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Abstract. Data preprocessing is often the most time-consuming phase in data 
analysis and automation of it requires computationally costly search from pre-
processing combinations. Efforts to build and evaluate efficient preprocessing 
automation systems have been challenged by the lack of baseline results from 
industry regarding the extent of which the infeasible exhaustive search can be 
speeded up. The research question addressed is: how good are heuristic search 
methods compared to exhaustive search given a 10%-time constraint? The base-
line results from 5/6 real business performance measurement system cases show 
that simple hill-climbing heuristic with one or three restarts resulted in median 
98% classification accuracy compared to global optimum found by exhaustive 
search. The outcome is attributed to the characteristics of the search space, which 
included several points near the optimum in all of the cases.  For the worst case 
heuristic hyperparameter optimization with hybridization increased the compar-
ative ratio from 82% to 89%. The results suggest that faster heuristic methods 
can find near-optimal preprocessing combinations and thus support efficient au-
tomation of preprocessing for predictive classification. 

Keywords: Preprocessing, Classification, Optimization, Metaheuristics, Busi-
ness performance measurement system 

1 Introduction 

Business performance measurement system is an important tool in the implementation 
of strategy. Current business performance measurement systems aim to balance finan-
cial measures with non-financial ones to ensure long-term share-holder value creation 
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and to provide predictive power not only reporting what has happened but also what 
will happen [20]. The aims are supported by the processes of metrics design, data gath-
ering and manipulation, and data analysis [13]. Of the latter two, data gathering and 
manipulation (i.e. preprocessing) is often manual work and the most time-consuming 
phase [29]. Exploration of what can be efficiently automated is a fundamental computer 
science research objective [10]. Preprocessing automation objective in the business per-
formance measurement system context is to find and execute a combination of prepro-
cessing techniques that maximizes a predictive classification performance metric such 
as classification accuracy. Automation should be efficient and scalable. 
   There are no known analytical solutions to the problem of finding the best prepro-
cessing combination nor is it feasible to do exhaustive evaluation of all combinations.  
A gap in the literature of preprocessing automation design is the lack of baseline results 
from real industry cases regarding performance of heuristic methods. Thus the research 
question addressed is:  how good are heuristic methods compared to exhaustive search 
given a 10%-time constraint? There are two main limitations to the research question. 
First, the focus is exclusively on preprocessing and baseline results. The impact of pre-
dictive model selection or model hyperparameter tuning is not discussed. No claims are 
made of best results or novelty in heuristic methods. Therefore, method comparisons 
are not included. Secondly, the specific 10%-time constraint is only weakly motivated.  
It was set as it is by running various experiments with the cases. The practical objective 
was to limit the search time used for each case to a single working day.   
   A metaheuristic optimization framework for preprocessing was built and six cases 
from the business performance measurement system domain were acquired to compute 
the baseline results: Toyota Material Handling Finland, 3StepIT, M-Files, Innolink, Pa-
pua and Lempesti.  The data sets had one financial target feature (e.g. customer profit 
margin, sales person sales volume), 7 to 46 non-financial numerical predictors and the 
number of data points varied from 48 to 344. The measured data objects were employ-
ees, customers and process runs. The baseline results are: in 5/6 cases simple hill-climb-
ing with one or three restarts reached median 98% level in classification accuracy com-
pared to global optimum in 10% of time compared to exhaustive search. This paper 
contributes to the body of existing knowledge on preprocessing system design by: char-
acterizing the search space of preprocessing combinations for classification presenting 
baseline results from six real industry cases. The results suggest that preprocessing can 
be efficiently automated without significant loss of solution quality. 

2 Related research  

   The related research (Table 1.) can be categorized to consist of preprocessing foun-
dations and preprocessing automation. The latter can be achieved either by optimization 
or learned policy. The need of preprocessing originates from data quality issues in the 
information system design [38], poor data quality practices [32] and requirements of 
the data analysis methods themselves. Pyle [29] estimates that preprocessing can take 
up to 85% of an analysis project. On a high level preprocessing is understood to consist 
of data cleaning, data integration, data reduction and data transformation [17] and is a 
part of data mining standards like CRISP-DM (see [8]). There are preprocessing phases 
such as low variance removal, value range scaling, noise smoothing, outlier detection, 
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missing value imputation, class imbalance correction, duplicate detection and removal 
of irrelevant features. Each phase has a set of competing techniques such as over-
sampling, undersampling and SMOTE [25] for class imbalance problem. Also, there  

Table 1. Related research 

 

are application domain motivated preprocessing instructions and studies e.g. for multi-
media data [28], direct marketing data [9] and chemometric data [11]. 
   Several articles [12, 40, 22, 39] on the state and future of knowledge discovery re-
search acknowledge preprocessing automation as a priority objective. Automation is 
based on preprocessing combinations. A preprocessing combination can be defined as 
an ordered (by phase) set of preprocessing techniques. Preprocessing combination stud-
ies [9, 11, 35] demonstrate that preprocessing combinations can have significant and 
unexpected interaction effects. Literature did not show analytic solutions to the prepro-
cessing combinations optimization problem and metaheuristics was selected as an ap-
proach over random and grid searches. Glover and Kochenberger [15] define metaheu-
ristics as: “Iterative process that guides the operation of one or more subordinate heu-
ristics (which may be from a local search process to a constructive process of random 
solutions) to efficiently produce quality solution for a problem”.  In the metaheuristic 
research community current surveys [27, 2, 1] highlight the two transitions in the field: 
first, as there are no universally best methods and the methods are maturing there is 
more need for domain-specific problem-method matches instead of or in addition to 
generic method development. Secondly, hybridization of metaheuristics (i.e. mixing of 
metaheuristic techniques with each other or with other optimization techniques) [3, 4, 
30] is expected to improve performance levels.  Parejo et al. [27] conducted an exten-
sive survey of 33 generic metaheuristics optimization frameworks and found gaps in 

Category Topic Maturity 

1. Foundations need of preprocessing 

techniques 

phases 

standards 

High 

High 

High 

High 

2. Automation combinations Medium 

2a. Optimization  optimization frameworks 

baseline results 

High 

Low 

2b.  Policies reinforcement learning 

Monte Carlo tree search 

Low 

Low 
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hyper heuristics, parallel and distributed computing, software engineering best prac-
tices and support for hybridization.  

   On the level of software, optimization of preprocessing combinations has been 
adressed as part of learning model hyperparameter optimization in Python Hyperopt-
Sklearn [24] and partially in R package Caret [23]. However, there are currently no 
baseline results available regarding the performance of heuristic search methods in the 
preprocessing of business performance measurement system data. Lastly, as an alter-
native to optimization policy-based approaches [33, 6] to preprocessing were not found. 
Policy-based approaches are identified as an important further research opportunity be-
low specifically for their efficiency and scalability. 

3 Search Space Characteristics 

The preprocessing combinations search space consists of single preprocessing tech-
niques combined by the preprocessing phase they belong to. A random example of a 
preprocessing combination could be removal of near zero variance variables [23], im-
putation of missing values by mean impute [18], removal of outliers by their local den-
sity LOF [5], correcting class imbalance by synthetic instances [25] and selecting rele-
vant features by using decision trees [16].  This kind of combinations form the search 
space as illustrated in Table 2. for Innolink case (3/3200 combinations shown). 

Table 2. Example of preprocessing combinations, Innolink case.  

 

 

The behaviour of the objective function in the preprocessing search space can be char-
acterized by plotting K-nearest neighbour classification accuracies by combination 
(Figure 1.). It can be observed that the objective function is discontinuous. There are 
regimes (Innolink case) and patterns (Papua and Lempesti cases). These characteristics 
suggest that metaheuristics must have strong exploration capability and restart may 
benefit from evenly-spaced start points. 

Nro Imputation Variance Smoothing Scaling Outliers Sampling Selection 

675 Random forest 
impute 

No action Coarse 
smooth 

Decimal 
scale 

LOF 
outlier 

Over-
sample 

No action 

676 Missing value 
omit 

Near-
zerovar 

Coarse 
smooth 

Decimal 
scale 

LOF 
outlier 

Over-
sample 

No action 

677 Mean impute Near-
zerovar 

Coarse 
smooth 

Decimal 
scale 

LOF 
outlier 

Over-
sample 

No action 



52   Markus Vattulainen 

 

 

Figure 1. K-nearest neighbour classification accuracies by preprocessing combination 

The difference between highest and lowest classification accuracies is substantial sup-
porting the earlier observation that preprocessing can be ineffective [11]. Most im-
portantly, there are several points in the proximity of the global optimum suggesting 
that heuristics may perform well. Exhaustive search from all combinations is computa-
tionally costly. The search space size (Figure 1.) varies between 108 and 3200 combi-
nations. In the cases classification accuracy of a combination was validated by 50 times 
repeated holdout validation totalling at maximum 160 000 model fitting and prediction 
events (3200*50) even for a single classifier. The largest case took more than 60 hours 
on an Intel 1.6 GHz computer.  Adding to the cost of holdout validation is the fact that 
computation of classification accuracies can fail.  Failure risks introduced by prepro-
cessing include low or missing variance, presence of missing or infinite values, low 
observation to variable ratio, class imbalance etc.  

4 Method 

To provide baseline results a metaheuristic optimization framework for preprocessing 
was designed, implemented and provided freely accessible. The R [31] package 'me-
taheur' as well as classes, methods and interface details are presented in [36].  Hybrid-
ization capabilities were selected as a design objective due to expected superior perfor-
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mance, gap in current systems [27] and hybridization has also the added benefit of fo-
cusing design on fundamental building blocks of metaheuristics instead of pseudo in-
novations as critics have pointed out [34].   

4.1 Unified hybrid heuristic 

Single-state heuristics included in the study were Hill-Climbing [26], Hill-Climbing 
with restarts [26], Late-Acceptance Hill-Climbing [7], Taboo search [14], Simulated 
Annealing [21] and Adaptive simulated annealing [19]. Population-based metaheuris-
tics were not included. For the purpose of hybridization, the essence of each single-
state heuristics above was abstracted as a parameter of a unified hybrid heuristic  
(Table 3). 

Table 3. Unified hybrid heuristic 

  Heuristic Parameter     SA   Hybrid 

Hill-Climbing with restarts Number of restarts 1 3 

Late-Acceptance Hill-   
Climbing 

Previous solution the candidate is 
compared to 

1 2 

Taboo search Number of previous candidates on a 
taboo list 

0 5 

Simulated annealing Probability of accepting an  
inferior solution (temperature) 

X X 

Adaptive simulated  
Annealing 

Probability of increasing the  
temperature 

0 0.1 

 

Each iteration-modification-assessment-selection round [26] consists of a unified heu-
ristic that has all of the above mentioned parameters. The third column in the Table 3. 
shows an example of using the hybrid to run pure simulated annealing. The fourth col-
umn shows an example of a hybrid that consists of three restarts, candidate compared 
to the solution earlier than current solution, taboo list of length five, simulated anneal-
ing temperature and 10% chance of increasing the temperature.  

4.2 System components 

The hybridization concept above was used to build a metaheuristic optimization frame-
work. The components (Table 4.) are described as follows: Iteration component con-
trols the start and termination conditions. Start class includes start type (single random 
start with uniform probability, multiple grid restarts or custom start). Custom start (the 
user specifies the combination number iterations start from) allows the insertion of do-
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main knowledge to search. Custom start can be either assumption of the best combina-
tion or a combination that has minimum computational complexity. Termination class 
has the termination conditions: converge, objective threshold or simply the number of 
iterations run.  

Table 4. System components 

Component Classes   Data members 

Iteration Termination Termination type  

  Number of iterations 

  Convergence value 

  Threshold value 

 Start Start type  
Number of starts 
Start locations  

Modification Tweak Number of phases tweaked 
Degree of change (not implemented) 

 Taboo Length of taboo list 

Assessment Objective function Metric type (default: classification accuracy) 
Classifier 

 Constraint Combination penalty (not implemented) 

Selection Acceptance Initial temperature 
Temperature decrease constant 
Reheating probability 

 Comparison Location in history candidate is compared to 

Control Hyperparameter opt. Grid of hyperparameter combinations 
Random hyperparameters 

 Parallelization Number of cores 

 Plotting Type of plot 

 Monitoring Verbose (true/ false) 
Logging (true/ false) 

 Design of     
Experiment 

Used (true/false) 
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Table 5. Example of monitoring, Toyota case 

[1] "Start type: random restarts." 
Number of restarts: 1  
Start combination: 941  
Iteration: 1 Current best: naomit nearzerovar coarsesmooth minmaxscale noaction no-
action 0.615384  
Iteration: 1 Candidate: naomit nearzerovar coarsesmooth noaction noaction noaction 
0.6923077  
Temperature: 0.85  
Comparison value for late acceptance: 0.6153846  
History delta, last three: 0.07692308  
Iteration: 2 Current best: naomit nearzerovar coarsesmooth noaction noaction noac-
tion 0.6923077  
Iteration: 2 Candidate: naomit noaction coarsesmooth noaction noaction noaction 
0.6923077  
Temperature: 0.7225  
Comparison value for late acceptance: 0.6923077  
SA: A weaker solution was accepted.  
History delta, last three: 0.03846154  

 

Modification component is responsible for creating the candidates. Tweak class takes 
the current best combination and modifies it according to Gaussian convolution [26], 
i.e. most changes are small but occasional large changes can happen. Taboo class con-
trols the length of list of previously visited candidates that cannot be revisited.  
   Assessment component computes the classification accuracy for each candidate com-
bination. Objective function class includes classification performance metrics such as 
accuracy or kappa. Constraints can be defined as a penalty for a combination.  
   Selection component makes a selection. Acceptance probability class controls the 
probability of accepting an inferior solution (in order to escape local maximum) and it 
is the abstracted essential feature of Simulated Annealing metaheuristics [21]. Also, 
reheating probability is included following Adapted simulated annealing metaheuristics 
[19]. Comparison value class specifies, which earlier best solution is used in making 
the selection. This follows Late-Acceptance Hill Climbing metaheuristics [7].  
    Control component provides high-level control mechanism. These include parallel-
ization of restarts (restarts are independent of each other in the model so they can be 
easily parallelized). Experimental design setup is responsible for making statistically 
reliable comparisons between runs and hyper heuristics class for adjusting the parame-
ters. Monitoring (Table 5.) sets whether search run information is provided for the user. 
It can be used to diagnose problems and for teaching. 
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4.3 Computing the baseline results 

The system described above was used to compute the baseline results. First, simple hill-
climbing with one or three restarts was run 64 times for each case. Each computation 
of classification accuracy within a run was validated with 50 repeated holdout valida-
tion. Then the mean and standard deviations of the best of 64 runs (i.e. highest classifi-
cation accuracy achieved in a run) were computed. Secondly, for comparison global 
maximum classification accuracy was computed by exhaustive search for each case 
with 50 times repeated holdout validation. Note, that the number of combinations for 
each case was different. The number of iterations used in the heuristic searches was 
10% of the ones used in the global evaluation. Lastly, for the worst case hybrid heuristic 
hyperparameter optimization was done by setting a grid of eight hyperparameter com-
binations and then computing the mean of best of runs for each hyperparameter com-
bination.   

5 Results 

The case companies are presented in the first column in Table 6. and the number of 
globally evaluated combinations in the second column. The mean and standard devia-
tions of the best of runs of baseline hill-climbing with one or three restarts are shown 
in the third column. Global maximum of evaluating all the combinations is shown in 
the fourth column.  The fifth column shows the mean of the best of runs divided by the 
global optimum. It represents the goodness of the heuristics compared to the most ef-
fective but inefficient method. Lempesti and Papua cases differ starting from the third 
decimal place.  Hyperparameter optimization with hybridization in the weakest cases 
resulted in 0.69 mean of best of runs making the comparative ratio 0.89.  
   As for execution time, the largest case Innolink (320 combinations evaluated with 50 
times repeated holdout validation) took 6 hours on an Intel 1.6Ghz computer.  

6 Discussion 

This paper focused on a preprocessing combinations optimization problem: how good 
are heuristic search methods compared to exhaustive search given a 10%-time con-
straint?  The main results are (Table 6.) that 5/6 cases achieved median 98% global 
optimum in 10% of time with simple hill-climbing with one of three restarts. The weak-
est performing case achieved 89% after hybrid heuristic hyperparameter optimization. 
It should be noted that the global maximum is most likely not achievable by any expert 
reasoning [11]. Preprocessing combinations search space was characterized and behav-
iour of the objective function (i.e. classification accuracy) was found to be discontinu-
ous and erratic but showing patterns and regimes. There were several points near the 
global optimum in all of the cases (Figure 1.), which is attributed to be the main reason 
for high performance level of simple hill-climbing with restarts.  
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Table 6. Baseline results 

Case    Combs  Mean best of runs     Global max    Ratio 

Innolink 3240 0,77±0,02 0,80  0,96 

Toyota 1080 0,89±0,05 0,90 0,99 

3StepIt   108 0,67±0,03 0,73 0,92 

M-Files   360 0,65±0,06 0,79 0,82 

Papua   648 0,93±0,02 0,95 0,98 

Lempesti   648 0,93±0,02 0,95 0,98 

     

A software package with a component model (Table 4.) was created and made freely 
accessible to study the performance of single-state heuristics in finding near-optimal 
preprocessing combinations. The package supports heuristic hyperparameter optimiza-
tion and hybridization of five basic heuristics (Table 3.). The main research implication 
is that the baseline results provide a sound benchmark level for more sophisticated data 
preprocessing automation systems such as [24]. For practice the implications are that it 
is possible to build applications that efficiently preprocess business performance meas-
urement system data without significant loss of solution quality. 
   There are four main limitations in the results. First, the number of industry cases was 
limited to six and consequently statistical testing of the results (including standard de-
viation of the holdout round classification accuracies in global max and within a heu-
ristic run) was not done leaving uncertainty as to what extent the results can be gener-
alized. Secondly, all the cases were from a specific domain of business performance 
measurement systems and no cross-domain evaluation was conducted. Thirdly, all data 
sets were small in size and execution time was measured on a coarse scale. Thus eval-
uation of scalability requires further clarification. Fourthly, no analysis was done re-
garding the success and failure conditions of heuristics. This concerns specifically the 
difference between the five best performance and the one worst performance case. Fur-
ther research is needed and in progress to build policy-based approaches to prepro-
cessing. The aim is to reduce the preprocessing time from hours to minutes and to scale 
up from small to big data sets. Reinforcement learning [33] and Monte Carlo tree search 
[6] can learn and store state-action-values (i.e. data state, preprocessing actions, delayed 
classification accuracy) either as neural network or as asymmetric tree, and thus provide 
near-optimal preprocessing actions directly or with significantly smaller amount of 
searches. 
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