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Abstract The world of big data is changing dramatically; in the domain of
data mining, machine learning and pattern recognition, the feature access has
grown from tens to hundreds or even thousands. This trend presents enormous
challenges, specially for classification problems. In manufacturing, classification
of quality is one of the most important applications; however, feature explosion,
combined with high conformance production rates are two of the most impor-
tant challenges for big data initiatives. Empirical evidence shows that discarding
irrelevant or redundant features improves prediction, helps in understanding the
system, reduces running time requirements, and reduces the effect of dimen-
sionality. In this paper, the Hybrid Correlation- and Ranking-based (HCR) and
ReliefF filter feature elimination algorithms are presented as a wrapper method,
which uses the Naive Bayes as the learning algorithm. To boost parsimony, the
algorithms are combined with the Penalized Maximum Probability of Correct De-
cision – a model selection criterion – to develop a Hybrid Feature Selection and
Pattern Recognition framework aimed at rare quality event detection. A flexible
approach that can be widely applied to various machine learning algorithms.

Keywords Quality control · Manufacturing systems · Feature elimination algo-
rithm · Model selection criterion · Unbalanced binary data · Defect detection

1 Introduction

We are living in a world that is highly influenced by the rise of big data. The
information explosion that companies are facing with ever-increasing amounts
of data highlights the importance of information extraction techniques. When
analyzing large volumes of data, data mining, machine learning and pattern
recognition techniques are used for data-driven knowledge discovery (e.g., model
discovery), pattern recognition (e.g., classification) and/or to display hidden pat-
terns in the data. In these big data-driven techniques, a feature (e.g., variable)
is an individual measurable property of a phenomenon being observed [1]; the
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prediction ability of a learning algorithm is mainly determined by the inherent 
class information available in the features included in the analysis [2]. And gen-
eralization refers to the prediction ability of a learning algorithm-based model 
on unseen data.

Theoretical analysis and empirical evidence show that irrelevant and redun-
dant features are not helpful in solving pattern recognition problems: (1) they 
may have negative effect on the classification performance because of the mu-
tual effect between the features; (2) they may significantly increase computa-
tional time; and (3) it is more difficult to extract high-level knowledge from the 
analysis [3–5].

Dependence can be described as any statistical relationship between two 
random variables. Correlation refers to a broad class of statistical relationships 
involving dependence. The most common measure of linear dependence is the 
Pearson product-moment correlation coefficient[6].

In this context, a feature may be considered good if its inherent class in-
formation is relevant to one of the class labels, but is not redundant to other 
good features. If the correlation of two variables is used as a goodness measure, 
a good feature should be highly correlated to one of the class labels, but not 
highly correlated to any other features – redundant [5, 7]. On the other hand, a 
feature may be considered irrelevant if the information that it contains is inde-
pendent from the class label. In the Feature Selection (FS) domain, the selection 
of relevant features and elimination of irrelevant and redundant ones is one of 
the main challenges [8].

1.1 Big Data in Manufacturing

Manufacturing companies are intense users of big data, this industry generates 
and stores more data than any other [9]. Learning algorithms e.g, support vector 
machine, logistic regression, decision trees to name a few, are applied for quality 
monitoring and process control [10]. Classification of quality is one of the most 
important applications, where relevant quality characteristics of the process or 
product are observed and related to an ordinal or binary output aimed at de-
tecting defects [11]. Big data initiatives have the potential to solve a whole range 
of hitherto intractable manufacturing problems [12].

When a new manufacturing process is initially deployed, it often occurs that 
engineers do not fully understand the physics of the process and the huge amount 
of information is used to create tens, hundreds or even thousands of features, 
which frequently include relevant, irrelevant and redundant ones. This may cause 
serious problems to many learning algorithms with respect to the scalability and 
learning performance [5]. Because most mature manufacturing organizations gen-
erate only a few defects per million of opportunities, another common challenge 
when analyzing manufacturing-derived data sets is their highly unbalanced data 
structure. The feature explosion combined with high conformance production 
rates are two of the most important challenges of big data initiatives in manu-
facturing.
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Table 1: Acronyms Table
Acronym Definition

FN False Negatives
FP False Positives
FS Feature Selection
HCR Hybrid Correlation- and Ranking-based
HFSPR Hybrid Feature Selection and Pattern Recognition
MPCD Maximum Probability of Correct Decision
MS Model Selection
NB Naive Bayes
PMPCD Penalized Maximum Probability of Correct Decision
SUFL Sorted and Uncorrelated Feature List
TN True Negatives
TP True Positives

In contrast with other industries, where prediction is the main goal, in manu-
facturing, model interpretation – from a physics perspective – is very important.
Since the extracted information of the cases yielding high quality can be used by
engineers to plan and to design randomized experiments to find optimal levels
of process/product parameters. This problem representation highlights the im-
portance of finding a few good empirical-data-derived features to approximate
the patterns of manufacturing systems (parsimony [13]).

Parsimonious modeling aimed at detecting rare quality events is the main
driver of this research. Parsimony is induced through FS and Model Selection
(MS).

The Hybrid Correlation- and Ranking-based [14], is a filter FS algorithm
aimed at eliminating redundant features, where the Pearson’s correlation coef-
ficient is used as a measure of redundancy. The basic idea of the algorithm is
to keep the best feature – highest ranked – from a set of two or more highly
correlated variables and eliminate the rest. It uses the ReliefF algorithm to rank
the features according to their discriminative capacity.

In this paper, HCR and ReliefF algorithms are presented as a wrapper
method. Due to the strong assumption of independence of variables, the Naive
Bayes (NB) is used as the learning algorithm. To boost parsimony, the algo-
rithms are combined with the Penalized Maximum Probability of Correct De-
cision (PMPCD) – a model selection criterion [15] – to develop a Hybrid Fea-
ture Selection and Pattern Recognition (HFSPR) framework; aimed at analyzing
highly unbalanced data structures.

This paper is organized as follows: it starts with a review of the theoretical
background in section 2. Section 3 describes the HFSPR framework, followed
by a binary classification empirical study in section 4. Finally, conclusions and
opportunities for future research are included in section 5.
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Table 2: Variables Table
Variable Description

α type I error
β type II error
δ high-correlation threshold
F list of features in descending order
FC feature correlation matrix
k number of nearest neighbors
K number of features in the candidate model
m number of sampled instances
n number of features
rxy Pearson correlation coefficient
τ feature relevance threshold
x̄ mean of variable x
xi data point i of variable x
x, y correlated variables
ȳ mean of variable y
yi data point i of variable y

2 Theoretical Background

2.1 Feature Selection Methods

Feature selection can be defined as the process of choosing a subset of good
features, and eliminating irrelevant and redundant ones from the original feature
set. From a given data set, evaluating all possible combinations (2n) becomes an
NP-hard problem as the number of features grows [16]. The FS methods broadly
fall into two classes: filters and wrappers [17].

Filter methods select variables independently of the classification algorithm
or its error criteria, they assign weights to features individually and rank them
based on their relevance to the class labels. A feature is considered good and
thus selected if its associated weight is greater than the user-specified thresh-
old [5]. The advantages of feature ranking algorithms are that they do not over-fit
the data and are computationally faster than wrappers, and hence they can be
efficiently applied to big data sets containing many features [7].

Wrappers, use the learning algorithm as a black-box to evaluate the relative
performance of a feature subset [18, 19]. In this procedure, a set of candidate
features are input to the learning algorithm, and the prediction performance
is used as the objective function to evaluate the feature subset. Although the
wrapper methods can become computationally intensive, they perform better
than filters due to the bias induction by the algorithm [17]. However, the classifier
may learn the training data too well (i.e., become over-fitted), but exhibit poor
generalization ability. To avoid this situation, a holdout set can be used to track
the classifier’s accuracy on unseen data.

Recently, hybrid approaches have been proposed by [3] to take advantage of
the particular characteristics of each method. These approaches mainly focus on
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combining filter algorithms with either wrappers or regularization to solve the
scalability problem and to achieve the best possible learning performance with
a particular algorithm. The basic idea is to break down the FS problem into
several stages, namely feature ranking, correlation-based feature elimination,
and prediction optimization.

2.2 Relief and ReliefF

The basic idea of Relief is to estimate the quality of features according to how
well their values distinguish between instances that are near to each other [20].
Its advantages are that it is not dependent on heuristics, it runs in low-order
polynomial time, and it can be applied to nominal or numerical features. How-
ever, Relief does not eliminate redundant features, cannot deal with incomplete
data and is limited to two-class problems.

ReliefF is an extension of the Relief algorithm, it was improved by Kononenko
to generalize to multiclass problems. In addition, the improved algorithm (Reli-
efF ) is more robust to incomplete and noisy data sets [21]. ReliefF searches for
a k of its nearest neighbors from the same class, called nearest hits, and also a
k nearest neighbors from each of the different classes, called nearest misses, this
procedure is repeated m times, which is the number of randomly selected in-
stances. Thus, features are weighted and ranked by the average of the distances
(Manhattan distance) of all hits and all misses [22] to select the most important
features [20], developing a significance threshold τ . Features with an estimated
weight below τ are considered irrelevant and therefore eliminated. The proposed
limits for τ are 0 < τ ≤ 1/

√
αm [22]; where α is the probability of accepting an

irrelevant feature as relevant.

2.3 Correlation-Based Redundancy Measure

The Pearson product-moment correlation coefficient (or Pearson correlation co-
efficient) is used as a measure of redundancy between two random variables [6].
The Pearson correlation coefficient (rxy), is a measure of strength of linear rela-
tionship between two variables (x, y), and it can take a range of values from +1
to -1, eq. (1). A value of 0 indicates that there is no linear relationship between
the two variables, while an absolute value of 1 (or close to 1) indicates strong
linear relationship, and therefore considered highly redundant.

rxy =

∑
i(xi − x̄)(yi − ȳ)√∑

i(xi − x̄)2
√∑

i(yi − ȳ)2
(1)

2.4 Naive Bayes

Naive Bayes is a probabilistic algorithm based on Bayes theorem of conditional
probabilities. The basic classification process consists on determining a score
based on the training data values. In a simple binary classification problem, a
high score is associated with one class and a small score is related to the other
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class. The result is compared with a threshold to determine the final class [23]. 
NB is fast calculating the needed probabilities as it only performs one scan to the 
data [24]. NB has a strong independence of variables assumption [25]. Another 
assumption of NB is that numerical values have always a normal distribution. 
NB is easy to develop [23] and its classification process is easy to understand 
as well. It also offers computational time savings for training as it only needs a 
small amount of data; it is also fast classifying and requires minor storage space 
in both previous tasks . Besides, it is not affected by missing values as it omits 
them. In this sense, NB is suitable for working with high amount of data [23]. 
NB cannot remove irrelevant features and its performance is highly dependent 
on the feature selection procedure used. Finally, this algorithm is very affected 
by irrelevant features [24].

2.5 Maximum Probability of Correct Decision

In predictive analytics, a confusion matrix [26] is a table with two rows and 
two columns that reports the number of False Positives (FP), False Negatives 
(FN), True Positives (TP), and True Negatives (TN). This allows more detailed 
analysis than just the proportion of correct guesses since it is sensitive to the 
recognition rate by class. A type-I error (α) may be compared with a FP predic-
tion; a type-II (β) error may be compared with a false FN [6]. They are defined 
as:

α =
FP

FP + TN
, β =

FN

FN + TP
. (2)

The MPCD is a probabilistic-based measure of classification performance.
It is more sensitive to the recognition rate by class than just the proportion of
correct guesses. The α, and beta β errors are combined to estimate MPCD :

MPCD = (1− α)(1− β) (3)

where higher score (0 ≤MPCD≤ 1) indicates better classification performance.

2.6 Penalized Maximum Probability of Correct Decision

It is a MS criterion for binary classifiers in highly unbalanced data structures
(i.e., 0.1-3% of defects) [15]. This criterion solves the posed tradeoff between
model complexity (e.g., number of features) and prediction ability.

PMPCD = (1− α)(1− β)− ln(K)/34.55 (4)

where K is the number of features, and the model with the highest estimated
value on the validation set [27–29] is the preferred one.

The term (1 − α)(1 − β) rewards the prediction capacity, while the penalty
function ln(K)/34.55 induces parsimony by decreasing the PMPCD value based
on the extra features. Since the natural logarithm is a monotonically increasing
function, the penalty values follow the same pattern, with no penalty imposed
for a single-feature model.
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2.7 Hybrid Correlation and Ranking-based Algorithm

The HCR algorithm [14] eliminates redundant features based on Pearson’s cor-
relation coefficients and the ReliefF algorithm ranking. The basic idea is to keep
the best feature – highest rank – from a set of two or more highly correlated
variables and eliminate the rest in that group.

3 Hybrid Feature Selection and Pattern Recognition

Parsimonious modeling is induced through feature selection and model selection,
Fig. 1. Since most manufacturing systems are time-dependent, cross-validation
methods are not encouraged. Instead, time-ordered hold-out method seems to
be more appropriate. The data set should be splitted into training, validation
and testing sets (e.g., 50%, 25%, 25% respectively) [28]. And the search space
defined by many candidate pairwise combinations – based on different values of
k for ReliefF and δ for HCR. The values of k can be determined by generating
a logarithmically spaced vector [30] – p logarithmically spaced points between
decades 10a and 10b, where X = sum(bad) in the training set, a = 0 and
b = log10(X).

1. Feature selection
The primary purpose of this stage, is to find a small subset of features with
high prediction capacity. Since the optimal combination – with respect to
prediction – of k and δ is not known in advance, a hyperparameter [31] opti-
mization is performed through a grid search [32, 33]. Using the training set,
irrelevant and redundant features are eliminated by applying ReliefF and
HCR algorithms. First, features are ranked based on ReliefF and irrelevant
features are eliminated based on τ – feature relevance (significance) thresh-
old. From the selected features, high correlations are eliminated based on δ.
These two steps are performed in a filter-type approach, where the learning
algorithm is not considered. The outcome of this step, is a subset of relevant
features with no high correlations.
A candidate model is developed with the subset of features at each pairwise
combination, and the predictive fitness of each model is evaluated to find
the incumbent (best so far) model – highest validation MPCD. The features
in the incumbent model are selected and their associated ReliefF ranking
recorded.

2. Model selection
Although a good feature subset has been obtained in the previous step,
their individual relevance in the model is not known in advance. To evaluate
their prediction-contribution, a set of n candidate models are developed –
where n is the number of selected features – using the top 1 feature in the
first candidate model, and the top 2 features in the second one, and so on.
Finally, the PMPCD of each candidate model is estimated and used as a MS
criterion to induce parsimony – solve the tradeoff between model complexity
and prediction ability. The final model is the one with the highest PMPCD
score.
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3. Generalization evaluation
To obtain an unbiased estimation (or closest to) of the generalization ability
of the final model, the prediction on testing set (unseen data) should be
reported in a confusion matrix [26] .
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Fig. 1: HFSPR framework.

4 Case Study – Ultrasonic Metal Welding

To validate the practical and theoretical advantages of the HFSPR approach
a manufacturing-derived data set is analyzed. Due to the strong independence
of variables assumption, the NB learning algorithm is used in this analysis,
however, the proposal can be virtually applied to any binary classifier. The data
used for this analysis is derived from the Ultrasonic Metal Welding of battery
tabs for the Chevrolet Volt [11], an extended range electric vehicle. A very stable
process, that only generates a few defective welds per million of opportunities.

4.1 Hybrid Feature Selection and Pattern Recognition

The collected data set contains a binary outcome (good/bad) with 54 features.
The data set is highly unbalanced since it contains only 35 bad batteries out
of 30,731 examples. To run the analysis, the data set is partitioned following a
time-ordered hold-out validation scheme: training set (18,495, including 20 bad),
validation set (12,236 - 8 bad), testing set (9,500 - 7 bad).
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1. Feature selection

The search space contains 35 pairwise combinations; for ReliefF, 7 logarith-
mically spaced points are defined – k = {1, 2, 3, 4, 7, 12, 20} – and for δ, 10
even spaced points – δ = {0.50, 0.55, ..., 0.95}. At each iteration, feature rele-
vance is determined by comparing their weights with τ = 0.0329 – calculated
with an α of 0.05, and m of 18,495. Prediction results and number of features
of each candidate model are shown in Fig. 2.
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Fig. 2: Candidate model information (denoted by line intersections).

According to the grid search results, the incumbent model has an esti-
mated validation MPCD = 0.8728, Fig. 2(a), and 13 features, Fig. 2(b).
This model was developed with the following relevant hyperparameters –
k = 2, τ = 0.0329, δ = 0.50. All candidate models failed to detect one of the
defective items, therefore, the β = 0.125 in all models. And they are basically
competing over the α error. As displayed by the plots, as the number of low
quality features included in the model increases, the α error increases too.
The proposed hyperparameter optimization allowed to find a good subset of
features.

2. Model selection

To induce parsimony, 13 candidate models are create, and PMPCD is used
as a model selection criterion to find the final model. The basic idea is to
evaluate the individual prediction-contribution of each of the 13 selected
features, Fig. 3 shows the selected features and their associated ranking.
Candidate model 1 contains top 1 feature (25), candidate model 2 contains
the top 2 features (25,5) and so on.

According to the model selection criterion, Candidate model 2 should be se-
lected, with an estimated PMPCD = 0.8501, Fig. 4. This analysis, discloses
that only two features are needed to approximate the pattern in the manu-
facturing system, since the prediction improvement is not significant if more
features are added to the final model.
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Fig. 4: Candidate models using the top 13 features.

 Parsimonious Modeling for Binary Classification ...  36



3. Generalization evaluation
The testing set is used to estimate the generalization ability of the final
model, recognition rates are summarized in the confusion matrix, Table 3.
This model includes only two features (25,5), and it correctly detected the
seven defective items with only five FPs – MPCD = 0.9995. It is clear that
the system can be explained by only these two features.

Table 3: Confusion Matrix
Declare good Declare bad

good 9488 5
bad 0 7

4.2 Solution Evaluation and Discussion

Although the feature combination is subject to combinatorial explosion, 1.80144E+16
number of combinations in this case study, the HFSPR approach only required
48 models to find a solution. To evaluate its relative quality, an exhaustive search
(due to computational feasibility) is performed with all the possible combina-
tions – up to two features – and compared with the final model. Since no model
selection is performed, the training set is used to develop the models and the test-
ing set to evaluate their generalization ability: (1) 54 (54C1) one-feature models,
Fig. 5(a); and (2) 1431 (54C2) two-feature models, Fig. 5(b).

Based on exhaustive search, no single-feature model has better generalization
ability. Whereas six two-feature models outperformed the final model, Table 4
summarize their relevant information. However, evaluating all possible combina-
tions to find an optimal solution rapidly becomes unfeasible as the feature space
grows.

The optimal solution could be defined as the model with the least number
of features and the highest prediction ability. For example, in this case study,
if there is no other model with an estimated MPCD > 0.9998, the optimal
solutions would be model indexes 1032 and 1035, Table 4. However, since the
number of combinations is huge, a model with more features may have greater
MPCD. In this context, oftentimes due to the tradeoff between model complexity
and prediction ability, there is no straight forward optimal solution. Instead, this
tradeoff should be solved.

Although the HFSPR did not find the optimal solution, it did promptly find
a good quality solution – a model that efficiently addresses the posed tradeoff.
Fig. 5 show the relative location of the solution – final model.

5 Conclusions and Future Work

In manufacturing domain, traditional quality initiatives have merged to create
a more coherent approach, therefore most mature organizations generate only
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Fig. 5: MPCD exhaustive search in the one-feature and two-feature
spaces.

Table 4: Top models (*HFSPR solution)
Model index Features MPCD FN

1032 26,33 0.9998 2
1035 26,36 0.9998 2
413 9,26 0.9997 3
1042 26,43 0.9997 3
1044 26,45 0.9997 3
1045 26,46 0.9996 4
Final 5,25 0.9995 5*
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a few defects per million of opportunities. As shown in this paper, machine
learning, pattern recognition and data mining techniques have the potential to
detect these very few defects, and therefore move quality standards forward.
However, several intellectual challenges have to be addressed to explode the full
potential of big data initiatives.

A Hybrid Feature Selection and Pattern Recognition approach aimed at de-
tecting rare quality events was developed. Although it does not guarantee to find
the optimal solution (if exists), it does promptly find a good quality solution.

Although the proposed approach was inspired by the challenges that man-
ufacturing companies are facing in detecting rare quality events – (1) feature
explosion; and (2) high conformance production rates – it can be generalized
to other domains, where the main challenge is to detect rare events through a
parsimonious model.

In this paper, hyperparameter optimization was performed through a grid
search. Future research along this path, can focus on developing an algorithm to
improve the hyperparameter optimization process.
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