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Abstract. This paper examines the performance of Apache Sparks machine
learning library with reference to the optimal required resources such as the
number of machines and cores to best perform popular machine learning algo-
rithms. In order to achieve this, we have observed the training time of classifi-
cation algorithms such as logistic regression, support vector machines, decision
trees, random forests, and gradient boosted trees under different configurations
on a sample dataset. Our research revealed that having an excessive number of
resources does not necessarily decrease the training time of the machine learn-
ing algorithms, rather, it may even degrade the training time by up to 30 per-
cent. Furthermore, this study confirms that methodologies such as tree ensem-
bles can increase the training time of machine learning algorithms compared to
that of typical decision trees.

1 Introduction

Machine learning with its automated learning power unleashes big data power to aid
data scientists to gain knowledge in a variety of applications such as computer vision,
speech processing, natural language understanding, neuroscience, health, and Internet
of Things (l1oT). The major challenges of using machine learning in big data is to
perform the analysis in a reasonable time [28].

In-memory processing with its increased performance in response time has been
proven beneficial in a range of areas such as fraud detection, risk management, and
decision-making, where machine learning algorithms are used to conduct analytics.
Together with real-time analytics, it provides unmatched productivity and profit gains
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that explains why companies such as Facebook, Twitter, and Amazon take advantage
of their capabilities [9, 24].

In-memory processing involves querying data in the computers RAM instead of its
hard disk. Being able to interact directly with RAM as opposed to the traditional
method of hard disks 1/O operations greatly increases response times and throughput.
Acker et al. concluded that response times were 5 to 19 times better and throughput
increased by 7 times when using in-memory processing platforms. It has been report-
ed that in-memory processing is easier to set up and maintain which is ideal when
analyzing large datasets [1], reduction in memory prices, and higher user satisfaction
that enables faster data access that contributes to faster decision making. [5, 10, 12].

There are various big data frameworks that take advantage of in-memory pro-
cessing and of those frameworks the one that is mostly used is Apache Spark, a de-
scendent of Hadoop. Using its in-memory capabilities Apache Spark executes ma-
chine learning algorithms efficiently by keeping the dataset in RAM and eliminating
the repetitious pulling of data from the hard disk [14]. For example, the machine
learning algorithm known as logistic regression is over 100 times faster when using
Spark instead of Hadoop [3].

Spark has caused a surge of interest due to the companies’ desire to utilize real-
time analytics, analysis of streaming [oT data sets, and efficient implementation of
iterative algorithms. But regardless of its benefits, the unfamiliarity of many compa-
nies with big data cluster specifications such as the number of machines, number of
cores per machine, and the interoperability of machines, often results in lower hard-
ware usage efficiency.

Every data analysis ecosystem has two main components which are filesystem and
processing system. Spark, handles files in the form of Resilient Distributed Datasets
(RDD), and processes them with its in-memory processing engine. In the following
sections, we will discuss more of these components as well as our choice of test data
set and algorithms.

Resilient Distributed Dataset

RDDs are data structures that partition the dataset into multiple partitions, and aid
with parallel computing by supporting iterative operations on the Spark. The resilient
feature of RDD that logs the transformations used to build a dataset will capture
enough information to re-compute a lost or damaged partition. Furthermore, RDD
gives users control over how the data is partitioned, the storage strategy for each
RDD, and indicate which RDDs will be reused. Due to its parallel computing capabil-
ities, RDD significantly improves the performance of large dataset computations on
an in-memory computing platform [26].

In-memory Processing

In-memory processing has been studied since the 1980s, but recently it has gained
popularity due to the availability of ultra-fast memories, each with its massive capaci-
ty often offered at the lower cost [23, 13]. There are several significant differences



68 Performance Analysis of Sparks Machine...

between processing in main memory versus processing on hard disks. The most quan-
tifiable difference is the fact that main memory processes computations notably faster
than hard disks [11]. This is because in-memory processing places the computation
near the data as a means to reduce data movement [2]. Despite the volatility and vul-
nerability of main memory, the processing speed and other benefits make using in-
memory processing worthwhile.

Data

In this study, Higgs dataset from UCI machine learning repository [4] has been adopt-
ed and produced using Monte Carlo simulations. The first 21 features are kinematic
properties measured by the particle detectors in the accelerator and the last seven
features are functions of the first 21 features; these are high-level features derived to
help discriminate between the two classes.

Machine Learning Algorithms

Machine learning is a type of artificial intelligence that provides computers with the
ability to learn autonomously, using a combination of methodologies developed by
the statisticians and computer scientists, to learn relationships from data while also
placing emphasis on efficient computing algorithms. Machine learning is also used in
the analysis and diagnosis of medical images in radiological medicine, predict the
susceptibility of soil liquefaction, and forecast models of consumer credit risk. The
techniques used within these countless applications of machine learning techniques
each fall under one of two categories of supervised or unsupervised learning [8, 25,
20, 15].

In this study, we have examined the performance of the following five machine
learning algorithms.

Logistic Regression: Linear regression attempts to fit a line to data that has only
two levels or outcomes, whereas, logistic regression models the chance of an outcome
based on a transformation known as a logit [19]. Spark uses two optimizers that are
examined for logistic regression in this study. These optimizers are Stochastic Gradi-
ent Descent (SGD) and Limited Memory BFGS (LBFGS).

The SGD approximates the gradient by accessing a single element within the da-
taset during each iteration. It works best for machine learning algorithms that are
large in magnitude because it does not require loading the entire dataset. It is also
inexpensive in regard to computations and the dataset can be quickly processed.
Those benefits are key factors that influence many to use SGD to optimize logistic
regression and SVM algorithms [22]. LBFGS is a quasi-Newton method optimizer
that uses prior iterations to estimate the Hessian matrix of the objective function [27].
These prior iterations have a sequence of gradient vectors that are used to solve un-
constrained nonlinear minimization problems. Of the machine algorithms that were
previously mentioned, logistic regression utilizes LBFGS to optimize its performance.

Support Vector Machine (SVM): The support vector machine algorithm uses train-
ing examples to create a hyperplane that separates the dataset into classes. The com-
plexity of classes may vary, but the simplest form of the SVM algorithm has only two
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possible labels to choose from. To reduce misclassifications, a decision boundary is
obtained while training the SVM algorithm. This decision boundary is known as the
optimal separation hyperplane [22]. The only optimizer available for SVM on Spark
is SGD optimizer.

3) Decision Trees: Classification via decision trees begins with a series of ques-
tions about the various features of the dataset. Each question is housed in a node that
points to at least one child node that responds to the question. A hierarchal tree is
formed as a result of these questions and thus, allowing the classification of an item
based on how we answer the questions. A classification occurs once we have reached
a leaf node [16].

4) Random Forests: Random forests and boosted trees are other forms of classifi-
ers that are based on decision trees and yield more precise classifications by its multi-
ple decision trees. Random forests are one of the methods of tree ensembles where
tree predictors are combined in such a way that each tree prediction depends on the
values of a random vector sampled independently and with the same distribution for
all trees in the forest. In the process of training a random forests predictor model, the
root node corresponds to whole input space and this input space will be partitioned
into multiple disjoint partitions. At each of these nodes, a decision tree model will be
trained based on its data partition [6].

Gradient Boosted Trees: One of the common methods for improving the accuracy
of any machine learning algorithm is by boosting it. This method had been introduced
by Sapphire at 1990 and utilizes a combination of weak classifiers in order to create a
sturdier classification model. Gradient boosted trees classification algorithm allows
for first decision tree model to be trained based on the training dataset, improving the
accuracy of the model iteratively by retraining the model. During each training, tuples
will be reweighted, so the model can decrease its error rate. Boosting does not suffer
from overfitting regularly, but because of its iterative nature takes a longer time to
train the model [7].

2 Related Work

Until recently, there has not been much research conducted in regard to in-memory
processing. Sparks in-memory capabilities have been shown to be faster and more
flexible than Hadoop in a variety of areas [21]. For example, according to a study
reported in [26], a workload that took 20 hours on Hadoop was reduced to 3 minutes
on Spark. The performance of in-memory processing is analyzed with regard to the
number of machines, amount of memory, number of cores per machine, and the
amount of pool threads on a variety of workloads [2]. Machine learning is treated as a
small aspect instead of a focal point.

Siegal et al. [21] presented a machine-learning library prototype called Smart-
MLib that allows machine learning implementations to be invoked from a program
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other than Spark. The authors tested the library’s performance and built machine-
learning applications that are also provided in Spark’s MLIib and tested the perfor-
mance of k-means clustering, linear regression, Gaussian mixture models, and support
vector machines using MLib and Smart-Mlib.

Kumar et al. [17] compared the prediction accuracy of two groups of supervised
machine learning ensembles based Meta learners. They showed that Random Forest
performs well in both Meta learners: bagging and boosting than other learning algo-
rithms. Lee et al. [18] evaluated the performance of three sampling-based algorithms,
four ensemble algorithms, four instance-based algorithms, and two support vector
machine algorithms. They conducted two experiments to compare algorithm perfor-
mance using etching process data and chemical vapor deposition process data, which
showed that increasing imbalance ratio leads to higher performance in the instance-
based algorithms.

3 Big Data Infrastructure

3.1 Hardware

Big Data analytics require a scalable hardware infrastructure with parallel processing
capability. This system should have enough memory, bandwidth, and throughput to
run multiple tasks simultaneously, and perform parallel processing of advanced ana-
Iytics algorithms in a matter of seconds. Since the main concept of Big Data compu-
ting is distributed processing, in this study the framework is implemented over a clus-
ter of servers. We have arranged a cluster of 16 servers providing a powerful hard-
ware base for big data analytics tasks. Four of these servers act as administrative
nodes, and 12 servers operate as worker nodes. Each of the 16 servers has two In-
tel(R) Xeon(R) quad-core CPU 5620 2.40 GHz processors, meaning there are eight
real cores or 16 virtual cores on each server. The servers are equipped with 16 GB
DDR3 RAM and a 1 TB hard disk. The operating system used is a Linux Ubuntu
server 14.04 64-bit distribution. The switch used is Juniper EX4200, which is a high-
performance, low-latency, and provides a one Gigabit Ethernet (GbE) access envi-
ronment.

3.2  Software

To analyze the performance of machine learning algorithms on Spark, we began by
building a Hadoop cluster using YARN as the resource manager. YARN is a platform
that provides consistent operations, security, and data governance tools across Ha-
doop clusters. We chose YARN as the resource manager because it outperforms
Sparks standalone mode for handling clusters. YARN allows for multi-tenancy, dy-
namic allocation of cluster resources, and data center expansion [21]. A bash script
was created that ran machine learning models on the HIGGS dataset with data size of
8 gigabytes, 28 attributes, and 11 million instances [4]. To test the performance of the
machine learning algorithms, we utilized a maximum of 7 machines with 8 virtual
cores and 16 gigabytes of RAM. The amount of data partitions was also considered
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when analyzing the performance of the machine learning algorithms. There was a
range of 40 to 60 partitions used. The performance time of the machine learning algo-
rithms was first averaged regarding the number of machines and then averaged by the
number of cores. 1) Spark: Spark is a framework for the parallel processing of Big
Data. Spark is designed to use Hadoop MapReduce with some modifications that
enable it to perform more efficiently. Apache Spark has its own streaming API and
independent processes for continuous micro-batch processing across intervals with
varying, but short time duration. Spark runs up to 100 times faster than Hadoop in
certain circumstances. Spark has some features for real-time analytics and is support-
ive of applications such as machine learning, stream processing, and graph computa-
tion [26]. MLIib is Spark’s machine learning library, focusing on learning algorithms
and utilities, including classification, regression, clustering, collaborative filtering,
dimensionality reduction, as well as underlying optimization primitives. MLlIib is
built on Apache Spark, which is a fast and general engine for large-scale processing
that is up to 100x faster than Hadoop MapReduce, or 10x faster compared to disk. It
supports Java, Scala, and Python.

4 Evaluation

4.1  Experimental Condition

An experiment was setup to investigate the performance of the machine learning
algorithms with 128 different configurations, a number of servers 3 through 10, and
number of virtual cores 1 through 16 with data chunk size of 64 megabytes. The min-
imum number of servers needed to perform machine learning algorithms were select-
ed to conform with the replication factor of 3 that refers to the storing of data on
different machines.

4.2  Results

In the process of training the classification models, we observed that the split rate of
selected data for training data set does not effect the training time of the machine
learning algorithms. This means that the only parameters affecting the training time of
classification models for particular dataset and infrastructure are software parameters
and the resources that are being used. We have discovered that the analysis won’t
complete if we don’t provide enough RAM for the execution, and on the other hand
adding excessive RAM will not increase the performance.

In this experiment, we trained the logistic regression model with two LBFGS and
SGD optimizers, with over 100 different configurations. The average training time of
SGD was 207 seconds and the average time of LBFGS was 106 seconds, as shown in
Fig. 1, so we can conclude that logistic regression model can be trained 49 percent
faster using LBFGS optimizer compared to SGD while being trained with similar
cluster configurations.

As expected, there was an observed increase in the performance of machine learn-
ing algorithms as the number of servers increased. It is noteworthy to state, however,
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that adding additional servers will increase the performance, but decaying decreasing
performance with higher number of servers and adding these additional servers may
outweigh the performance benefit. The results of this experiment are presented in Fig.
2.

Lercs [

Fig. 1. Comparison of average training time for logistic regression using SGD and LBFGS
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Fig. 2. Time comparison of classification algorithms on different number of servers

We observed that having more than one virtual core makes significant difference in
the training time and having 2 through 8 virtual cores performs equally well. Fur-
thermore, increasing the number of virtual cores used on each server to more than 8
degrades the performance of machine learning algorithm. Therefore, we conclude that
the optimum number of virtual cores is between 2 and 8, independently selected algo-
rithm, next we compared training time based on the number of servers.
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Fig. 3. Comparison of average training time of classification algorithms per number of vir-
tual cores on each server

Interestingly, as shown in Fig. 3, the relationship between the number of cores and
the performance of the machine learning algorithms did not follow a similar pattern to
that of the number of machines and performance. This issue raises concern regarding
Spark and YARNSs ability to manage resources in training of machine learning algo-
rithms.

We further analyzed results using tree ensembles and as was expected random for-
ests capability to adapt with parallel processing, will allow training higher number of
subtrees for training predictor model. Fig. 4 shows the average training time for this
algorithm using 5, 25 and 50 subtrees.
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Fig. 4. Training time Comparison of decision tree and random forests with 5, 25, 50 subtrees

We Tested Gradient boosted trees with a different number of iterations and as ex-
pected an increasing number of iterations significantly increased its training time.
Also, because of the iterative nature of this algorithm, parallelism and cluster compu-
ting only marginally helps with its boosting. As you can see in Fig. 5 the training time
of gradient boosted tree with even few iterations increases rapidly.
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Number of Iterations
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Fig. 5. Training time Comparison of decision tree and gradient boosted trees with 3 and 6
iterations

5 Conclusion

We have presented the optimal server and core configurations needed to the best per-
forming machine learning models using Apache Spark on a specific dataset. These
optimal configurations will not only save time but will also reduce the cost of infra-
structure. The performance of these machine learning algorithms was analyzed in
regards to time in seconds. Factors such as the number of cores, number of machines,
and the number of partitions were taken into consideration when analyzing the per-
formance of the machine learning algorithms. It was discovered that as the number of
servers increased, the performance increased as well, but performance, however,
decreased, as the number of cores increased. These results infer that more servers and
fewer cores are needed for optimal performance of machine learning algorithms.
From a business perspective, it is best to use the number of machines that make a
significant impact on performance rather than a meager impact as means to save mon-
ey. This justifies why we chose several servers that was less than the maximum num-
ber of machines that were available. We wanted to maximize benefits and resources
while minimizing expenditures.
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