and a pattern “x” the a posteriori
probability of c given x is the probability of having the class c given that the pattern is
x. Basically, the a posteriori probability (also known as posterior) indicates how much
the pattern x is likely to belong to the class c.

In an intrusion detection problem formulated as a two-class problem, the two possi-
ble classes are obviously “normal” and “attack”. According to the Bayes decision rule
if

P(normal|x)> P(attack|x) (1)

x is assigned to the normal class; otherwise it is assigned to the attack class.
The probability of error for the rule is:

P(error|x) = min[P(normal|x),P(attack|x)] (2)

An example of posteriors for a simple one-dimensional problem is proposed in fig-
ure 4. From the figure it is possible to infer easily how the false positive and negative
rates variates in consequence of the threshold. Moving the threshold toward the attacks’

Machine Learning in Security Applications 13

posterior, the false positive rate reduces but increases the number of unrecognized at-
tacks. On the contrary, a threshold which moves in the direction of the normal class
posterior will increase the detection rate but also the amount of false positives.

One-class Pattern Classification One-class classification techniques are particularly
useful in the case of two-class learning problems whereby one of the classes, referred
to as target class, is well-sampled, whereas the other one, referred to as outlier class,
is severely under sampled. The low number of examples from the outliers class may be
motivated by the fact that it is too difficult or expensive to obtain a significant number
of training patterns of that class [67]. The goal of one-class classification is to construct
a decision surface around the examples from the target class in order to distinguish
between target objects and all the other possible objects, i.e., the outliers [67].

Normal

Decision Boundary

Fig. 5. A possible representation of the problem of Intrusion Detection as a one class problem. A
closed surface is drawn around the distribution of normal patterns which leaves outside a certain
fraction of rejected samples.

Given an unlabeled training dataset that is deemed to contain mostly target objects,
a rejection rate is usually chosen during the training phase so that a certain percent-
age of training patterns lies outside the constructed decision surface. The rejection rate
takes into account the possible presence of noise (i.e., unlabeled outliers), and allows
us to obtain a more precise description of the target class [67]. In the case when the
training set contains only “pure” target patterns, this rejection rate can be interpreted as
a tolerable false positive rate. This situation is represented in figure 5.

The decision boundaries obtained with two different classifiers are compared in fig-
ure 6. The “Decision Boundary - 1” is obtained using a quadratic discriminant classifier
which realizes a closed surface around the distribution of normal patterns. The “Deci-
sion Boundary - 2” is obtained using a polynomial of 3rd degree. Obviously neither of
the two classifiers can do anything against the attacks that falls exactly over the distribu-
tion of normal patterns. Additional features would be necessary to detect these attacks.
Nevertheless, the closed surface realized by the quadratic classifier is by far better than
the decision boundary drawn by the polynomial.

14 Davide Ariu, Igino Corona, Roberto Tronci, and Giorgio Giacinto

!

!

"#$%&'

())&*+,

-.*/,/#0!1#203&$4!!!5

-.*/,/#0!1#203&$4!!!6

Fig. 6. A possible representation of the problem of Intrusion Detection as a one class problem.
Two different decision boundaries are represented, belonging to a quadratic discriminant clas-
sifier (Boundary -1) and to a polynomial of 3rd degree (Boundary - 2) respectively. The figure
shows that Boundary - 1 guarantees a higher robustness against attempts of attack.

The main problem with the polynomial classifier is that the region assigned to the
normal class is considerably wider than the space effectively covered by normal pat-
terns. As a direct consequence of this, an attacker that is trying to evade the system is
not strictly required to create attacks that appear similar to legitimate patterns: what is
important to achieve evasion is that the attack falls into the region assigned to normal
patterns. Obviously, the larger this region, the easier the task of evading the system.
On other side, to evade a system based on the quadratic classifier an attack has to fall
exactly over the distribution of normal patterns.

A possible issue related to the choice of the quadratic classifier is the limited tol-
erance against changes in the distribution of legitimate patterns. If this change occurs,
a decision surface such as that drawn by the quadratic classifier easily lets the system
generating large numbers of false alarms. The solution to this is usually represented by
system re-training. In Section 4 we will say more on this while talking about Moving
Targets.

3 Evaluation of Pattern Recognition Systems for Security
Applications

Evaluating pattern recognition systems in security applications is an inherently difficult
task. We can identify several issues:

– a statistically representative training set must be obtained; that is, patterns within
the training set should be representative of patterns that will be encountered during
the operating phase. Even if this aspect is in common with every pattern recognition
problem, security applications make this task more challenging, due to:
• undersampled data: some pattern classes may be severely undersampled de-

pending on the security application. For instance, this may be the case of intru-
sive patterns, since intrusions are typically “rare” events.

Machine Learning in Security Applications 15

• time-variant data: the statistical distribution of representative patterns may
evolve rapidly, and new features may be required (e.g. once new intrusion tech-
niques have been discovered).

• privacy and authorization issues: training data employed by security appli-
cations is often privacy-sensitive. Thus, obtaining and sharing such data may
be difficult, as it requires authorization, and its storage requires privacy-safe
databases. For instance, traffic towards web applications may contain confiden-
tial data about web users (e.g. passwords, personal data, credit card numbers).

– a clever, adaptive adversary, who aims to evade or divert the expected behavior
of the pattern recognition system, should be taken into account. For instance, an
adversary may exploit any vulnerability in the decision boundary of a classifier
to evade it. Moreover, she may target a classifier at training phase, by inserting
“poisoning” patterns within training data, to mislead the learning algorithm. Pattern
recognition systems for security applications should be robust to such attacks.

– it is difficult to identify “standard” evaluation metrics, because these metrics may
change according to application-specific constraints and challenges.

With these challenges in mind, Section 3.1 aims to outline the general metrics to
the evaluation of classification accuracy in security applications. These metrics can be
viewed as “best practices” for performance evaluation, as they are widely accepted by
the scientific community working on pattern recognition and computer security. We will
employ such metrics for the experimental evaluation of security solutions described in
Section 6.

3.1 “Two-class” problems and ROC Curves
In Section 2 we have pointed out that high risk applications can be formulated in terms
of a one-class or a two-class Machine Learning problem. This aspect regards only the
classification approach used, but from the evaluation point of view they can be both
treated as a two-class problem. These two classes are usually denoted with the terms
positive class p (i.e., the class of patterns we want to locate), and negative class n (i.e.,
a “true” class in the two-class approach, and the “the rest of the world” in the one class
approach).

Thus, in the evaluation process of a two-class problem for a generic pattern y, four
possible outcomes can be obtained [22]:

– y is a positive pattern and it is classified as belonging to the positive class, then it is
a true positive

– y is a positive pattern and it is assigned to the negative class, then it is a false
negative

– y is a negative pattern and it is assigned to the negative class, then it is a true
negative

– y is a negative pattern and it is assigned to the positive class, then it is a false
negative

If we measure the number of patterns falling in each of the above four cases, different
metrics can be derived:

true positive rate (T PR) =
positives correctly classi f ied

total positives

16 Davide Ariu, Igino Corona, Roberto Tronci, and Giorgio Giacinto

f alse positive rate (FPR) =
negatives incorrectly classi f ied

total negatives

true negative rate (T NR) =
negatives correctly classi f ied

total negatives

f alse negative rate (FNR) =
positives incorrectly classi f ied

total positives

precision =
true positives

true positives + f alse positives

accuracy =
true positives + true negatives

total positives + total negatives

speci f ity =
true negatives

true negatives + f alse positives

it is worth noting that
T PR + FNR = 1

T NR + FPR = 1

Moreover, depending from the applications at hand, different terminology are used.
In some Pattern Recognition and Machine Learning application the terms “hit rate”
or “recall” (i.e., the true positive rate), and “false alarm rate” (i.e., the false positive
rate) are used. In biometric authentication, the terms “false non matching rate” or “false
rejection rate” (i.e., the false negative rate), “false matching rate” or “false acceptance
rate” (i.e., the false positive rate), and “true matching rate” or “genuine acceptance rate”
(i.e., the true positive rate) are used, as they are obtained by comparing the unknown
pattern y to a known pattern xi to verify if their identities match (if so, the pattern
correspond to a “genuine” user) [32, 44].

In this kind of problems the outcome of a classifier can be of two types: in the case
of a two-class formulation, a pattern is assigned either to the (positive or negative) class,
while in the case of one-class formulations, a similarity score (or rank) is assigned to
each pattern with respect to patterns belonging to the positive class. In the latter case
a class can be assigned to the pattern by setting a decision threshold th: if the score
is greater then th than the pattern is assigned to the positive class, otherwise to the
negative one, it is important to notice that the decision threshold can be set to fulfill
specific constraints. The use of a similarity score is the one generally used in the case
of high risk real-world applications as it allows to fix a decision threshold in agreement
with the trade-off imposed by the required level of security.

To assess the global performance in two-class problems, the Receiver Operating
Characteristic curve (ROC) is the generally used. This curve plots the true positive
rate against the false positive rate as the decision threshold th varies along the score
range [22]. Other two well used performance measures related to the ROC curve are:
the Area Under the ROC Curve (AUC), and the Equal Error Rate (EER). The AUC
summarizes the performance for all the values of the decision threshold.

AUC =
∫
(T PR(th))dFNR(th)

Machine Learning in Security Applications 17

it is worth noting that the larger the AUC, the better the ROC [11]. The EER represents
the point of the ROC curve where the false positive rate and the false negative rate
are equal, and a good system should keep this value as small as possible. The relations
between the ROC, the AUC, and the EER are illustrated in Figure 7.

Fig. 7. An example of a ROC curve, its AUC and its EER.

One way to compute the AUC is to use the formulation based on the the Wilcoxon-
Mann-Whitney statistic [28, 45] instead of computing a numeric integral of the curve:

AUC =
∑n+

a=1 ∑n−
b=1 I(sp

a, j,s
n
b, j)

n+ ·n−
(3)

where n+ is the number of positive patterns and n− is the number of negative, p and
n indicate the scores of the patterns belonging to the positive and the negative class
respectively, and the function I(sp

a, j,s
n
b, j) is:

I(sp
a, j,s

n
b, j) =

{
1 sp

a, j > sn
b, j

0 sp
a, j < sn

b, j

Moreover the AUC can be statistically interpreted as follows: given two randomly cho-
sen users, Xp belonging to the set of the positive patterns and Y n belonging to the set
of the negative, the AUC is the probability P(Xp > Y n), i.e. the probability of correct
pair-wise ranking [28].

18 Davide Ariu, Igino Corona, Roberto Tronci, and Giorgio Giacinto

All the measurements illustrated so far can be used for assessing the performance in
a two-class problem. In particular, the ROC and AUC measures globally indicate how
good the performance of a system are.

Usually, when dealing with high risk applications, the interest is focused on “local”
performances of the classification systems, i.e., the performances measured in a partic-
ular range of values of input patterns, rather than on the average performance. To this
end, a number of measures have been devised. The EER is a measure typically used
to evaluate biometric systems, that takes into account a particular working point, i.e.,
the point where the errors are balanced (i.e., the FPR and the FNR are equal). Other
measures obtained in specific working points are generally used to evaluate biometric
systems:

– 1% FPR: the value of FNR or TPR when the FPR is 1%
– 1% FNR: the value of FPR when the FNR is 1%
– 0% FPR: the value of FNR or TPR when the FPR is 0%
– 0% FNR: the value of FPR when the FNR is 0%

The 1% FNR is a measure that is also widely used in the assessment of computer secu-
rity systems.

Another well know “local” measure is the partial AUC (AUCp). The AUCp is noth-
ing but the AUC computed in a specific range of FPR. Generally it is used to measure
the partial area under the ROC in the range [0,d], where d is the maximum error in
terms of FPR that can be accepted for a specific security system.

4 Causes of performances’ variability

In this section, we briefly describe all the possible sources of performance’ variability
of systems based on statistical algorithms. In particular, this analysis will concentrate
on the accuracy of the systems in correctly classifying the analyzed patterns.

For the purpose of this discussion, we distinguish the sources of variability in “in-
ternal” (or intrinsic) and “external’’.

We consider a source of variability as intrinsic if it concerns the design (i.e., the
architecture) of the system and its implementation and deployment in the real world. In
this sense, the performance of the system can be influenced by many factors, such as:

– Classifier parameters setting. In some cases, an initial estimate of the parameters
must be provided before the learning phase. This estimate can just be a random
choice of the values of the parameters, or it can be calculated on the basis of the
application constraints, and of the dataset that will be used to train the classifier.

– In the case of ensemble systems, the number of classifiers in the ensemble also
influences the performance of the system. As we will show in section 6.1, perfor-
mance usually become more stable as the number of combined classifiers increases.

– The strategy used for combining classifiers. It obviously has a strong impact on the
accuracy achieved. This issue will be discussed in 5.

– The dataset used to train the system. It must be large enough and representative of
the real scenario where the system will be deployed.

Machine Learning in Security Applications 19

On the other side, we consider external sources of variability the issues descending
from the fact that the distribution of patterns to be classified is non stationary over time.
The last one is a well known problem in the statistical pattern recognition literature, and
it can be referred as the problem of the “Moving Targets.” However, with respect to the
traditional definition of non stationarity, i.e., modifications of the statistical distribution
of patterns over time, security related problems are affected by the intentional actions
of an adversary who craft new patterns in order to mislead the learning phase, and to
have them being undetected by the protection system.

It is quite easy to see that the success of pattern recognition applications requires
the detailed definition of the objects that have to be classified, and the detailed defi-
nition of the characteristics of the classes the objects have to be assigned to. In order
to perform classification, measurable features must be extracted so that the classifica-
tion can be performed on the basis of the values of the features. In this sense, among
security application scenarios, the detection of computer attacks is actually one of the
most challenging problems in security scenarios for three main reasons. One reason is
related to the difficulty in predicting the behavior of software programs in response to
every input data. Software developers typically define the behavior of the program for
legitimate input data, and design the behavior of the program in the case the input data
is not correct. However, in many cases it is a hard task to exactly define all possible
incorrect cases. In addition, the complexity and the interoperability of different soft-
ware programs make this task extremely difficult. It turns out that software products
always exhibit weaknesses, a.k.a. vulnerabilities, which cause the software to behave
in an unpredicted way in response to some particular input data. The impact of the
exploitation of these vulnerabilities often involves a large number of computers in a
very short time frame. Thus, there is a huge effort in devising techniques able to detect
never-seen-before attacks. The main problem is the exact definition of the behavior that
can be considered as being normal and which cannot. One of the reasons relies in the
fact that the vast majority of computers are general-purpose. Thus, the user may run
different kind of programs, at any time, and switch among them in any fashion. It turns
out that the normal behavior of one user is typically different to that of other users.
In addition, new programs and services are rapidly created, so that the behavior of the
same user changes over time. Finally, as soon as a number of measurable features are
selected to define the normal behavior, attackers are able to craft their attacks so that it
fits the typical feature values of normal behavior. The above discussion, clearly show
that the target of attack detection tasks rapidly moves, as we have an attacker whose
goal is to be undetected. As a consequence, each move made by the defender to secure
the system can be made useless by a countermove made by the attacker [65]. It is also
worth noting that the defender has a partial knowledge of the attack, as the attacker
may be able to craft the attacks in a way that drives the defender to select accidental
features of the attacks as the most discriminative features [54]. The rapid evolution of
the computer scenarios makes the detection problem quite hard, as the speed of creation
and diffusion of attacks increases with the computing power of today machines.

Apart from the above peculiarities of computer security, security systems must be
designed by taking into account the characteristics of the adversarial environment in
which they will operate. This is quite clear when physical security systems are de-

20 Davide Ariu, Igino Corona, Roberto Tronci, and Giorgio Giacinto

signed, while this is a quite new topic in the field of machine learning systems for new
security applications such as computer security and biometric authentication. In the fol-
lowing subsection we will briefly summarize the major threats against machine learning
systems that are originated by the so-called “adversarial environment”.

4.1 Machine Learning Systems in an Adversarial Environment

Security tasks like intrusion detection in computer networks and biometric authentica-
tion can be viewed as adversarial classification tasks [17], i.e., tasks where intelligent,
malicious, and adaptive adversaries can manipulate their samples to mislead a pattern
recognition system. Adversaries can either exploit vulnerabilities in its learning algo-
rithm (poisoning [50] or causative [7] attacks) or imprecisions in its decision boundary
(classification attacks). In the following, we briefly discuss about these two classes of
attacks with reference to intrusion detection and biometric authentication.

Poisoning attacks. In intrusion detection skilled adversaries may inject poisoning
patterns to mislead the learning algorithm which infers the profile of legitimate activ-
ities [38] or intrusions [13, 57]. In biometric authentication systems adversaries may
spoof biometric traits in order to mislead template update methods (e.g. gradually “in-
ject” erroneous templates in the system) [34].

Classification attacks. In intrusion detection clever adversaries can modify their
attack patterns either to evade a classifier [49, 71], or inject a large amount of false
alarms, in order to hide their “real” attacks from security operators, as a needle in a
haystack (overstimulation) [52, 75]. Clever adversaries can also spoof biometrics to
evade biometric authentication systems [5, 46, 47, 70].

It is easy to see that such adversarial actions can cause performance degradation.
In fact, one of the main objectives in adversarial classification tasks is the design of a
robust classifier, namely, a classifier whose performance degrades as gracefully as pos-
sible under attack [17]. A key issue of robustness evaluation is the correct “simulation”
of adversarial actions against a pattern recognition system. This analysis is far from
being trivial, as it should take into account the characteristics of such a system (e.g.,
processed data, selected features, learning algorithm, decision function) and the capa-
bilities of adversaries in the operating environment where this system will be deployed.
This is perhaps the reason why adversarial classification is attracting a growing interest
from the pattern recognition and machine learning communities [41].

5 Multiple Classifier Systems

In the previous section we have outlined that, when a pattern recognition system is
built, several causes of performance variability should be taken into account. This effect
is quite severe in the case of security applications, where typically the performance
attained by individual experts does not provide the necessary reliability. For this reason,
the Multiple Classifier Systems approach was introduced.

Multiple Classifier Systems (MCS) are widely used in Pattern Recognition applica-
tions as they allow to avoid the process of designing/choosing the “best” classifier for a
given problem and a given set of patterns [9,25,27,35–37,39,51,60,61,63,73]. In fact,

Machine Learning in Security Applications 21

the combination of classifiers typically provide better performance than those provided
by individual experts [39]. Moreover, in the combination of classifiers, the single clas-
sifiers can be based on different input sources, so that complementary information can
be exploited, and the resulting combination is robust with respect to noise [39].

Basically, an MCS exploits the decisions made by an ensemble of classifier, and
combines these decision to obtain a “better” classification. According to [19], there are
at least three reasons for which an ensemble results more accurate and robust of any
classifier in the ensemble:

– The statistical reason. A learning algorithm can be viewed as a search for the best
hypothesis in a space H of hypotheses. In consequence of the finite size of the
training set, the learning algorithm will usually end up with a number of classifiers
that achieve the same accuracy on the training data. These classifiers, however, may
not produce the same accuracy on unseen data. By constructing an ensemble out all
of them, the risk of choosing the wrong classifier can be reduced.

– The computational reason. In many cases the optimal training of a classifier is a
NP-hard problem: consequently, most learning algorithms usually aim at finding a
local optimum of the target function. This optimum usually depends on the starting
point. This means that by running the local search from different starting points,
and using the obtained classifiers to build an ensemble, a better approximation of
the true unknown function can be attained.

– The representational reason. In most machine learning applications, the true func-
tion for the problem at hand cannot be represented by any of the functions available
in H. The use of weighted sums of hypotheses drawn from H may allow expanding
the space of representable functions.

Ensemble Methods in Machine Learning 3

The first reason is statistical. A learning algorithm can be viewed as sear-
ching a space H of hypotheses to identify the best hypothesis in the space. The
statistical problem arises when the amount of training data available is too small
compared to the size of the hypothesis space. Without sufficient data, the lear-
ning algorithm can find many different hypotheses in H that all give the same
accuracy on the training data. By constructing an ensemble out of all of these
accurate classifiers, the algorithm can “average” their votes and reduce the risk
of choosing the wrong classifier. Figure 2(top left) depicts this situation. The
outer curve denotes the hypothesis space H. The inner curve denotes the set of
hypotheses that all give good accuracy on the training data. The point labeled f
is the true hypothesis, and we can see that by averaging the accurate hypotheses,
we can find a good approximation to f .

H H

H

Statistical Computational

Representational

h1

h3h4

h2

f f

f

h1

h2 h3

h1

h2

h3

Fig. 2. Three fundamental reasons why an ensemble may work better than a single
classifierFig. 8. Three fundamental reasons why an ensemble may work better than a single classifier

[19]

22 Davide Ariu, Igino Corona, Roberto Tronci, and Giorgio Giacinto

The combination rules for building an MCS introduced so far can be distinguished
by the combination level and the combination strategy. The combination strategy can be
distinguished into two approaches, namely, the “fusion”, and the “selection” approach.
“Fusion” mechanisms aim to combine the outputs of different classifiers into a new
one. On the other hand, “selection” mechanisms aim to select one of the outputs of the
classifiers in the ensemble. Combination can be performed at different levels: the raw
data level, the feature level, the score (or rank) level, and the decision level. The raw
data combination is performed at sensor/physical level. The feature level combination
combines different features sets to a new feature. The decision level combination relays
only to the final class decision. Finally, the score level combination combines the score
outcomes from the classifier into a new one. In the case of security application the
score level is the most used as it allows to combine different combination of sources
and classifiers because it relays only on the score (e.g. at raw data level the source and
the sensor must be compatible).

In the following we are going to illustrate some combination rules that works at
score level.

5.1 Classifier Score Fusion

The basic assumptions of the fusion strategy is that the ensemble of classifiers to be
combined are considered as competitive rather than complementary. Thus, this strat-
egy fuses the score outcomes of an ensemble of classifiers to produce a “new” single
score, usually different from those produced by the classifiers. A large number of fusion
functions is available from the literature, each one with its pros and cons, and different
complexity.

In this work we will consider the Maximum, the Minimum, the Mean and the Geo-
metric mean rules [35].

– the Maximum rule:
s∗i = max{si j} (4)

– the Minimum rule:
s∗i = min{si j} (5)

– the Mean rule:

s∗i =
1
K

K

∑
j=1

si j (6)

– the Geometric mean rule:

s∗i =

[
K

∏
j=1

si j

] 1
K

(7)

These static rules are widely used in Pattern Recognition to combine classifiers be-
cause they allow achieving good results in spite of their simplicity. Nevertheless, trained
combination rules have been also proposed to better exploit additional knowledge of
the domain at hand. As pointed out in [21], combining classifiers using static rules is
a suboptimal solution, whereas trained combination rules are asymptotically optimal.

Machine Learning in Security Applications 23

Despite this, in this work we used static rules for two main reasons. One reason is re-
lated to the issues involved in building a trained combiner that make its design a non
trivial task especially in high security applications. The other reason is that static rules
are very fast to be computed, and thus the additional computational cost is very small
compared to the one typically required by trained combination rules.

5.2 Classifier Score Selection

Classifier Selection is based on the assumption that each classifier in a given ensemble
exhibits a higher “expertise” than others on a subset of patterns. For each pattern to be
classified, the system selects the classifier which is considered to provide the highest
accuracy for the pattern at hand. It is easy to see that the main difficulty with this
approach is the development of the selection criterion. On the other hand, it can be
easily shown that if the selector works properly, very high accuracy can be attained.

This selection could be “static” or “dynamic”. With the term “static” we mean that
once the classifier is selected it will be used for all the patterns to be combined. Instead
with the term “dynamic” we mean that the classifier is selected according with the
patterns to be combined. A general schema of a selection strategy is shown in Figure 9.

Fig. 9. A general schema of an score selection system.

In the case of combining similarity scores it is difficult to assess witch are the op-
timal performance achievable with a selection rule. For this purpose the “Ideal Score
Selector”, proposed in [68], represents the upper bound of the selection strategy. The
output of such Ideal Score Selector can be computed as:

s∗i =
{

max{si j} if xi is a positive pattern
min{si j} if xi is a negative pattern (8)

It can be seen that the selector is “ideal” as the selection function requires the knowl-
edge of the true class the pattern belongs to.

An example of the results attained by the Ideal Score Selector is shown in figure
10, where two classifiers are combined. In particular, for each classifier the distribution
of the output values for the two classes is shown. It is easy to see that the distribution
of the output values of the Ideal Score Selector allows a better separation between the
classes with respect to each of the combined classifiers.

24 Davide Ariu, Igino Corona, Roberto Tronci, and Giorgio Giacinto

False Positive Rate

Tr
u

e
 P

o
si

ti
v
e
 R

a
te

Expert 1
Expert 2

Fig. 10. An example of ideal score selector with two biometric experts from a real dataset.

It can be easily seen that the above Ideal Score Selector exhibits a better ROC curve than
the ROC curves of each individual classifiers used in the combination, and consequently
a larger AUC [68]. Moreover, it has also been shown that the Ideal Score Selector always
attains a larger AUC than that obtained by the linear combination, whatever the value
of the weights, and the number of classifiers [68].

6 Performance Evaluation of Machine Learning Techniques for
Computer Security and Biometric Authentication

In this Section, based on our experience in the field, we will address a number of prac-
tical issues related to the evaluation of performance of machine learning systems for
computer security and biometric authentication systems. In Section 3 we presented the
performance evaluation metrics which are typically employed in two-class problems. In
the following, such metrics are used to evaluate Multiple Classifier Systems (MCS) for
different security applications. In fact, MCS actually represent a successful approach
when security related applications are involved. The rest of the Section will provide a
number of arguments to support this claim. In Section 6.1 we show that systems based
on multiple classifiers can achieve results, in terms of classification accuracy, higher
than those achieved by the classifier combined independently considered. To this end,
we show the experimental results achieved with HMMPayl [6]. HMMPayl is a network-

Machine Learning in Security Applications 25

based Intrusion Detection System designed for detecting attacks against a web-server
(and the hosted web-applications) trough the analysis of the HTTP traffic toward the
server. In Section 6.2 we show that a thorough choice of score combination rules can
significantly enhance MCS performance. As a case of study, we will refer to a biomet-
ric authentication system. Finally, in Section 6.3 we analyze the problem of poisoning
attacks. We show that MCS based on weighted bagging can significantly reduce per-
formance degradation caused by such attacks. To this end, we refer to an intrusion
detection system (IDS) for web services.

It is interesting to note that performance evaluation may focus on one or more of
the measurements described in Section 3, depending on the application. For instance, a
false positive rate higher than 1% is often unacceptable in intrusion detection problems.
So, intrusion detection performance is typically evaluated using the partial AUC. On
the other hand, the EER is often used in biometric authentication problems, as it is im-
portant to verify which is a reasonable trade-off between the false positive rate and the
false negative rate. Moreover, other specific working points are explored in biometrics
with the aim of finding how the designed system works in different security constraints.
These evaluation differences are quite intuitive, because each application may reflect
different operating constraints and challenges in a real environment.

6.1 Number of Classifiers and MCS Accuracy

As we already mentioned, HMMPayl [6] is a network based IDS for the detection of the
attacks against a web server. HMMPayl relies on the assumption that HTTP-requests
carrying attack attempts appear different with respect to the normal traffic from the
point of view of the bytes’ distribution. In particular, HMMPayl uses Hidden Markov
Models [59] to represent the bytes’ distribution of legitimate HTTP payloads. It is worth
to remind here that the HTTP payload is the portion of the network packet that carries
the HTTP-request sent by the client to the web-server.

Hidden Markov Models allows to extract high-order statistics from the payload and
to create an accurate model of it. In this sense, HMMPayl addresses limitations of pre-
viously proposed approaches based on the n−gram analysis [72] or on approximation
of it [53].

Hidden Markov Models are trained using the Baum-Welch algorithms [8] which
basically relies on the Expectation-Maximization procedure. Starting from an initial
estimate of the model parameters, the Baum-Welch algorithm estimates the final value
for these parameters by finding a local maximum of the likelyhood of the sequences
within the training set. The value of this maximum (as well as the final estimate for
the parameters), is obviously influenced by the initial value set for the parameters. In
pattern recognition applications is quite frequent to set this value randomly, when a
criteria can not be clearly identified to estimate the initial value.

Thus, the final behavior of a classifier (roughly speking the “classification accu-
racy” that it is able to achieve) on a given dataset, will obviously depend on the ini-
tial parameter estimate. In order to mitigate this effect, a countermeasure which is fre-
quently adopted consists in training several classifiers (starting from different initializa-
tions) and then combining them in order to create a MCS.

26 Davide Ariu, Igino Corona, Roberto Tronci, and Giorgio Giacinto

As HMMPayl too follows this approach, interesting considerations can be made by
analyzing how the IDS behaves as the number of combined classifiers increases. Re-
sults are shown in Figure 11. The figure shows the partial AUC achieved on two differ-
ent attacks datasets labeled respectively Generic and XSS-SQL. These datasets contains
respectively 66 and 38 common attacks against web-servers and web-applications. The
partial AUC has been calculated considering a number of classifiers from 1 to 5. Classi-
fiers are combined using the minimum rule. All the possible combinations of 2, 3, and
4 classifiers have been considered and the average AUCp has been calculated.

Fig. 11. Increase of the AUCp with the number of classifiers. The AUCp is the average of those
obtained considering all the possible combinations of 2, 3, and 4 classifiers. Classifiers are com-
bined using the minimum rule.

It is important to observe that the AUCp increases as the number of classifiers com-
bined. We limited to five the maximum number of classifiers in the ensemble since from
some preliminary experiments we observed that five was a good trade-off between ac-
curacy and computational cost. In particular the figure clearly shows that the increase
of the AUCp obtained adding a classifier to the ensemble becomes smaller as the size of
the ensemble increases.

In addition, let us consider table 1 where the AUCp achieved by single classifiers is
compared to that achieved using all the five HMM and the minimum rule.

With respect to XSS-SQL attacks we can observe that HMM3 and HMM5 perform
very poorly. In spite of their presence within the ensemble, the AUCp achieved by the
ensemble is only of a 0.44% smaller of that achieved by the best classifier. This result
is particularly interesting if we consider that it is not trivial to establish which classi-
fier will provide the best performance on different test sets. This is clearly shown in
table 1 where HMM3 performs very bad on XSS-SQL attacks while it is the second

Machine Learning in Security Applications 27

Table 1. Value of the AUCp for individual classifiers. The MCS includes all of the five HMM
combined with the minimum rule.

HMM1 HMM2 HMM3 HMM4 HMM5 MCS
Generic 0.8036 0.8163 0.8564 0.8973 0.7944 0.918

XSS-SQL 0.8559 0.8584 0.6155 0.8221 0.6717 0.8546

best (after HMM4) on the Generic dataset. Further on the Generic attack dataset, the
AUCp obtained with the MCS is higher than that achieved by the best classifier in the
ensemble.

6.2 Score Combination Rules and MCS Accuracy

In Section 5 we have pointed out that in the case of security applications such as bio-
metrics and intrusion detection the combination is usually performed at the score level.
This level of combination is the most used, especially in biometrics, because it allows
combining different biometric traits, and different identity matching algorithms at the
same time [62]. This aspect is very important in building a more reliable and robust
biometric system because every biometric trait has its pros and cons. Thus, we’ll show
on a biometric dataset how different combination rules increase the performance with
respect the single classifiers. Moreover, we remark again that one of the advantages of
using an MCS is the one of avoiding to choose the classifier that provided the “best”
performances with respect to a given reference set, thus allowing the constructed system
to provide acceptable performances in different working conditions.

The experiments of this section have been performed on the Biometric Authenti-
cation Fusion Benchmark Database (BA-Fusion), a multimodal database of similar-
ity scores artificially created from experiments carried out on the XM2VTS face and
speaker verification database [58]. This dataset contains similarity scores from 8 clas-
sifiers (different biometric traits and/or different matching algorithms), and the scores
have been normalized by the Tanh rule [62].

Reported experiments aim at assessing the performance of the proposed techniques
in terms of different performance measures. In particular, the AUC, the EER, have been
used, as well as error measures at four operating points that are generally used to test
security systems, namely FPR 1%, FPR 0%, FNR 1% and FNR 0%. Thus, the FNR
(FPR) attained when the FPR (FNR) is equal to 1% or 0% are measured, respectively.

Experiments have been carried out by creating ensembles whose size ranges from 2
to 8, i.e., from the minimum to the maximum ensemble sizes. For each size, all possi-
ble classifier ensembles have been considered. In order to get unbiased results, a 4-fold
cross-validation technique has been used. The dataset has been subdivided into 4 sub-
sets, so that one subset at a time was used for training, while the other three have been
used for testing. Results are reported in terms of average and standard deviation over
the four trials, and over all the possible ensemble of classifiers for a given ensemble
size. In this way we can show that what we have proven in the previous section holds
also for biometrics.

In these experiments the comparisons are made using the following combination
rules: the Mean rule as static combination rule, the dynamic linear score combina-

28 Davide Ariu, Igino Corona, Roberto Tronci, and Giorgio Giacinto

tion rule, the Score Decidability Index-mean, the ∆ -voting, and the ∆ -mean proposed
in [42]. Performance are also compared to the best performance provided by the indi-
vidual classifiers included in the ensemble. It is worth noting that for each measure of
performance, the best value for the “best classifier” can be related to a different classifier
in the ensemble to be combined.

The dynamic score combination rules are all derived from the logical schema of
the ideal score selector, and they exploit the Score Decidability Index (SDI) [42] that
is related to the likelihood the pattern xi is drawn either from the positive or negative
distributions of scores:

∆(sik) = r+(sik)− r−(sik)

where r−(s) represents the probability that the score s is lesser than a score coming
from the positive distribution, and r+(s) represents the probability that the score s is
larger than a score coming from the negative distribution.

The Dynamic Linear Combination is defined as:

s∗i =
N

∑
k=1

αik · sik (9)

where

αik =
∆(sik)+1

2
(10)

We will refer to this technique as DLC.
The SDI-mean is computed as:

s∗i =
1
N

N

∑
k=1

∆ik +1
2

(11)

The ∆ -voting and the ∆ -mean exploit the SDI in the framework of a simplified
combination scheme called Dynamic Score Combination (DSC) [69]. The ∆ -voting is
computed as follows:

s∗i = β1i ·max
k

(sik)+β2i ·min
k
(sik)

β1i =
1
N

N

∑
k=1

I(∆(sik),α)

β2i =
1
N

N

∑
k=1

I(−∆(sik),α)

where the “likelihood” of the sample belonging either to the positive or the negative
class, by counting the fraction of the classifiers that exhibit a decidability index larger
than an offset α .

The ∆ -mean is computed as follows:

s∗i = βi ·max
k

(sik)+(1−βi) ·min
k
(sik)

Machine Learning in Security Applications 29

Table 2. Performance in terms of average and standard deviation (between brackets) for all the
ensembles of 5 classifiers. Results with a ◦ indicate that the difference in performance from those
achieved by the Mean-rule are not statistically significant according to the t-test with a 95%
confidence. The best performance are in italics.

AUC EER
Mean-rule 0.9998(±0.0002) 0.0058(±0.0019)
Best expert 0.9984(±0.0014) 0.0125(±0.0046)
DLC 0.9998(±0.0002) 0.0045(±0.0017)
SDI mean 0.9998(±0.0002) 0.0049(±0.0023)
∆ Voting 0.9997(±0.0005) 0.0045(±0.0021)
∆ mean ◦ 0.9998(±0.0003) 0.0047(±0.0019)

FPR-0% FPR-1% FNR-1% FNR-0%
Mean-rule 0.0941(±0.0342) 0.0040(±0.0026) 0.0023(±0.0017) 0.0719(±0.0827)
Best expert 0.3518(±0.1148) 0.0135(±0.0092) 0.0192(±0.0181) 0.1237(±0.1120)
DLC 0.0886(±0.0469) 0.0028(±0.0024) 0.0008(±0.0010) 0.0532(±0.0599)
SDI mean ◦ 0.0931(±0.0455) ◦ 0.0038(±0.0029) 0.0011(±0.0020) 0.0598(±0.0619)
∆ Voting 0.2017(±0.1622) 0.0026(±0.0024) 0.0014(±0.0013) 0.1250(±0.1981)
∆ mean ◦ 0.1015(±0.0723) 0.0029(±0.0025) 0.0010(±0.0013) 0.0895(±0.1150)

where the parameter βi by taking into account the average and the standard deviation of
∆ among all the classifiers as follows:

∆ ∗(si) =
1
N ∑N

k=1 ∆(sik)

σ∆(sik)

βi =
1

1+ e−γ ·∆∗(si)

Results reported in Fig.12 show that the average performance improve as the size
of the ensemble increases. As we already show in the previous section, this result is not
surprising as each classifier provides complementary information by construction. In
particular, the combination of classifiers always allows outperforming the best classifier,
and provide very low error rates. By inspecting the figure, an ensemble size equal to
five can be a good compromise between performance and ensemble complexity. For
this reason, Table 2 shows the detailed numerical results in terms of the average and
standard deviation for an ensemble size equal to five.

Fig. 12(a) shows the results in terms of the AUC. It is easy to see that all the combi-
nation methods provide very high AUC values, very close to each other. Fig.s 12(b)-(d)
show the performance in terms of EER and FPR 1%, respectively. Regardless the en-
semble size, all the dynamic methods outperform those of the mean rule. However,
when the EER is considered, the DLC outperform all other measures for ensemble
sizes smaller than or equal to five, while ∆ -voting provides the best performance for
sizes greater than five. On the other hand, when the FPR 1% is considered, the DLC
provides the best performance for small ensemble sizes, while differences among the
combination mechanisms tends to be negligible as the ensemble size is greater than 5.

30 Davide Ariu, Igino Corona, Roberto Tronci, and Giorgio Giacinto

Fig. 12. Average performance for each ensemble size.

0.996

0.9965

0.997

0.9975

0.998

0.9985

0.999

0.9995

1

2 3 4 5 6 7 8

Number of combined Classifiers

AUC

Mean-rule
Best classifier

DLC
SDI mean

∆-Voting
∆-Mean

(a)

0.005

0.01

0.015

0.02

2 3 4 5 6 7 8

Number of combined Classifiers

EER

Mean-rule
Best classifier

DLC
SDI mean

∆-Voting
∆-Mean

(b)

0.1

0.2

0.3

0.4

0.5

2 3 4 5 6 7 8

F
N

R

Number of combined Classifiers

FPR 0%

Mean-rule
Best classifier

DLC
SDI mean

∆-Voting
∆-Mean

(c)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

2 3 4 5 6 7 8

F
N

R

Number of combined Classifiers

FPR 1%

Mean-rule
Best classifier

DLC
SDI mean

∆-Voting
∆-Mean

(d)

0.05

0.1

0.15

0.2

0.25

0.3

2 3 4 5 6 7 8

F
P

R

Number of combined Classifiers

FNR 0%

Mean-rule
Best classifier

DLC
SDI mean

∆-Voting
∆-Mean

(e)

0

0.01

0.02

0.03

0.04

0.05

2 3 4 5 6 7 8

F
P

R

Number of combined Classifiers

FNR 1%

Mean-rule
Best classifier

DLC
SDI mean

∆-Voting
∆-Mean

(f)

A similar behavior can be also seen in Fig. 12(f) where the performance for FNR 1%
are shown. A different behavior can be seen in Fig.s 12(c)-(e), where the working point
is set to 0% FPR or FNR respectively. In these cases, ∆ -voting provides the worst per-
formance, while the DLC and SDI-mean outperform the Mean-rule for any ensemble
size in the case of FNR 0%, while in the case of FPR 0% performance improvements
are shown for ensemble sizes greater than or equal to 5. Thus, we can conclude that the
combination mechanisms allows exploiting the complementarity of different classifiers,
especially in the case of large ensemble size.

Machine Learning in Security Applications 31

The inspection of the values in the Table 2 clearly shows that the AUC does not
allow to see any significant difference among the considered combination mechanisms.
On the other hand, the values related to the operating point related to very low error
rates, show the effectiveness of the combination mechanism. This effectiveness has
been also validated by performing the t-test with a 95% confidence on the difference in
performance with the Mean-rule. All the differences, except those marked with a circle,
are statistically significant. In addition, it is worth noting that in security applications
even small differences in performances are of great value.

The reported results allow to conclude that the use of an MCS allows exploiting ef-
fectively the complementarity among different classifiers. In addition, the performance
measure used to assess the effectiveness must be selected in accordance with the re-
quirements of the application scenario at hand.

6.3 Fighting Poisoning Attacks through MCS

In this section we show that MCS can be exploited to enhance robustness against poi-
soning attacks. We consider a relevant application scenario: the detection of web appli-
cation attacks.

Web applications are largely employed in simple websites, as well as in security-
critical environments such as medical, financial, military and administrative systems.
A web application is a software program which generates informative content in real
time, e.g., a HTML page that is produced dynamically based on user inputs (queries).
Cyber-criminals may divert the expected behavior of a web application by submitting
malicious queries, either to access confidential information, or to cause a denial of ser-
vice (DoS) [30]. To detect such intrusions, the following approach can be used:

1. web application queries can be represented as sequences of tokens;
2. a Hidden Markov Model (HMM) can be used to model normal (legitimate) se-

quences, using real traffic towards web applications (most of traffic is usually legit-
imate);

3. web application attacks can be detected as anomalous queries (sequences).

Basically, this is the approach proposed in [16], and has been shown experimen-
tally to be very effective. Unfortunately, it may be vulnerable to a clever adversary.
For instance, an adversary may deliberately inject well-crafted queries (targeted noise,
poisoning) into the pool of queries employed for training, so as to “deviate” the classifi-
cation algorithm from learning a correct model of legitimate queries, and further evade
detection.

However, attackers can control only a small percentage of training samples. It fol-
lows that poisoning patterns should be outliers in order to be effective. If this were not
true, namely, poisoning samples were similar to other samples within the same class (or
even to novel samples which represent the normal evolution of the system), their effect
would be negligible. Thus, the poisoning problem can be approached by reducing the
influence of outliers samples in training data. To this end, we tested the effectiveness of
systems employing bagging ensembles.

Bagging, short for bootstrap aggregating, was originally proposed in [12] to im-
prove the classification accuracy over an individual classifier, or the approximation error

32 Davide Ariu, Igino Corona, Roberto Tronci, and Giorgio Giacinto

in regression problems. The underlying idea is to perturb the training data by creating
a number of bootstrap replicates of the training set, train a classifier on each bootstrap
replicate, and aggregate their predictions. This allows to reduce the variance compo-
nent of the classification or estimation error (in regression) (e.g., [12, 24]). To further
reduce the influence of the most outlying observations in training data, weighted bag-
ging was proposed in [64, 66]. The rationale behind this approach is to resample the
training set by assigning a probability distribution over training samples, in particular,
lower probability weights to the most outlying observations. The method can be sum-
marised as follows. Given a training set Tn = {xi,yi}n

i=1, and a set of probability weights
w1, . . . ,wn, for which it holds ∑n

i=1 wi = 1:

1. create m bootstrap replicates of Tn by sampling (xi,yi) with probability wi, i =
1, . . . ,n;

2. train a set of m classifiers, one on each bootstrap replicate of Tn;
3. combine their predictions, e.g., by majority voting, or averaging.

Note that this corresponds to the standard bagging algorithm [12] when wi = 1/n,
i = 1, . . . ,n, and the majority voting is used as combining rule. The set of weights
w1, . . . ,wn was estimated in [64, 66] using a kernel density estimator. Since kernel den-
sity estimation can be unreliable in highly dimensional feature spaces, the authors ex-
ploited a boosted kernel density estimate, given by

f (xi) =
n

∑
j=1

w j

(2π)d/2σd
k(xi,x j) , (12)

where k(xi,x j)= exp(−γ||xi −x j||2) is a Gaussian kernel, and the set of weights w1, . . . ,wn
is iteratively estimated as follows. Initially, all samples are equally weighted, i.e., wi =

1/n, i = 1, . . . ,n. Each weight is then iteratively updated according to w(k+1)
i = w(k)

i +

log(f (k)(xi)/g(k)(xi)), where k represents the current iteration, and g(xi) is the “leave-
one-out” estimate of f (xi), given by

g(xi) =
n

∑
j=1

w j

(2π)d/2σd
k(xi,x j)I(j ̸= i) , (13)

where I(j ̸= i) equals 0 (1) only when j = i (j ̸= i). Once convergence or a maximum
number of iterations is reached, the final weights are inverted and normalized as

wi =
1

w(k)
i

/
n

∑
j=1

1

w(k)
j

, (14)

so that weights assigned to outlying observations exhibit lower values.

Bagging vs Poisoning: Experiments In our experiments we computed AUCp for FP
rate less or equal than 1%. We experimented with a dataset which reflected real traf-
fic on a production web server employed by our academic institution. We collected
69,001 queries towards the principal web application, in a time interval of 8 months.

Machine Learning in Security Applications 33

We detected 296 intrusive attempts among them. The first 10,000 legitimate queries
(in chronological order) were used as the training set, while the remaining 58,705
legitimate queries and the intrusive queries were used as the test set.

Each web application query q has the form a1 = v1&a2 = v2& . . .&an = vn, where
ai is the i-th attribute, vi is its corresponding value, and n is the number of attributes of
q. We encoded each query as the sequence of attributes and their values1. The HMM
was trained using the Baum-Welch algorithm [8], to exploit the underlying structure
of legitimate sequences, and consequently detect intrusions by assigning them a lower
likelihood. To build a simple and effective model, we initialized the HMM with two
states: one associated to the emission of symbols in even positions, and the other as-
sociated to the emission of symbols in odd positions. The emission probability of each
symbol was initialized as its relative frequency in even or odd positions, depending on
the state. The state transition matrix was randomly initialized.

We carried out experiments with 3, 5, 10, 20 HMMs per ensemble, and the sim-
ple average as combining rule. In order to apply the kernel density estimator used in
weighted bagging (remind that we deal with sequences of non-fixed length), we first
extracted all possible bigrams (i.e. contiguous subsequences of length two) from legiti-
mate and intrusive sequences. Then, we represented each sequence as a Boolean feature
vector, in which each value denotes either the absence (0) or presence (1) of the corre-
sponding bigram in the given sequence. The length of each feature vector (total number
of bigrams) turned out to be N = 205. The default value of γ has been computed as the
inverse of the cardinality of the feature space, i.e., 1/N ≈ 5E−3, and f (x) and g(x) were
estimated using a subset of 50 training samples. The sensitivity of weighted bagging to
γ was further studied by varying γ ∈ {5E−4,2.5E−3}.

To simulate a poisoning attack, we generated poisoning queries with (1) a different
structure with respect to legitimate queries, and (2) portions of structures similar to
intrusive sequences. In particular, poisoning sequences contained only bigrams which
were not present in legitimate sequences, but which might have been present in intrusive
sequences. As this attack turned out to be very effective2, we evaluated the performance
of the considered classifiers by varying the fraction of poisoning attacks in [0,0.02] with
steps of 0.2%. Results were averaged over 5 repetitions, as poisoning samples were
randomly generated and standard deviation values turned out to be negligible.

Fig. 13 shows the results of our experiments. First, note that AUC values decreased
for increasing percentage of poisoning, as expected. When no poisoning attack is per-
formed (0%), all classifiers behaved similarly, and, in particular, bagging and weighted
bagging only slightly outperformed the corresponding single classifiers. Under attack,
instead, bagging and weighted bagging significantly outperformed the single classifiers.
In particular, the performance improvement was marked when the injected amount of
poisoning attacks significantly affected the single classifier’s performance (see, for in-
stance, 0.5% of poisoning).

1 The whole data set is available at http://prag.diee.unica.it/pra/system/
files/dataset_hmm_mcs2011.zip

2 On the contrary, we noted that the same classifier was very robust to the injection of random
sequences or of the intrusive ones. Classifier performances were not affected significantly even
for large amount of such kinds of noise (10%).

34 Davide Ariu, Igino Corona, Roberto Tronci, and Giorgio Giacinto

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
A

U
C

1
%

% poisoning

S

B3

B5

B10

B20

WB3

WB5

WB10

WB20

! !"# $ $"# %
!"$

!"%

!"&

!"'

!"#

!"(

!")

!"*

+
,
-
$
.

./012314245

/

/

67&/!8#9!&

67$!/!8#9!&

67&/!8%"#9!&

67$!/!8%"#9!&

67&/!8#9!'

67$!/!8#9!'

Fig. 13. Left: performance of the HMM-web classifier (S), bagging (B), and weighted bagging
with default γ (WB) against percentage of poisoning attacks in training data, for different en-
semble sizes (3,5,10,20). Right: performance of WB with ensemble sizes of 3 and 10 against
percentage of poisoning attacks in training data, for different γ .

Increasing the ensemble size of bagging classifiers turned out to not significantly
improve the performance of the system under attack. The underlying reason could be
that bagging can effectively drop the variance of the classification error by increasing
the ensemble size (as shown in [24]); thus, increasing the ensemble size may be effective
only when poisoning attacks introduce a substantial variance in the classification error
(whereas this may be not true when the error is highly biased). This aspect can be a
promising research direction to investigate.

We focus now on weighted bagging, which significantly improved the performance
over standard bagging, as expected. This is clearly due to the use of a kernel density
estimator, which basically imputes outliers in training data, and reduces their influence.
To investigate the effectiveness of weighted bagging more in depth, we considered dif-
ferent values of the γ parameter, as explained in the previous section. The rationale was
to alter the performance of the kernel density estimator. Fig. 13 shows that the higher γ ,
the more gracefully the performance of weighted bagging decreased. It is worth noting
that weighted bagging can worsen performance with respect to standard bagging, even
in absence of poisoning, if the weights assigned by the kernel density estimator to sam-
ples in the same class exhibit a large variance. The reason is that this leads to obtain a
set of bootstrap replicates of the training set which do not reflect the correct probability
distribution of training samples.

To sum up, standard bagging can provide a significant improvement in performance
over an individual classifier, in particular against some kinds of poisoning attacks. The
effectiveness of weighted bagging is strictly related to the capability of estimating a reli-
able set of weights, namely, on the capability of the kernel density estimator to correctly
impute the outlying observations. However, when this happens (as in our experiments)
weighted bagging can provide a great performance improvement. Besides this, when
using a good kernel density estimator the adversary is required to spend more “effort”
to build a poisoning attack which misleads weighted bagging.

Machine Learning in Security Applications 35

7 Conclusions

This chapter provided an analysis of the issues related to the application of machine
learning algorithms in high-risk applications. In particular, we focused the analysis on
computer security applications and on biometric systems. We first investigated the is-
sues concerning the choice of the most suitable model for the problem, by discussing
the aspects that must be considered while choosing between one or two-class models
for the problem. Our discussion clearly pointed out that the choice of the appropriate
model affects not only the classification accuracy, but also has a substantial impact on
the robustness of the system against the attempts of evasion. After an overview of the
performance measures that are commonly used to evaluate both biometric and com-
puter security systems, we described the possible sources of performance variability for
security systems based on machine learning algorithms. In particular, we showed that
systems based on multiple classifiers are able to mitigate the effects of this sources of
variability. In fact, multiple classifiers allow increasing the classification accuracy, and
usually this accuracy increases with the number of combined classifiers. MCS perfor-
mance can be also improved by thoroughly tuning score combination rules, in order to
better exploit the diversity between classifiers within an ensemble. Finally, MCS can
be also exploited to strengthen pattern recognition systems against poisoning attacks.
This aspect is very important when classification must be performed in an adversarial
environment, where a clever adversary can inject malicious noise in the training set.

References

1. Breach Security Inc. - ModSecurity: Open Source Web Application Firewall.
http://www.modsecurity.org, November 2009.

2. Breach Security Inc. - WebDefend, November 2009.
3. Citrix Systems Inc. - Netscaler Application Firewall. http://www.citrix.com, November

2009.
4. F5 Networks Inc. - BIG-IP Application Security Manager, November 2009.
5. André Anjos and Sébastien Marcel. Counter-measures to photo attacks in face recognition:

a public database and a baseline. In International Joint Conference on Biometrics 2011,
October 2011.

6. Davide Ariu, Roberto Tronci, and Giorgio Giacinto. HMMpayl: An Intrusion Detection
System Based On Hidden Markov Models. Computers & Security, 30(4):221 – 241, 2011.

7. Marco Barreno, Blaine Nelson, Anthony D. Joseph, and J. D. Tygar. The security of machine
learning. Machine Learning, 81(2):121–148, 2010.

8. L.E. Baum, T. Petrie, G. Soules, and N. Weiss. A maximization technique occurring in the
statistical analysis of probabilistic functions of markov chains. The Annals of Mathematical
Statistics, 41(1):164–171, 1970.

9. Jon Atli Benediktsson, Josef Kittler, and Fabio Roli, editors. Multiple Classifier Systems,
8th International Workshop, MCS 2009, Reykjavik, Iceland, June 10-12, 2009. Proceedings,
volume 5519 of Lecture Notes in Computer Science. Springer, 2009.

10. B. Biggio, G. Fumera, and F. Roli. Adversarial pattern classification using multiple classifiers
and randomisation. In Niels da Vitoria Lobo, Takis Kasparis, Fabio Roli, James Tin-Yau
Kwok, Michael Georgiopoulos, Georgios C. Anagnostopoulos, and Marco Loog, editors,
SSPR/SPR, volume 5342 of Lecture Notes in Computer Science, pages 500–509. Springer,
2008.

36 Davide Ariu, Igino Corona, Roberto Tronci, and Giorgio Giacinto

11. Andrew P. Bradley. The use of the area under the roc curve in the evaluation of machine
learning algorithms. Pattern Recognition, 30(7):1145–1159, 1997.

12. Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.
13. Simon P. Chung and Aloysius K. Mok. Advanced allergy attacks: Does a corpus really help?

In Christopher Krugel, Richard Lippmann, and Andrew Clark, editors, RAID, volume 4637
of Lecture Notes in Computer Science, pages 236–255. Springer, 2007.

14. I. Corona, D. Ariu, and G. Giacinto. HMM-Web: A framework for the detection of attacks
against web applications. In Communications, 2009. ICC ’09. IEEE International Confer-
ence on, pages 1–6, June 2009.

15. I. Corona, G. Giacinto, C. Mazzariello, F. Roli, and C. Sansone. Information fusion for
computer security: State of the art and open issues. Information Fusion, 10:274–284, 2009.

16. Igino Corona, Davide Ariu, and Giorgio Giacinto. Hmm-web: a framework for the detec-
tion of attacks against web applications. In Proceedings of the 2009 IEEE international
conference on Communications, ICC’09, pages 747–752, Piscataway, NJ, USA, 2009. IEEE
Press.

17. Nilesh N. Dalvi, Pedro Domingos, Mausam, Sumit K. Sanghai, and Deepak Verma. Adver-
sarial classification. In Proceedings of the Tenth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD), pages 99–108, Seattle, Washington, USA,
August 22-25 2004.

18. T. Detristan, T. Ulenspiegel, Y. Malcom, and M. Underduk. Polymorphic shellcode engine
using spectrum analysis. Phrack, 0x0b(0x3d), 2003.

19. Thomas G. Dietterich. Ensemble methods in machine learning. In Josef Kittler and Fabio
Roli, editors, Multiple Classifier Systems, volume 1857 of Lecture Notes in Computer Sci-
ence, pages 1–15. Springer, 2000.

20. R.O. Duda, P.E. Hart, and D.G. Stork. Pattern Classification. Wiley-Interscience Publication,
2000.

21. R.P.W. Duin. The combining classifier: to train or not to train? In Pattern Recognition, 2002.
Proceedings. 16th International Conference on, volume 2, pages 765–770 vol.2, 2002.

22. Tom Fawcett. An introduction to roc analysis. Pattern Recognition Letters, 27(8):861–874,
2006.

23. Giorgio Fumera and Fabio Roli. A theoretical and experimental analysis of linear combin-
ers for multiple classifier systems. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 27:942–956, 06/2005 2005.

24. Giorgio Fumera, Fabio Roli, and Alessandra Serrau. A theoretical analysis of bagging as a
linear combination of classifiers. IEEE Trans. Pattern Anal. Mach. Intell., 30(7):1293–1299,
2008.

25. Neamat El Gayar, Josef Kittler, and Fabio Roli, editors. Multiple Classifier Systems, 9th
International Workshop, MCS 2010, Cairo, Egypt, April 7-9, 2010. Proceedings, volume
5997 of Lecture Notes in Computer Science. Springer, 2010.

26. Giorgio Giacinto, Roberto Perdisci, Mauro Del Rio, and Fabio Roli. Intrusion detection
in computer networks by a modular ensemble of one-class classifiers. Information Fusion,
9(1):69 – 82, 2008. Special Issue on Applications of Ensemble Methods.

27. M. Haindl, J. Kittler, and F. Roli, editors. Multiple Classifier Systems - 7th International
Workshop (MCS2007), volume 4472 of Lecture Notes in Computer Science, Prague, Czech
Republic, 2007. Springer.

28. James A. Hanley and Barbara J. McNeil. The meaning and the use of the area under a
receiver operanting charateristic curve. Radiology, 143:29 – 36, 1982.

29. T.K Ho. Multiple classifier combination: Lessons and next steps. In A. Kandel and H. Bunke,
editors, Hybrid Methods in Pattern Recognition, pages 171–198. World Scientific Publishing,
2002.

Machine Learning in Security Applications 37

30. IBMThreat. X-force 2010 trend and risk report. http://www-935.ibm.com/ ser-
vices/us/iss/xforce/trendreports/, 2010.

31. Internet Security Systems - IBM-ISS. X-force 2009š trend and risk report. Technical report,
IBM Global Technology Services, 2010.

32. Anil K. Jain, R. Bolle, and S. Pankanti. BIOMETRICS: Personal Identification in Networked
society. Kluwer Academic Publishers, 1999.

33. Anil K. Jain, Patrick Flynn, and Arun A. Ross, editors. Handbook of Biometrics. Springer,
2008.

34. Anil K. Jain, Karthik Nandakumar, and Abhishek Nagar. Biometric template security.
EURASIP J. Adv. Signal Process, 2008:113:1–113:17, January 2008.

35. J. Kittler, M. Hatef, R.P.W. Duin, and J. Matas. On combining classifiers. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 20(3):226–239, Mar 1998.

36. J. Kittler and F. Roli, editors. Multiple Classifier Systems - First International Workshop
(MCS2000), volume 1857 of Lecture Notes in Computer Science, Cagliari, Italy, 2000.
Springer.

37. J. Kittler and F. Roli, editors. Multiple Classifier Systems - Second International Workshop
(MCS2001), volume 2096 of Lecture Notes in Computer Science, Cambridge, UK, 2001.
Springer.

38. M. Kloft and P. Laskov. Online anomaly detection under adversarial impact. In In Pro-
ceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics
(AISTATS), pages 405–412, 2010.

39. L. Kuncheva. Combining Pattern Classifiers. Wiley, 2004.
40. Pavel Laskov, Patrick Düssel, Christin Schäfer, and Konrad Rieck. Learning intrusion detec-

tion: Supervised or unsupervised? In Fabio Roli and Sergio Vitulano, editors, ICIAP, volume
3617 of Lecture Notes in Computer Science, pages 50–57. Springer, 2005.

41. Pavel Laskov and Richard Lippmann. Machine learning in adversarial environments. Ma-
chine Learning, 81:115–119, November 2010.

42. Carlo Lobrano, Roberto Tronci, Giorgio Giacinto, and Fabio Roli. Dynamic linear combina-
tion of two-class classifiers. In Proceedings of the 2010 joint IAPR international conference
on Structural, syntactic, and statistical pattern recognition, SSPR&SPR’10, pages 473–
482, Berlin, Heidelberg, 2010. Springer-Verlag.

43. Federico Maggi, William K. Robertson, Christopher Krügel, and Giovanni Vigna. Protecting
a moving target: Addressing web application concept drift. In Engin Kirda, Somesh Jha, and
Davide Balzarotti, editors, RAID, volume 5758 of Lecture Notes in Computer Science, pages
21–40. Springer, 2009.

44. D. Maltoni, Maio D., A.K. Jain, and S. Prabhakar. Handbook of Fingerprint Recognition.
Springer, 2003.

45. H.B. Mann and D.R. Whitney. On a test whether one or two random variable is stochastically
larger than the other. Annals of Mathematical Statistics, 18(1):50 – 60, 1947.

46. Emanuela Marasco, Peter Johnson, Carlo Sansone, and Stephanie Schuckers. Increase the
security of multibiometric systems by incorporating a spoofing detection algorithm in the
fusion mechanism. In Proceedings of the 10th international conference on Multiple classifier
systems, MCS’11, pages 309–318, Berlin, Heidelberg, 2011. Springer-Verlag.

47. Gian Luca Marcialis, Aaron Lewicke, Bozhao Tan, Pietro Coli, Dominic Grimberg, Alberto
Congiu, Alessandra Tidu, Fabio Roli, and Stephanie Schuckers. First international finger-
print liveness detection competition–livdet 2009. In Proceedings of the 15th International
Conference on Image Analysis and Processing, ICIAP ’09, pages 12–23, Berlin, Heidelberg,
2009. Springer-Verlag.

48. Gian Luca Marcialis, Fabio Roli, and Luca Didaci. Personal identity verification by serial
fusion of fingerprint and face matchers. Pattern Recognition, 42(11):2807 – 2817, 2009.

38 Davide Ariu, Igino Corona, Roberto Tronci, and Giorgio Giacinto

49. D. Mutz, C. Kruegel, W. Robertson, G. Vigna, and R.A. Kemmerer. Reverse engineering
of network signatures. In Proceedings of the AusCERT Asia Pacific Information Technology
Security Conference (Gold Coast, Australia), University of Queensland, 2005.

50. Blaine Nelson, Marco Barreno, Fuching Jack Chi, Anthony D. Joseph, Benjamin I. P. Rubin-
stein, Udam Saini, Charles Sutton, J. D. Tygar, and Kai Xia. Misleading learners: Co-opting
your spam filter, chapter Machine Learning in Cyber Trust: Security, Privacy, and Reliability,
pages 17–51. Springer, 2009.

51. N.C. Oza, R. Polikar, J. Kittler, and F. Roli, editors. Multiple Classifier Systems - 6th Interna-
tional Workshop (MCS2005), volume 3541 of Lecture Notes in Computer Science, Seaside,
CA, USA, 2005. Springer.

52. S. Patton, W. Yurcik, and D. Doss. An achilles’ heel in signature-based ids: Squealing false
positives in snort. In Proceedings of fourth International Symposium on Recent Advances in
Intrusion Detection, volume 10, page 12, october 2001.

53. R. Perdisci, D. Ariu, P. Fogla, G. Giacinto, and W. Lee. Mcpad: A multiple classifier system
for accurate payload-based anomaly detection. Computer Networks, 53(6):864 – 881, 2009.
Special Issue on Traffic Classification and Its Applications to Modern Networks.

54. R. Perdisci, D. Dagon, W. Lee, P. Fogla, and M. Sharif. Misleadingworm signature genera-
tors using deliberate noise injection. In IEEE Symposium on Security and Privacy, 2006.

55. R. Perdisci, G. Gu, and W. Lee. Using an ensemble of one-class svm classifiers to harden
payload-based anomaly detection systems. In Data Mining, 2006. ICDM ’06. Sixth Interna-
tional Conference on, pages 488–498, Dec. 2006.

56. R. Perdisci, A. Lanzi, and W. Lee. Classification of packed executables for accurate computer
virus detection. Pattern Recognition Letters, 29(14):1941 – 1946, 2008.

57. Roberto Perdisci, David Dagon, Wenke Lee, Prahlad Fogla, and Monirul Sharif. Mislead-
ing worm signature generators using deliberate noise injection. In Proceedings of the 2006
IEEE Symposium on Security and Privacy (S&P’06), Washington, DC, USA, 2006. IEEE
Computer Society.

58. Norman Poh and Samy Bengio. Database, protocol and tools for evaluating score-level
fusion algorithms in biometric authentication. In Fifth Int’l. Conf. Audio- and Video-Based
Biometric Person Authentication AVBPA, 0 2005.

59. L.R. Rabiner. A tutorial on hidden markov models and selected applications in speech recog-
nition. In Proceedings of the IEEE, volume 77, pages 257–286, 1989.

60. F. Roli and J Kittler, editors. Multiple Classifier Systems - Third International Workshop
(MCS2002), volume 2364 of Lecture Notes in Computer Science, Cagliari, Italy, 2002.
Springer.

61. F. Roli, J. Kittler, and T. Windeatt, editors. Multiple Classifier Systems - 5th International
Workshop (MCS2004), volume 3077 of Lecture Notes in Computer Science, Cagliari, Italy,
2004. Springer.

62. Arun A. Ross, Karthik Nandakumar, and Anil K. Jain. Handbook of Multibiometrics.
Springer-Verlag, 2006.

63. Carlo Sansone, Josef Kittler, and Fabio Roli, editors. Multiple Classifier Systems - 10th
International Workshop, MCS 2011, Naples, Italy, June 15-17, 2011. Proceedings, volume
6713 of Lecture Notes in Computer Science. Springer, 2011.

64. Santi Segui, Laura Igual, and Jordi Vitria. Weighted bagging for graph based one-class
classifiers. In Proceedings of the 9th International Workshop on Multiple Classifier Systems,
volume 5997 of Lecture Notes in Computer Science, pages 1–10. Springer-Verlag, 2010.

65. Frederick T. Sheldon and Claire Vishik. Moving toward trustworthy systems: R&d essentials.
Computer, 43:31–40, September 2010.

66. Albert D. Shieh and David F. Kamm. Ensembles of one class support vector machines. In
Proceedings of the 8th International Workshop on Multiple Classifier Systems, MCS ’09,
pages 181–190. Springer-Verlag, Berlin, Heidelberg, 2009.

Machine Learning in Security Applications 39

67. D. M. J. Tax. One-Class Classification, Concept Learning in the Absence of Counter Exam-
ples. PhD thesis, Delft University of Technology, Delft, Netherland, 2001.

68. Roberto Tronci, Giorgio Giacinto, and Fabio Roli. Dynamic score selection for fusion of
multiple biometric matchers. In Rita Cucchiara, editor, ICIAP, pages 15–22. IEEE Computer
Society, 2007.

69. Roberto Tronci, Giorgio Giacinto, and Fabio Roli. Dynamic score combination: A super-
vised and unsupervised score combination method. volume 5632, pages 163–177, Leipzig,
Germany, 2009. Springer, Springer.

70. Roberto Tronci, Daniele Muntoni, Gianluca Fadda, Maurizio Pili, Nicola Sirena, Gabriele
Murgia, Marco Ristori, and Fabio Roli. Fusion of multiple clues for photo-attack detection
in face recognition systems. 2011.

71. Giovanni Vigna, William Robertson, and Davide Balzarotti. Testing network-based intru-
sion detection signatures using mutant exploits. In CCS ’04: Proceedings of the 11th ACM
conference on Computer and communications security, pages 21–30, New York, NY, USA,
2004. ACM.

72. K. Wang and S. J. Stolfo. Anomalous payload-based network intrusion detection. In Er-
land Jonsson, Alfonso Valdes, and Magnus Almgren, editors, RAID, volume 3224 of Lecture
Notes in Computer Science, pages 203–222. Springer, 2004.

73. T. Windeatt and F. Roli, editors. Multiple Classifier Systems - 4th International Work-
shop (MCS2004), volume 2709 of Lecture Notes in Computer Science, Guilford, UK, 2003.
Springer.

74. W. Yurcik. Controlling intrusion detection systems by generating false positives: squealing
proof-of-concept. In Local Computer Networks, 2002. Proceedings. LCN 2002. 27th Annual
IEEE Conference on, pages 134–135, Nov. 2002.

75. William Yurcik. Controlling intrusion detection systems by generating false positives:
Squealing proof-of-concept. In LCN, pages 134–135. IEEE Computer Society, 2002.

76. Stefano Zanero and Sergio M. Savaresi. Unsupervised learning techniques for an intrusion
detection system. In SAC ’04: Proceedings of the 2004 ACM symposium on Applied com-
puting, pages 412–419, New York, NY, USA, 2004. ACM.

