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Abstract. In this paper, we propose an efficient and non-invasive solution to 

translate American Sign Language (ASL) to speech utilizing two wearable 

armbands called Myo. The compact Myo armbands that are used in this study 

are much more practical than existing solutions, which include glove-based 

techniques, camera-based systems, and the use of 3D depth sensors. We applied 

the Gaussian Mixture Model Hidden Markov Model (GMM-HMM) technique 

to achieve classification rates of up to 96.15% for ASL words (gestures). The 

HMM-based approach also sets a solid foundation for future work on the sys-

tem, which includes continuous ASL recognition as well as signer independ-

ence. 

Keywords: Sign language recognition, Hidden Markov Model (HMM), Ameri-

can sign language (ASL), Human Computer Interaction (HCI) 

1 Introduction 

American Sign Language is the leading method of communication between the 

speech and hearing-impaired population. It involves the use of visual gestures and 

body movements as a means of expression. One of the main difficulties that users of 

ASL face is engaging in effective verbal exchanges and collaboration with the hear-

ing, as much of the general hearing population is not well-versed in ASL. As a result, 

the problem of sign language recognition has been well researched in an effort to 

bridge this communication gap. Many prior contributions to the field of sign language 

recognition use image/video based identification techniques [3]; while others have 

proposed a glove-based technique involving sensory gloves to be worn on either or 
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both arms [4]. 3D depth sensors such as the Microsoft Kinect [9-10] and Leap Motion 

[8] have also evolved as a means of sign language recognition interfaces. 

Compared to existing ASL recognitions systems involving a camera, sensory 

gloves or 3D depth sensors (see Figure 1), the proposed system is a much more porta-

ble in the sense that the user is not restricted to a certain area for signing and it is far 

less invasive than the 3D depth sensor based technique as the signer is free to move 

around while signing. Moreover, the armband based system that is being proposed in 

this paper is an end-to-end solution with no additional requirements other than a PC 

and two Myo armbands. A single armband is also supported if the gestures involved 

do not require movement of the secondary arm. A Myo is a wearable motion sensor 

that detects hand movements as well as electrical activity from the forearm. 

 

 

Fig. 1. ASL recognition solutions are divided into four broad categories by the sensors used. 

Vision-based techniques, sensory gloves and 3D depth sensors. Additionally, 

EMG/Accelerometer based sensors such as the Myo armband [18] have also been seen to aid in 

sign language recognition which is the topic of our study. (Myo image courtesy of [5]) 

We propose the use of the Hidden Markov Model (HMM) classification technique 

as HMMs have been widely used for the purposes of speech recognition over the past 

20 years [13]. Furthermore, the intrinsic properties of HMM to represent doubly sto-

chastic processes with signal segmentation allow them to be used effectively for sign 

language recognition [1]. Wang et al. [4] developed a Cyberglove based ASL recog-

nizer with multi-dimensional HMMs to achieve an average of 95% correct recogni-

tion for 26 ASL alphabets and 36 basic ASL handshapes. Similarly, Starner et al. [12] 

described a system which used a one color camera to track hands in real time and 

interpret American Sign Language using HMMs. Experiments were conducted while 

wearing colored gloves and without gloves, and this yielded a word accuracy of 99% 
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and 92% respectively. Considering these promising results, we decided to follow an 

HMM based approach for our system and applied the Gaussian Mixture Model Hid-

den Markov Model (GMM-HMM) technique to classify 13 different words in ASL 

signed by three ASL users. We experimented with several different hidden state con-

figurations and achieved classification rates of up to 96.15%. 

In this paper, we reviewed related work done in the field of ASL recognition and 

compared the proposed system to existing solutions in section 2. Section 3 provides 

details of the entire system and each of its components, including data collection, 

processing, as well as recognition. In section 4 we provided a brief mathematical as 

well as an analytical overview of Hidden Markov Models, the machine learning tech-

nique of choice for sign language recognition for this paper. Lastly, the details of the 

experimental results are presented in section 5. 

2 Related Work 

Research on sign language recognition started percolating in the late-1980s. Tamura 

and Kawasaki presented an isolated sign image processing system in 1988 that recog-

nized 20 Japanese signs based on matching cheremes [6]. Similarly, in 1992, Chara-

yaphan and Marble published literature on an isolated image processing algorithm for 

the interpretation of American Sign Language. The system was able to correctly iden-

tify all 31 of the test samples by performing 3 different tests [7]. More recently, the 

use of Leap Motion [8] and Microsoft Kinect [9-10] has been observed to aid in the 

recognition of sign language. 

Still, image recognition is the analysis of still images to convert the contents of the 

image into usable information. The idea is to detect the signed word or sentence using 

the sequence of images. One popular technique in still image recognition involves 

obtaining the Edge Images from the raw image and then using recognized methods to 

detect the signed word. The use of gradient masks and slope magnitude methods to 

obtain edge images is one of the most common ways [3]. Edge Histogram Descriptor 

algorithm has also been used as a means of recognizing the hand gesture and combin-

ing it with an artificial neural network for classification [14]. Image/video based 

recognition systems use features extracted from raw images or videos from users for 

sign language translation. The underlying drawback to this solution is that the system 

is still dependent on the presence of cameras which makes the system quite invasive 

and immobile. Real-time recognition also poses a problem since the image and video 

data usually require some form of computational heavy processing before it can be 

made functional [3]. Moreover, vision-based techniques usually require the signing 

environment to be “system-ready” so that the image or video can be processed as 

accurately as possible. Therefore, these techniques are affected by factors such as 

background colors or additional objects or movements in the surroundings. In con-

trast, the system that is introduced as part of this study is not affected by any of the 

aforementioned constraints as it detects raw motion data directly from the wearer’s 

arm. In addition, it is far less invasive than the camera-based techniques as the signer 
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is free to move around while wearing the armbands as long as the host device is with-

in bluetooth range. 

Similarly, there has been significant work performed on sign language recognition 

utilizing Microsoft Kinect which is a motion sensor add-on to the Xbox gaming con-

sole but can also be used for non-gamification purposes such as digital signage, virtu-

al shopping, and education. Ahmed et al. [9] and Usachokcharoen et al. [10] have 

done studies on the feasibility of using the Microsoft Kinect as a sign language sen-

sor. Although both studies showed that the recognition rate was kept fairly high for 

certain gestures, the user’s hand was still required to be in the view of the sensor at all 

times. Moreover, the use of a color-coded glove was also proposed to improve the 

performance of the hand recognition algorithm from the recorded video. In compari-

son, the armband based sign language translator that was developed as part of this 

study is an end-to-end solution with no additional requirements. A compatible PC that 

can run the Myo Connect application is the only requirement. It is also a more practi-

cal approach since the system can be taught new gestures with ease without the need 

for recording a video first or performing preliminary processing tasks such as extract-

ing usable features from the image or video. 

Chuan et al. [8] have done a study on using the Leap Motion sensor as an ASL 

recognition system. The leap motion controller is a compact sensor for tracking hand 

and finger movements in a 3D space of around 8 cubic feet above the device. It is 

therefore unfeasible to progress towards a motion-heavy recognition system as the 

leap motion sensor can only detect hand and finger data, such as position and spread 

of palm and fingers, from a single hand. Compared with the leap motion sensor, the 

Myo armband is a much more ubiquitous solution as it does not constrain the user to a 

certain signing space and supports the use of both hands. 

In addition, sign language recognition is not limited to American Sign Language. 

Attempts have been made to translate sign languages of different regions to spoken 

language. Youssif et al [15] developed an Arabic Sign Language Recognition System 

using Hidden Markov Models (HMM). A video-based recognition engine was devel-

oped which used skin detection, edge detection, as well as hand fingertips tracking 

combined with a built HMM model to achieve reasonably high classification rates. 

Similarly, Raheja et al. [16] developed a system targeting the Indian sign recognition 

area based on dynamic hand gesture recognition techniques a real-time scenario. The 

captured video was preprocessed by converting it to an HSV color space and then 

segmenting it to image frames. Hu-Moments and motion trajectory were extracted 

from the image frames and the classification of the gestures was performed using 

Support Vector Machine. 

Many of the aforementioned systems are signer-dependent, meaning they require 

prior knowledge about the user. A more efficient system would be one that is signer-

independent and allows classification of unseen data without any information about 

the user. Fang et al. [11] presented a hybrid SOFM/HMM system for Chinese sign 

language recognition that is signer-independent. The system combined self-organized 

feature maps (SOFMs) with Hidden Markov Models (HMM) to recognize signer-

independent CSL of 4368 samples from 7 signers with 208 isolated signs. 
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Fig. 2. Myo EMG pod configurations 

3 Proposed Technique 

We propose an EMG and accelerometer based technique for translating sign language 

to speech. Sensors based on accelerometers and surface electromyography (EMG) 

have previously been used for gesture-based HCI [17]. We made use of the Myo arm-

band sensor for this purpose. An myo device is a compact and affordable commercial-

grade armband sensor for free hand and finger movements. As shown in Figure 2 the 

sensor has 8 EMG sensors (named S1 – S8). Moreover, the sensor also has a highly 

sensitive nine-axis IMU containing three-axis gyroscope, three axis accelerometer, 

and three-axis magnetometer. Communication to the PC happens via Bluetooth low 

energy (BLE) connection with the effective range of up to 30 feet around the Blue-

tooth adapter.  

The interactive software, as shown in Figure 4, that interfaces with the Myo devic-

es was written in the Java programming language running on a 64-bit version of Win-

dows 10 with an Intel Core i7-6500U CPU @ 2.50 GHz and 8.00 GB of ram. Myo’s 

official API is written in C++ programming language so a third-party Java-based API 

was used. The MaryTTS Java API was used for the programming of speech synthesis. 

Hidden Markov Model ToolKit (HTK) was used for the modeling and training of the 

HMMs. 

Figure 3 shows the overall structure of the current system and highlights the future 

work that can be performed on the model. The system that is presented in this paper 

performs data collection, preprocessing and recognition of isolated gesture data while 

future iterations of the study will focus on continuous gesture recognition and signer 

independence. 
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Fig. 3. System schematic of the proposed ASL recognition system 

3.1 Data Collection 

The features that were used for the training and recognition of the HMMs included 

orientation, gyroscope, and accelerometer data from both myos as well as the EMG 

data from the dominant hand myo. Data was formatted as a 26-element time-series 

array. The IMU data is updated at a speed of 50 Hz while the EMG data comes in at 

200 Hz meaning that a 5-second recording will provide 250 new samples of IMU data 

and 1000 new samples of EMG data. Consolidating this data from both myos as one 

feature vector, the final feature space is shown in Table 1. 

EMG (Electromyography) data. EMG data can be thought as electrical activity of 

the muscles. EMG data from the myo is reported as a byte array of 8 elements (repre-

senting 8 EMG pods (see Figure 2)) meaning that EMG values are between -128 to 

127 and unit-less. EMG data is also extremely user-dependent as factors such as arm 

length, arm circumference, as well as the exact position of the arm where the data 

originates from, all come into play in realizing the EMG data. 

IMU (Inertial measurement unit) data. IMU data is provided by the highly sensi-

tive nine-axis IMU consisting of three-axis gyroscope for gyroscopic data, three-axis 

accelerometer for accelerometer data, and three-axis magnetometer for orientation 

data. IMUs work in part by detecting changes in roll, pitch, and yaw. The information 

obtained from each of these sensors is combined to get the best positional data since 

one is more sensitive than the other in certain scenarios [17]. 

Accelerometer. An accelerometer unit measures acceleration relative to a free-fall. 

The myo device includes a tri-axial accelerometer unit, where three accelerometers 

are aligned in x,y,z-axis, respectively, and each measure relative acceleration along its 

dimension. 



Rabeet Fatmi et al. 47 

 

Gyroscope. Gyroscopes sense angular velocity along one dimension. Meaning, it is 

possible to get changes in the rotational orientation of the device from a frame of 

reference or known orientation of the device. The Myo’s gyroscope is tri-axial as 

well, where each gyroscope is measuring the change in rotational orientation along its 

dimension. 

Orientation. The magnetometer determines the orientation of the device with respect 

to Earth’s magnetic field in each of its axes. Simply put, a magnetometer measures 

direction and strength of the magnetic field along one dimension. 

The orientation data from Myo comes in the form of Quaternion data (an array of 

w, x, y and z values), which can then be converted to Euler angles (roll, pitch and 

yaw) by using the following equations: 

 roll = tan-1((2(-w∙x+y∙z))/(1-2(x2+y2))) (1) 

 pitch = sin-1(2(-w∙y-z∙x)) (2) 

 yaw = tan-1((2(-w∙z+x∙y))/(1-2(y2+z2))) (3)  

Table 1. Features used for Machine Learning 

 Dominant hand Myo Non-dominant hand Myo 

Features 

used 

Name Type Name Type 

Roll (x) Float [0,360] Roll (x) Float 

[0,360] 

Pitch (y) Float [0,360] Pitch (y) Float 

[0,360] 

Yaw (z) Float [0,360] Yaw (z) Float 

[0,360] 

X-Acceleration Float X-Acceleration Float 

Y-Acceleration Float Y-Acceleration Float 

Z-Acceleration Float Z-Acceleration Float 

X-Gyroscope Float  X-Gyroscope Float 

Y-Gyroscope Float  Y-Gyroscope Float 

Z-Gyroscope Float  Z-Gyroscope Float 

EMG (S1-S8) Integer [-128,127]   

3.2 Data Preprocessing 

To prepare the data for training and classifying through machine learning, prepro-

cessing was performed to improve recognition rates and reduce error. As the EMG 

data is streamed, the absolute value of the most recent thirty samples is saved for each 

sensor. These values are averaged for each sensor. The data is also normalized by 

dividing it by 127 (the maximum value). This is done to stabilize the EMG data and 

reduce any noise. See figure 5 for an example; The green lines represent the absolute 

value of the recorded data, the orange lines demonstrate the average over the past 30 
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samples, and the red lines demonstrate the overall average for the entire word. As 

expected, the averaged data reduces noise while still containing enough useful infor-

mation for classification. 

The vertical orientation (yaw) that the Myo armbands provide are not consistent 

across power cycles. Additionally, the yaw tends to change slowly over time, a wide-

spread problem with gyroscopes known as “yaw drift”. To correct this, the raw orien-

tation data is transformed through a calibration procedure, which has to occur at least 

once per usage session. The user is prompted to hold their arms straight forward. The 

orientation data at that moment is saved and used as the origin. All future recordings 

are calculated as an offset from the origin, to provide consistent measurements across 

sessions. 

 

 

Fig. 4. ASL to speech translation software 

 

  

Fig. 5. EMG data reporting large amounts of muscle flex and movement 
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Fig. 6. EMG data reporting minimal movement of the hand 

 

4 Hidden Markov Models 

HMMs (Hidden Markov Models) have been used prominently in the field of sign 

language recognition with success. An HMM is a probabilistic framework for model-

ing time-series data and fall in the Dynamic Bayesian Network class. Since gesture 

data can typically be represented as a time-series vector of different extracted fea-

tures, they work naturally with HMM. 

The HMMs were trained with the simple left to right topology as shown in Figure 

7 where each state is allowed to transit to itself and the next state (strictly linear). 

Moreover, since our feature values are real numbers we modeled the HMMs with 

continuous parameter densities with 16 Gaussian mixtures per state. 

An HMM is formally defined as 5-tuple representing a given process with a set of 

states and transition probabilities between the states:  

 Ω = {N, M, A, β, π}  (4) 

where N indicates the number of distinct possible states in the model not directly 

observable except through a sequence of observations represented by M. Every state 

has a set of distinct observation symbols M, also called emissions, which are observa-

ble. β represents the discrete/continuous probabilities for these emissions. The state 

transition probability distribution is defined by A which indicates the chance that a 

certain state change might occur. These probabilities as well as the starting probabili-

ties, π, are discrete.  
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Given the observation sequence O = o1 o2 o3 … oT where oi represents the feature 

vector observed at time i, and a separate HMM, λ, for each ASL gesture, then the sign 

language recognition problem can simply be solved by computing: 

 arg maxi {P(λi|O)} (5) 

where i corresponds to the i’th ASL gesture. This probability is not computable di-

rectly but using Bayes’ Rule [2]: 

 P(λi|O) = (P(O|λi)∙P(λi))/P(O) (6) 

Thus, for a given set of prior probabilities P(λ), the most probable signed gesture 

depends only on the likelihood P(O|λi). Given the dimensionality of the observation 

sequence O, the direct estimation of the likelihood P(O|λi) is not practical. However, 

if a parametric model such as a Markov model is assumed, then estimation from data 

is possible since this problem is replaced by a much simpler problem of estimating the 

Markov model parameters [2]. A Markov model is a finite state machine which 

changes its state only once per time unit t and each time t that a state j is entered, a 

feature vector ot is generated from the probability density bj(ot). 

Furthermore, a “Hidden” Markov Model implies that the state changes themselves 

are not directly observable and the transition from state i to state j is also probabilistic 

and is governed by the discrete probability aij. An example of this is shown in Figure 

7 where the 4-state model moves through the state sequence X = 1; 2; 2; 3; 3; 4. The 

entry and exit HMM states are non-emitting in the HTK Toolkit, which is used to 

build the models in this work. The joint probability O generated by the model λ mov-

ing through the state sequence X is calculated as the product of transition probabilities 

and output probabilities. For the state sequence X in Figure 7, O is calculated as fol-

lows: 

 P(O|λ) = a12b2(o1)∙a22b2(o1)∙a23b3(o2)∙a33b3(o2)∙a34… (7) 

where the parameters {aij} and {bj(ot)} of the model are determined by an estimation 

procedure called the Baum-Welch re-estimation procedure [1]. 

 

Fig. 7. A four-state left-to-right HMM topology with two emitting states 
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4.1 Training Phase 

Given a number of ASL gestures in the dictionary, the training is performed by build-

ing an HMM for each gesture by using feature vectors for the sequence of observa-

tions for that gesture. We used a number of observations to estimate the optimum 

parameters for each gesture, giving model λi, for the ith gesture. After some trials, we 

found that 200 observations with 26 features each were enough training data for our 

purposes. 

4.2 Recognition Phase 

Recognition in the context of our problem means to calculate the likelihood of each 

model generating the unknown data using the Viterbi Algorithm [1] and then choos-

ing the most likely model that identifies the unknown gesture as shown in Figure 8. 

Our final implementation of the HMM classifier comprised of the following steps: 

1. Preprocess and transform the data so that it is in the HTK supported format, 

2. Train N models, one for each gesture, by computing the model parameters using 

the Baum-Welch re-estimation algorithm 

3. Use the generated models to determine the classification accuracies for each user. 

 

Fig. 8. Recognition of an unknown gesture is performed by choosing the maximum likelihood 

of the model that generates the gesture 

5 Experimental Results 

Table 2. Overall recognition results for all users for all different hidden states configuration 

 User 1 User 2 User 3 

4 hidden states 84.62% 96.15% 76.92% 

6 hidden states 80.77% 92.31% 73.08% 

8 hidden states 80.77% 76.92% 69.23% 

Average / user 82.05% 88.46% 73.08% 

 Overall Accuracy by User: 81.20% 
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5.1 Experiment Setup 

Data s were collected for 13 ASL gestures performed by 3 different ASL users. Ges-

tures were chosen in a manner so that there was a good mix of words that involved 

motion of one hand as well as both hands. The following words were chosen for this 

experiment: ‘Time’, ‘Me/I’, ‘Water’, ‘Think’, ‘Friend’, ‘Meet’, ‘Teacher’, ‘Your’, 

‘You’, ‘Who’, ‘How’, ‘What’, and ‘Name’. Each word was repeated 10 times with 

200 samples for each set. In total, 130 recordings were performed by each user. The 

recording of each word was carried out over a four second period from start to finish. 

To progress towards a robust ASL recognition system we wanted to determine the 

accuracy of the system with a minimal number of training and test samples, therefore, 

we deemed 8 samples for each word to be a reasonable requirement of the system. 

5.2 Results 

Evaluation results were obtained from the HMM recognizer for each gesture per-

formed by 3 different ASL users. Eight samples were used for training; two were used 

for testing the system. Since there is no set rule of thumb on the number of hidden 

states to incorporate for each HMM, we performed multiple different benchmark tests 

and the results are displayed in table 2. The accuracy of the system is defined by the 

equation: 

 Accuracy = (S/N) ∙ 100% (8) 

where S is the number of correctly recognized gestures and N is the total number of 

test gestures. 

5.3 Discussion 

We noticed that a 4-state topology yielded the best results as shown in Figure 9. This 

is possibly due to the fact that the current system is only a word-based recognizer, 

therefore selecting a low number of states per word is a reasonable decision. Moreo-

ver, according to [1] the number of states per word should roughly correspond to the 

average number of observations in the “spoken” version of the word. Consequently, 

choosing a 4-state topology in our model means that we are assuming that the signed 

word can be decomposed into 3 to 4 observations, which is a fair assumption if we 

consider the actual signing to happen in 3 different stages as sign-start  sign-mid  

sign-end. 

Table 3 shows the detailed results of training and recognition performed for user 2. 

As noted earlier, we will see that as we decrease the number of states per model our 

recognition accuracy increases. We also noticed that most of the errors occurred for 

gestures that involved motion of only one hand as shown in table 4. Lack of data from 

the secondary myo, in the case of ‘Water’, ‘Me/I’, ‘Who’, and ‘You’, can cause the 

system to misclassify the gesture. Currently, our system does not penalize for “static 

motion” data. In future versions of this system, a “weighting” option can be incorpo-

rated which assigns more weight to feature values obtained from the dominant hand 
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myo in case of gestures that do not involve the heavy movement of the non-dominant 

hand. 

Table 3. Detailed results of gestures with different hidden states per HMM for user 2 

 Recognition results with different number of hidden states 

Gesture 4 hidden states 6 hidden states 8 hidden states 

Friend 2 2 2 

How 2 2 2 

Meet 2 2 1 

Me/I 2 2 1 

Name 2 2 2 

Teacher 2 2 2 

Think 2 2 1 

Time 2 1 2 

Water 1 1 1 

What 2 2 2 

Who 2 2 1 

You 2 2 1 

Your 2 2 2 

NOTE: Each cell indicates the number of correctly recognized test instances out of a total of 2 

test instances. 

Table 4. Detailed recognition results for all users 

 Recognition results for all users (4 hidden states) 

Gesture User 1 User 2 User 3 Overall 

Friend 2 2 2 100% 

How 2 2 2 100% 

Meet 2 2 2 100% 

Me/I 1 1 2 67% 

Name 2 2 1 83% 

Teacher 2 2 2 100% 

Think 2 2 2 100% 

Time 2 2 2 100% 

Water 1 0 0 17% 

What 2 2 2 100% 

Who 2 1 0 50% 

You 2 2 0 67% 

Your 2 2 2 100% 

NOTE: Each cell indicates the number of correctly recognized test instances out of a total of 2 

test instances. 

 



54 American Sign Language Recognition using… 

 

 

Fig. 9. Recognition accuracy vs. number of hidden states per model 

6 Conclusion and Future Work 

In this paper, we presented an ASL recognition system utilizing Myo armbands using 

multi-dimensional Hidden Markov Models. The system is an emerging application of 

the Hidden Markov Models machine learning technique as HMMs have not been 

applied to gesture data from the Myos before, to the best of our knowledge. The sys-

tem currently can perform training and testing of basic hand gestures which involve 

motion. The evaluation results show that the HMM-based approach is promising for 

future research directions which include continuous ASL recognition of full sentences 

as well as an adaptation of data for a new signer (signer-independence). 
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