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Abstract. It is well known that mathematical morphology plays an im-
portant role in image analysis as it enables locating and detecting shapes
as well as noise filtering. This paper shows how many of the important
properties in mathematical morphology hold in a much more general
setting of symbolic or non-numeric sets. This includes the operations of
dilation, erosion, opening and closing. For example, dilation of a union is
the unions of dilations. Dilation is a union preserving operation. Erosion
of an intersection is an intersection of erosions. Erosion is an intersec-
tion preserving operation. If A is a subset of B, then the dilation of A
is a subset of the dilation of B and the erosion of A is a subset of the
erosion of B. There is a duality between dilation and erosion. Openings
are formed by an erosion followed by dilation. Closings are formed by
a dilation followed by erosion. Openings are idempotent: doing it more
than once is the same as doing it once. Closings also are idempotent.
And there are other properties of mathematical morphology that hold in
the setting of arbitrary sets. Further that properties like idempotence of
openings and closings happen in a setting of general sets whose elements
are not numerical and where there are no numerical calculations and no
orderings is surprising and unexpected.

keywords: dilation, erosion, set operator, increasing operator, decreas-
ing operator, expansive operator, contractive operator, union preserving
operator, intersection preserving operator, set dilation operator ,set ero-
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sion operator,dual operator, adjoint operator, opening operator, closing
operator.

1 Introduction

Mathematical morphology plays an important role in image analysis as it enables
locating and detecting shapes as well as noise filtering. This paper shows how
many of the important properties in mathematical morphology hold in a much
more general setting of symbolic or non-numeric sets. This includes the opera-
tions of dilation, erosion, opening and closing. For example, dilation of a union
is the unions of dilations. Dilation is a union preserving operation. Erosion of an
intersection is an intersection of erosions. Erosion is an intersection preserving
operation. If A is a subset of B, then the dilation of A is a subset of the dilation
of B and the erosion of A is a subset of the erosion of B. There is a duality
between dilation and erosion. Openings are formed by an erosion followed by
dilation. Closings are formed by a dilation followed by erosion. Openings and
closings are idempotent: doing it more than once is the same as doing it once.

In section 2, we describe the basic definitions and properties of the differ-
ent set operators including increasing operators, decreasing operators, expansive
operators, contractive operators, union preserving operators, intersection pre-
serving operators, set dilation operators, set erosion operators, dual operators,
opening operators and closing operators.

In section 3, we describe the basic definitions and properties of the inverses
of set operators, including the inverses of the union preserving operators, the in-
verses of intersection preserving operators, the inverses of set dilation operators,
and the inverses of set erosion operators. A complete lattice of all the subsets of
a set gives rise to the possibility of an inverse operator. And it is impossible to
have it in the general case of the lattice.

In section 4, we define 10 theorems to construct the closing and opening
operators by using the set operators and the inverses we defined in the last two
sections.

The state of the art of Mathematical Morphology theory is Complete Lattice
operators. Such framework was introduced by Serra and Matheron ([1, 2]) in
the eighties, with many contributions for the class of increasing operators. Since
then, many researchers have contributed extensions of this theory. In the 1990’s,
Banon and Barrera developed general lattice operator representations, general
set mapping representations, in particular they used the concepts of kernel and
basis to prove that any set mapping (not necessarily translation invariant) can be
decomposed by a set of non-translation invariant sup-generating operators, or,
dual, non-translation invariant inf-generating operators. See Banon and Barrera
for a more complete review of the earlier work ([3, 4]).

All the previous work is more general because it’s on a general lattice. The
work we did is a specialization of the work that has already been published.
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Our work is easier to understand since we define our definitions on power sets.
We do not involve the concepts of completed lattices, translation invariant map-
ping, kernel mapping, basis mapping etc. All of what has we do is restricted to
finite sets. Because everything in our domain is countable, we do not get into
the infimum and supremum. Therefore, our definition and proofs are easier to
understand, and the proofs are more direct. In addition, our notation is simpler.
We have developed many new properties and theorems.

2 Basic Definitions and Properties

We do not review papers of mathematical morphology or its extensions to lat-
tices. See([5, 6, 8–27]). There is not enough space to do that and describe our
exciting generalization of mathematical morphology. There is so much to say.
We begin with basics.

Definition 1. A universal set is a finite set that contains arbitrary non-numeric
elements. We designate whatever universal set we are working with by U . Subsets
of U will be denoted by capital letters. Individual elements of U will be denoted
by lower case letters.[24]

For example, we may have U = {a, b, c, d, ...p, q}

Definition 2. The power set of U is the collection of all subsets of U, including
the empty set and is denoted by P(U).

For example given a universal set U = {a, b, c}, there are eight possible
subsets: ∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c} and this constitutes P(U).

Definition 3. A set operator F is a function F : P(U) → P(U). We follow the
convention that set operators will be denoted by calligraphic upper case letters
such as A and B.

Definition 4. The operator composition of a set operator F with another set
operator G where F : P(U) → P(U) and G : P(U) → P(U) will be denoted by
G ⊙ F and it means first apply F and then apply G. As appropriate, if we are
composing one set operator with another acting on a set A, we may write it as
G(F(A)).

Proposition 1. Set operator composition is associative.

F ⊙ (G ⊙H) = (F ⊙ G)⊙H
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2.1 Increasing and Decreasing Operators

Definition 5. A set operator F : P(U) → P(U) is said to be increasing if and
only if A ⊆ B implies F(A) ⊆ F(B). The operator F is said to be decreasing if
and only if A ⊆ B implies F(A) ⊇ F(B).[7, 19]

Example 1. Given a universal set domain U = {a, b, c}. Let A : P(U) → P(U)
be an increasing operator, and B : P(U) → P(U) be a decreasing operator with
following mappings as shown in Table 1.

Table 1. Illustrates an increasing operator A and a decreasing operator B defined on
the power set of {a, b, c}

S A(S)

∅ {a}
{a} {a, b}
{b} {a, c}
{c} {a}
{a, b} {a, b, c}
{a, c} {a, b}
{b, c} {a, c}

{a, b, c} {a, b, c}

S B(S)
∅ {a, b, c}

{a} {a, b}
{b} {b}
{c} {a, b, c}
{a, b} {b}
{a, c} {a}
{b, c} {b}

{a, b, c} ∅

Proposition 2. (1) If F : P(U) → P(U) and G : P(U) → P(U) are increasing
operators, then H = F ⊙ G is an increasing operator.

(2) If F : P(U) → P(U) and G : P(U) → P(U) are decreasing operators,
then H = F ⊙ G is an increasing operator.

(3) If F : P(U) → P(U) is a decreasing operator and G : P(U) → P(U) is
an increasing operator, then H = F ⊙ G is an decreasing operator.

(4) If F : P(U) → P(U) is an increasing operator and G : P(U) → P(U) is
a decreasing operator, then H = F ⊙ G is a decreasing operator.

Proposition 3. Let F be an increasing operator on U and let A,B ⊆ U . Then

1. F(A ∪B) ⊇ F(A) ∪ F(B)
2. F(A ∩B) ⊆ F(A) ∩ F(B)

2.2 Expansive and Contractive Operators

A set operator is able to take a set and produce a related set that includes the
original set. That kind of set operator is called an expansive operator. The set
operator that takes a set and produces a related set that excludes some of the
original set is called a contractive operator. Simply, we say that the expansive
operators produce sets which are super sets, the contractive operators produce
sets which are subsets.
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Definition 6. An operator F : P(U) → P(U) is said to be an expansive if and
only if A ⊆ F(A). The operator F : P(U) → P(U) is said to be contractive if
and only if F(A) ⊆ A.[19]

Example 2. As shown in Table 2, given a universal set domain U = {a, b, c}. C :
P(U) → P(U) is an expansive operator and D : P(U) → P(U) is a contractive
operator with the following mappings.

Table 2. Illustrates an expansive operator C and a contractive operator D defined on
the power set of {a, b, c}

S C(S)
∅ {b}

{a} {a, b}
{b} {a, b}
{c} {a, c}
{a, b} {a, b, c}
{a, c} {a, b, c}
{b, c} {b, c}

{a, b, c} {a, b, c}

S D(S)

∅ ∅
{a} ∅
{b} ∅
{c} {c}
{a, b} {b}
{a, c} {c}
{b, c} {b, c}

{a, b, c} {b, c}

Proposition 4. Let F : P(U) → P(U). If F is expansive, then F(U) = U . If
F is contractive, then F(∅) = ∅.

Proposition 5. Let F1 : P(U) → P(U) and F2 : P(U) → P(U) be expansive
operators. Then the composition F1 ⊙F2 is an expansive operator.

Proposition 6. Let F1 : P(U) → P(U) and F2 : P(U) → P(U) be contractive
operators. Then the composition F1 ⊙F2 is a contractive operator.

2.3 Union Preserving Operators

If an operator operates on a union of two sets, and produces a result that can
be obtained by taking the union of the operation on each of the sets, such an
operator is called a union preserving operator.

Definition 7. Let F : P(U) → P(U). F is called union preserving if and only
if

F(A ∪B) = F(A) ∪ F(B)

The union preserving operators have the diagram as shown in Fig.1. It is
clear that the union preserving operator has the same structure as a morphism.
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A F(A)

B F(B)

F

F∪ ∪

F

Fig. 1. Diagram of union preserving operators

Example 3. Given a universal set domain: U = {a, b, c}. Let F : P(U) → P(U)
be a union preserving operator with the following mapping.

Table 3. Illustrates a union preserving operator F defined on the power set of {a, b, c}

S F(S)

∅ {a}
{a} {a, b}
{b} {a, c}
{c} {a}
{a, b} {a, b, c}
{a, c} {a, b}
{b, c} {a, c}

{a, b, c} {a, b, c}

The union preserving property implies that the entire mapping F : P(U) →
P(U) can be specified in terms of the subsets of singleton elements and the empty
set. In the other words, we can use the singletons and the empty set to determine
the whole mapping of the universal set as shown in Table 4.

Table 4. Illustrates the set operator of Table 3 using only the rows of singletons and
the row of empty set to determine any row of the whole table shown in Table 3

S F(S)

∅ {a}
{a} {a, b}
{b} {a, c}
{c} {a}
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Using the union preserving property, any row of the full Table 3 can be gen-
erated from the table portrayed by Table 4. For example:

F({a, b}) = F({a} ∪ {b})
= F({a}) ∪ F({b})
= {a, b} ∪ {a, c}
= {a, b, c}

This means that we never need to store the whole table and whenever we have
to perform dilation or erosion we can do it using the rows of table of the empty
set and the singletons.

Proposition 7. Let F1 : P(U) → P(U) and F2 : P(U) → P(U) be union
preserving operators. Then F1 ⊙F2 is union preserving.

Proposition 8. Let F : P(U) → P(U). If F(A ∪ B) ⊇ F(A) ∪ F(B), then F
is an increasing operator. If F(A ∩B) ⊆ F(A) ∩F(B), then F is an increasing
operator.

Proposition 9. Let F : P(U) → P(U) be a union preserving operator, then F
is an increasing operator.

2.4 Intersection Preserving Operator

If an operator is applied to any intersection of two sets, and it produces a result
that can be obtained by taking the intersection of the operation on each of the
sets, then the operator is called an intersection preserving operator.

Definition 8. (Intersection preserving operator) Let G : P(U) → P(U).
G is called an intersection preserving operator if and only if

G(A ∩B) = G(A) ∩ G(B)

The intersection preserving operators have the diagram as shown in Figure
2. It is clear that the intersection preserving operator has the same structure as
a morphism.

Example 4. Given a universal set domain: U = {a, b, c}. Let G : P(U) → P(U)
be an intersection preserving operator with the following mapping:
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A G(A)

B G(B)

G

G∩ ∩

G

Fig. 2. Diagram of intersection preserving operators

Table 5. Illustrates an intersection preserving operator G defined on the power set of
{a, b, c}

S G(S)
∅ ∅

{a} ∅
{b} {c}
{c} ∅
{a, b} {c}
{a, c} {b}
{b, c} {c}

{a, b, c} {a, b, c}

Proposition 10. Let G1 : P(U) → P(U) and G2 : P(U) → P(U) be an inter-
section preserving operators. Then G1⊙G2 is an intersection preserving operator.

Proposition 11. Let G : P(U) → P(U) be a intersection preserving operator,
then, G is an increasing operator.

2.5 Set Dilation Operators and Set Erosion Operators

Expansive union preserving set operators are called set dilation operators. Con-
tractive intersection preserving set operators are called set erosion operators.

Definition 9. An operator D : P(U) → P(U) is called a set dilation operator
on U if and only if D is

– Expansive: A ⊆ D(A)
– Union preserving: D(A ∪B) = D(A) ∪ D(B)

Definition 10. An operator E : P(U) → P(U) is called a set erosion operator
on U if and only if E is

– Contractive: E(A) ⊆ A
– Intersection preserving: E(A ∩B) = E(A) ∩ E(B)
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In mathematical morphology, dilation with a structuring element containing
the origin, constitutes an instance of a set dilation operator, it is expansive
and union preserving; erosion with a structuring element containing the origin,
constitutes an instance of a set erosion operator, it is contractive and intersection
preserving.

2.6 Dual Operators

Definition 11. Let F : P(U) → P(U). An operator G : P(U) → P(U) is called
the dual operator to F if and only if G(A) = F(Ac)c.

In mathematical morphology, dilation and erosion are dual. Similarly, we
have the flowing dual operators.

Proposition 12. Let F : P(U) → P(U) and G : P(U) → P(U) be the dual
operators: G(A) = F(Ac)c. Then

(a) If F is an expansive operator, then G is a contractive operator.
(b) If F is a contractive operator, then G is an expansive operator.
(c) If F is an increasing operator, then G is an increasing operator.
(d) If F is an union preserving operator, then G is an intersection preserving

operator.
(e) If F is an intersection preserving operator, then G is an union preserving

operator.
(f) If F is a set dilation operator, then G is a set erosion operator.
(g) If F is a set erosion operator, then G is a set dilation operator.
(h) Let F2 = F ⊙ F and G2 = G ⊙ G. Then F2 and G2 are duals.

2.7 Closing and Opening Operators

Definition 12. An operator T : P(U) → P(U) is called a closing operator on
U if and only if T is

– Expansive: A ⊆ T (A)
– Increasing: A ⊆ B implies T (A) ⊆ T (B)
– Idempotent: T (T (A)) = T (A)

[28, 29]
An operator Q : P(U) → P(U) is called an opening operator on U if and only if
Q is

– Contractive: Q(A) ⊆ A
– Increasing: A ⊆ B implies Q(A) ⊆ Q(B)
– Idempotent: Q(Q(A)) = Q(A)

[19, 31]
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Example 5. Given a universal set domain U = {a, b, c}. Let T : P(U) → P(U)
be a closing operators, and Q : P(U) → P(U) be an opening operator with the
following mappings shown in Table 6.

Table 6. Illustrate a closing operator T and an opening operator Q defined on the
power set of {a, b, c}

S T (S)

∅ ∅
{a} {a}
{b} {a, b}
{c} {a, c}
{a, b} {a, b}
{a, c} {a, c}
{b, c} {a, b, c}

{a, b, c} {a, b, c}

S Q(S)

∅ ∅
{a} ∅
{b} {b}
{c} {c}
{a, b} {b}
{a, c} {c}
{b, c} {b, c}

{a, b, c} {a, b, c}

Proposition 13. Let E be set erosion operator and let D be its dual operator,
then D ⊙ E is an opening operator.

Proposition 14. Let D be set dilation operator and let E be its dual operator,
then E ⊙ D is a closing operator.

Definition 13. Let Q : P(U) → P(U) be an opening operator and T : P(U) →
P(U) be a closing operator. Let A ⊆ U . Then,

– A is open with respect to Q if and only if A = Q(A)
– A is closed with respect to T if and only if A = T (A)[21]

A set A is closed with respect to the operator producing the closing. For
example, given two different closing operators T1, and T2, a set A may be closed
with respect to T1, but may not be closed with respect to T2. This behavior does
not quite happen in the real analysis when we talk about a closed set because
there is only one closing operator in real analysis, which has the concept of
neighborhoods, and which defines the closed or open sets in a geometric way.
Similarly, a set A may be open in accordance with the certain operator.

Proposition 15. Let T be a closing operator on U . If B is a closed set with
respect to T and A ⊆ B. Then T (A) ⊆ B.

Proposition 16. Let Q be an opening operator on U . If B is an opened set with
respect to Q and A ⊆ B. Then Q(A) ⊆ B.

The opening of a union is the union of the opening. The closing of an inter-
section is the intersection of the closing.
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Proposition 17. Let Q be an opening operator on U and let T be a closing
operator on U . Let A,B,C,D ⊆ U where A,B are open and C,D are closed.
Then

Q(A ∪B) = Q(A) ∪Q(B)

T (C ∩D) = T (C) ∩ T (D)

Proposition 18. Let Q be an opening operator on U and let T be a closing
operator on U .Then Q(∅) = ∅ and T (U) = U

Proposition 19. Let Q be an opening operator on U and let T be a closing
operator on U . Let A ⊆ U . Define C(A) = {X | T (X) = X and X ⊇ A} and
O(A) = {X | Q(X) = X and X ⊆ A} Then C(A) ̸= ∅ and O(A) ̸= ∅.

The closing operator on a given set can be expressed as an intersection of
sets related to the given set.

Proposition 20. Let T be a closing operator on U . For any A ⊆ U define
C(A) = {X ⊆ U | X = T (X) and X ⊇ A}. Then,

T (A) =
⋂

X∈C(A)

X

The opening operator on a given set can be expressed as an union of sets
related to the given set.

Proposition 21. Let Q be an opening operator on U . For any A ⊆ U define
O(A) = {X ⊆ U | X = Q(X) and X ⊆ A}. Then,

Q(A) =
⋃

X∈O(A)

X

Proposition 22. Let Q be an opening operator on U and let T be a closing
operator on U . Let A ⊆ U . Define O(A) = {X ⊆ U | X = Q(X) and X ⊆ A}
C(A) = {X ⊆ U | X = T (X) and X ⊇ A}.

If for every Y ⊆ U , Q(Y ) = T (Y c)c, then C(A) = {X | Xc ∈ O(Ac)} and
O(A) = {X | Xc ∈ C(Ac)}.

Proposition 23. Let T : P(U) → P(U) and Q : P(U) → P(U) be dual op-
erators: Q(A) = T (Ac)c. Then Q is an opening operator if and only if T is a
closing operator.

Proposition 24. Let T : P(U) → P(U) and Q : P(U) → P(U) be dual opening
and closing operators: Q(A) = T (Ac)c. Then A = T (A) if and only if Q(Ac) =
Ac.
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The boundary of the set is a concept that is most often used in Euclidean
and related spaces, spaces in which numbers play an essential role. Nevertheless,
even in dealing with non-numeric sets, the concept of boundary can be defined
by means of a closing operator.

Definition 14. Let T be a closing operator on U and A ⊆ U . Then the boundary
of A is defined by

Bndry(A) = T (A) ∩ T (Ac)

Proposition 25. Let T be a closing operator on U and A ⊆ U . Then T (Bndry(A)) =
Bndry(A).

Proposition 26. Let T be a closing operator on U and A ⊆ U . Then T (A) =
A ∪Bndry(A).

Proposition 27. Let T be a closing operator on U and A ⊆ U . Then A is
closed with respect to T if and only if Bndry(A) ⊆ A.

Proposition 28. Let T : P(U) → P(U) and Q : P(U) → P(U) be dual opening
and closing operators: Q(A) = T (Ac)c. Then Bndry(A) = T (A) ∪Q(A)c

Proposition 29. Let T : P(U) → P(U) and Q : P(U) → P(U) be dual opening
and closing operators: Q(A) = T (Ac)c. Then

T (T (A) ∩Ac) ⊆ Bndry(A)

Q(T (A) ∩Ac) = ∅
T (A ∩Q(A)c) ⊆ Bndry(A)

Q(A ∩Q(A)c) = ∅

Proposition 30. Let T be a closing operator on U and Q be its dual opening
operator. Let A ⊆ U . Then A is open if and only if Bndry(A) ⊆ Ac.

For any subset A, we can define its interior as the subset of all members of
A that is separated from Ac. Likewise, we can define its interior boundary as
the subset of all members of A that is connected to Ac. The dual concepts are
the exterior of A and the exterior boundary of A. The exterior boundary of A
is the subset of all members of Ac that connects to A. The exterior boundary
of A is the subset of all members of Ac connected to A. These four concepts of
interior, interior boundary, exterior boundary, and exterior allow the world to
be partitioned into four pieces for each given set.

Part of an interior boundary may connect to the interior of A, and part may
not. Thus, there is a part of interior boundary of A that is connected to Ac and
connected to interior of A, and there is part of interior boundary of A that is
connected to Ac but not connected to interior of A. The part that is connected
to Ac but not connected to the interior of A is called a outlier of A.
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A similar situation occurs with the exterior boundary of a set A. Part of
exterior boundary of A may connect to the exterior of A, and part may not.
Thus, there is a part of exterior boundary of A that is connected to A and
connected to exterior boundary of A and there is a part of exterior boundary of
A that is connected to A and not connected to exterior boundary of A . The part
that is connected to A but not connected to exterior boundary of A is called a
hole of A.

In fact, in mathematical morphology, dilation adds the exterior boundary
to the set and erosion removes the interior boundary from the set. Dilation
followed by erosion is called a closing. Erosion followed by dilation is called an
opening. To find that a set has no holes and outliers if and only if dilation and
erosion are inverses. Hence a set has no holes and no outliers if and only if
A • S = (A⊕ S)⊖ S = A = (A⊖ S)⊕ S = A ◦ S Similarly, for any set, we can
define the closing and opening operators to remove the outliers and fill holes.
For the general set operator, no holes and no outliers with respect to a closing
operator T and its dual opening operator Q satisfies T (A) = A = Q(A).

3 Inverse

In mathematical morphology, we know that dilation and erosion are dual, and
can use its duality to construct closing and opening. However, applying the dual,
we have to deal with the complement set, which may be very large. If we do it
by the inverse, we may avoid large complement sets problems.

3.1 Inverse of Union Preserving Operator

For any union preserving operator, we can define its inverse, which is analogous
to the pseudo inverse of matrix algebra.

Definition 15. Let F : P(U) → P(U) be a union preserving operator. Then we
define its inverse by

F−1(A) =
⋃

{X | F(X)⊆A}

X

Example 6. Based on Example 3, the union preserving operator F has the the
mapping of F−1 as shown is Table 7:

Table 7. Illustrate F−1 of the union preserving operator F defined on the power set
of {a, b, c} in Example 3

U F−1(U)

{a} ∅ ∪ {c} = {c}
{a, b} ∅ ∪ {c} ∪ {a} ∪ {a, c} = {a, c}
{a, c} ∅ ∪ {c} ∪ {b} ∪ {b, c} = {b, c}
{a, b, c} ∅ ∪ {a} ∪ {b} ∪ {c} ∪ {a, b} ∪ {b, c} ∪ {a, c} ∪ {a, b, c} = {a, b, c}
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Proposition 31. Let F : P(U) → P(U) be a union preserving operator. Then
F−1 is an increasing operator.

Proposition 32. Let F : P(U) → P(U) be a union preserving operator. Then
F−1(A ∪B) ⊇ F−1(A) ∪ F−1(B)

Proposition 33. Let F : P(U) → P(U) be a union preserving operator. Then,

F(F−1(A)) ⊆ A

F−1(F(A)) ⊇ A

Proposition 34. Let F : P(U) → P(U) be a union preserving operator. Then,

F−1(F(F−1(A))) = F−1 ⊙F ⊙F−1(A) = F−1(A)

F(F−1(F(A))) = F ⊙ F−1 ⊙F(A) = F(A)

Proposition 35. Let F : P(U) → P(U) be a union preserving operator. Then
F−1 ⊙F and F ⊙ F−1 are idempotent. That is

(F−1 ⊙F)⊙ (F−1 ⊙F) = F−1 ⊙F
(F ⊙ F−1)⊙ (F ⊙ F−1) = F ⊙ F−1

3.2 Inverse of Intersection Preserving Operator

Definition 16. Let G : P(U) → P(U) be an intersection preserving operator.
Then we define its inverse G−1 by

G−1(A) =
⋂

{X | G(X)⊇A}

X

Example 7. Based on Example 4, the intersection preserving operator G has
the the mapping of G−1 as below in Table 8.

Table 8. Illustrates the G−1 of the intersection preserving operator G defined in Table
5

U G−1(U)

∅ ∅ ∩ {a} ∩ {b} ∩ {c} ∩ {a, b} ∩ {a, c} ∩ {b, c} ∩ {a, b, c} = {a, b, c} = ∅
{b} {a, c} ∩ {a, b, c} = {a, c}
{c} {b} ∩ {a, b} ∩ {b, c} ∩ {a, b, c} = {b}

{a, b, c} {a, b, c}

Proposition 36. Let G : P(U) → P(U) be an intersection preserving operator.
Then G−1 is an increasing operator.
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Proposition 37. Let G : P(U) → P(U) be an intersection preserving operator.
Then,

(G ⊙ G−1)(A) ⊇ A

G−1 ⊙ G(A) ⊆ A

Proposition 38. Let G : P(U) → P(U) be an intersection preserving operator.
Then,

G−1 ⊙ G ⊙ G−1 = G−1

G ⊙ G−1 ⊙ G = G

Proposition 39. Let G : P(U) → P(U). If G is an intersection preserving
operator, then G ⊙ G−1 and G−1 ⊙ G are idempotent.

Proposition 40. Let F : P(U) → P(U) be a union preserving operator. Then
F−1 is an intersection preserving operator.

Proposition 41. Let F : P(U) → P(U) be a intersection preserving operator.
Then F−1 is an union preserving operator.

3.3 Inverse of Set Dilation and Set Erosion Operator

Proposition 42. Let D : P(U) → P(U) be a set dilation operator.Then D−1 is
a set erosion operator.

Proposition 43. Let E : P(U) → P(U) be a set erosion operator.Then E−1 is
a set dilation operator.

Proposition 44. Let D : P(U) → P(U) be a set dilation operator. Let A ⊆ U
and B = D−1 ⊙D(A). Then C ⊇ B and D(C) = D(A) imply C = B.

Proposition 45. Let E : P(U) → P(U) be a set erosion operator. Let A ⊆ U
and B = E−1 ⊙ E(A). Then C ⊆ B and E(C) = E(A) imply C = B.

4 Theorems of closing and opening operators

In mathematical morphology, dilation and erosion can define the closing and
opening. Similarly, for any set, the union preserving operator and the intersection
operator can construct the closing and opening.

Theorem 1. Let F : P(U) → P(U) be a union preserving operator. Then F−1⊙
F is a closing operator.
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Proof. Expansive: Let A ⊆ U . By proposition 33, F−1 ⊙ F(A) ⊇ A, so F−1 ⊙
F(A) is expansive.

Increasing: By the proposition 9, F is union preserving, then it is increasing.
By the Proposition 31, F is union preserving implies that F−1 is increasing.
And by the proposition 2, the composition of increasing operators is increasing.
Hence, F−1 ⊙F is increasing.

Idempotent: Finally, by proposition 35, F−1 ⊙ F is idempotent. Now by the
definition of the closing operator, F−1 ⊙F(A) is a closing operator.

Theorem 2. Let G : P(U) → P(U) be an intersection operator. Then G−1 ⊙ G
is an opening operator.

Proof. Contractive: Let A ⊆ U . By proposition 37, G−1 ⊙ G(A) ⊆ A, so G−1 ⊙
G(A) is contractive.

Increasing: By the proposition 11, G is intersection preserving implies it is in-
creasing. By corollary 36, G is intersection preserving implies G−1 is increasing.
And by the proposition 2, the composition of increasing operators is increasing.
Hence, G−1 ⊙ G(A) is increasing.

Idempotent: By proposition 39, G−1 ⊙ G(A) is idempotent. Now by the defi-
nition of an opening operator, G−1 ⊙ G(A) is an opening.

Example 8. Instance Illustrating Theorem 1 and 2 Applying Theorem 1
with union preserving operator F and its inverse F−1 in the Examples 3, 6, and
applying the Theorem 2 with intersection preserving operator G and its inverse
G−1 in the Examples 4, 7, we can define F−1 ⊙ F and G−1 ⊙ G as shown in
Table9.

Table 9. Illustrates F−1 ⊙F is a closing operator and G−1 ⊙G is an opening operator

A F(A) F−1(F(A))

∅ {a} {c}
{a} {a, b} {a, c}
{b} {a, c} {b, c}
{c} {a} {c}
{a, b} {a, b, c} {a, b, c}
{a, c} {a, b} {a, c}
{b, c} {a, c} {b, c}

{a, b, c} {a, b, c} {a, b, c}

A G(A) G−1(G(A))

∅ ∅ ∅
{a} ∅ ∅
{b} {c} {b}
{c} ∅ ∅
{a, b} {c} {b}
{a, c} {b} {a, c}
{b, c} {c} {b}

{a, b, c} {a, b, c} {a, b, c}
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It is clear that F−1⊙F is expansive, increasing, and idempotent, making it a
closing operator. Similarly, G−1 ⊙ G is contractive, increasing, and idempotent,
making it a opening operator.

Theorem 1 shows that we can construct an associated closing operator by
only being given a union preserving operator. Theorem 2 shows that we can
construct an opening operator by only be given an intersection preserving oper-
ator. In mathematical morphology, the morphological dilation can be rewritten
as a union with translated structuring elements. The morphological erosion can
be rewritten as the intersection with the structure elements. A union preserving
operator or an intersection preserving operator always comes with some other
features, may or may not are meaningful, but it can be considered to be its
structure elements. Therefore, we can say the union preserving operator as the
morphological dilation and the intersection operator as the morphological ero-
sion, and they can construct the closing and opening.

In mathematical morphology, if set A is dilated by a structuring element B
that does not contain the origin, then the dilated set may not have a single
point in common with A. Similarly, if a set is eroded by a structuring element
that does not contain the origin can lead to a result that has nothing in common
with the set being eroded. In mathematical morphology, dilation with structuring
elements containing the origin, constitute instances of a set dilation operator,
expansive and union preserving; erosion with structuring elements containing
the origin, constitute instances of a set erosion, contractive and intersection
preserving. Adding the expansive and contractive properties to the Theorem1
and Theorem 2, we have the new theorems:

Theorem 3. Let D : P(U) → P(U) be a set dilation operator. Then D−1 ⊙ D
is a closing operator.

Theorem 4. Let E : P(U) → P(U) be a set erosion operator. Then E−1 ⊙ E is
an opening operator.

Example 9. Instance Illustrating Theorem 3 Given a universal set U =
{a, b, c}. Let D : P(U) → P(U) be a set dilation operator as shown in Table 10.
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Table 10. Illustrates a set dilation operator D defined on the power set of {a, b, c}

A D(A)

∅ ∅
{a} {a, b}
{b} {b, c}
{c} {a, c}
{a, b} {a, b, c}
{a, c} {a, b, c}
{b, c} {a, b, c}

{a, b, c} {a, b, c}

Given that D is a set dilation operator, it is a union preserving operator. We
can define its inverse D−1 as shown in Table 11.

Table 11. Illustrates the inverse D−1 of the set dilation operator D defined in Table
10 is a contractive operator

U D−1(U)

∅ ∅
{a, b} ∅ ∪ {a}
{a, c} ∅ ∪ {c} = {c}
{b, c} ∅ ∪ {b} = {b}

{a, b, c} ∅ ∪ {a} ∪ {b} ∪ {c} ∪ {a, b} ∪ {a, c} ∪ {b, c} ∪ {a, b, c} = {a, b, c}

Now, we define the mapping D−1 ⊙D(A) as shown in Table 12.

Table 12. Illustrates D−1 ⊙D is a closing operator

A D(A) D−1(D(A))

∅ ∅ ∅
{a} {a, b} {a}
{b} {b, c} {b}
{c} {a, c} {c}
{a, b} {a, b, c} {a, b, c}
{a, c} {a, b, c} {a, b, c}
{b, c} {a, b, c} {a, b, c}

{a, b, c} {a, b, c} {a, b, c}
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It is clear that D−1 ⊙D is expansive, increasing, and idempotent, making it
a closing operator.

Example 10. Instance Illustrating Theorem 4 Given a universal set U =
{a, b, c}. Let E : P(U) → P(U) be a set erosion operator as shown in Table 13.

Table 13. Illustrates a set erosion operator E defined on the power set of {a, b, c}

A E(A)

∅ ∅
{a} ∅
{b} ∅
{c} ∅
{a, b} {b}
{a, c} {c}
{b, c} ∅

{a, b, c} {a, b, c}

Given E is an intersection preserving operator, we can define its inverse E−1

as shown in Table 14.

Table 14. Illustrates the E−1 of the set erosion operator E defined in Table 13

U E−1(U)

∅ ∅ ∩ {a} ∩ {b} ∩ {c} ∩ {a, b} ∩ {a, c} ∩ {b, c} ∩ {a, b, c} = {a, b, c} = ∅
{b} {a, b} ∩ {a, b, c} = {a, b}
{c} {a, c} ∩ {a, b, c} = {a, c}

{a, b, c} {a, b, c}

Now, we define the mapping E−1 ⊙ E(A) as shown in Table 15.
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Table 15. Illustrates an opening operator defined by E−1 ⊙ E(A)

A E(A) E−1 ⊙ E(A)

∅ ∅ ∅
{a} ∅ ∅
{b} ∅ ∅
{c} ∅ ∅
{a, b} {b} {a, b}
{a, c} {c} {a, c}
{b, c} ∅ ∅

{a, b, c} {a, b, c} {a, b, c}

It is clear that E−1⊙E(A) is contractive, increasing, and idempotent, making,
it an opening operator.

We can see that for each set dilation operator, we can find a corresponding
operator that is a set erosion operator, and visa-versa. If we are given a set
dilation operator, we can find its dual, which is a set erosion operator, then by
the Theorem 4, we can define an opening operator. In the other case, if we are
given a set erosion operator, we can find its dual, which is a set dilation operator,
then by the Theorem 3, we can define a closing operator. Base on these ideas,
we have the following theorems:

Theorem 5. Let D : P(U) → P(U). If D is a set dilation operator, and its dual
E(A) = D(Ac)c is a set erosion operator. Then E−1 ⊙ E is an opening operator.

Proof. By Proposition (f) and Theorem 4.

Theorem 6. Let E : P(U) → P(U). If E is a set erosion operator, and its dual
D(A) = E(Ac)c is a set dilation operator. Then D−1 ⊙D is a closing operator.

Proof. By Proposition (g) and Theorem 3.

Example 11. Instance Illustrating Theorem 5
Let D : P(U) → P(U) be the set dilation operator which we defined in Table
10 of the example of Theorem 3. If we take the complement of set A, and apply
the operator D on the set Ac, then take the complement of D(Ac), we find that
(D(Ac))c is a set erosion operator as shown on Table 16.
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Table 16. Illustrates a set erosion operator defined by (D(Ac))c

A Ac D(Ac) (D(Ac))c

∅ {a, b, c} {a, b, c} ∅
{a} {b, c} {a, b, c} ∅
{b} {a, c} {a, b, c} ∅
{c} {a, b} {a, b, c} ∅
{a, b} {c} {a, c} {b}
{a, c} {b} {b, c} {a}
{b, c} {a} {a, b} {c}

{a, b, c} ∅ ∅ {a, b, c}

Given that E is a set erosion operator, it is an intersection preserving oper-
ator. We can define its inverse E−1 as shown in Table 17.

Table 17. Illustrates the E−1 of E(A) = (D(Ac))c, which is a expansive operator

U E−1(U)

∅ ∅ ∩ {a} ∩ {b} ∩ {c} ∩ {a, b} ∩ {a, c} ∩ {b, c} ∩ {a, b, c} = ∅
{a} {a, c} ∩ {a, b, c} = {a, c}
{b} {a, b} ∩ {a, b, c} = {a, b}
{c} {b, c} ∩ {a, b, c} = {b, c}

{a, b, c} {a, b, c}

Now, we define the mapping E−1 ⊙ E(A) as shown in Table 18.

Table 18. Illustrates an opening operator defined by E−1 ⊙ E(A)

A E(A) E−1 ⊙ E(A)

∅ ∅ ∅
{a} ∅ ∅
{b} ∅ ∅
{c} ∅ ∅
{a, b} {b} {a, b}
{a, c} {a} {a, c}
{b, c} {c} {b, c}

{a, b, c} {a, b, c} {a, b, c}

It is clear that E−1⊙E(A) is contractive, increasing, and idempotent, making
it an opening operator.
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Example 12. Instance Illustrating Theorem 6
Let E : P(U) → P(U) be a set erosion operator which we defined in Table 13 of
the example of Theorem 4. If we will take the complement of set A, and apply
the operator E on the set Ac, then take the complement of E(Ac), we find that
(E(Ac))c is set dilation operator:

Table 19. Illustrate an set dilation operator defined by (E(Ac))c

A Ac E(Ac) (E(Ac))c

∅ {a, b, c} {a, b, c} ∅
{a} {b, c} ∅ {a, b, c}
{b} {a, c} {c} {a, b}
{c} {a, b} {b} {a, c}
{a, b} {c} ∅ {a, b, c}
{a, c} {b} ∅ {a, b, c}
{b, c} {a} ∅ {a, b, c}

{a, b, c} ∅ ∅ {a, b, c}

Now, we define D(A) = (E(Ac))c. It is easy to verify that D is a union
preserving operator. Given D is a union preserving operator, we can define its
inverse D−1 as shown in Table 20.

Table 20. Illustrates the D−1 of D(A) = (E(Ac))c, which is a contractive operator

U D−1(U)

∅ ∅
{a, b} ∅ ∪ {b} = {b}
{a, c} ∅ ∪ {c} = {c}
{a, b, c} ∅ ∪ {a} ∪ {b} ∪ {c} ∪ {a, b} ∪ {a, c} ∪ {b, c} ∪ {a, b, c} = {a, b, c}

Now, we define the mapping D−1 ⊙D(A):
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Table 21. Illustrates a closing operator defined by D−1 ⊙D(A)

A D(A) D−1 ⊙D(A)

∅ ∅ ∅
{a} {a, b, c} {a, b, c}
{b} {a, b} {b}
{c} {a, c} {c}
{a, b} {a, b, c} {a, b, c}
{a, c} {a, b, c} {a, b, c}
{b, c} {a, b, c} {a, b, c}

{a, b, c} {a, b, c} {a, b, c}

It is clear that D−1⊙D(A) is expansive, increasing, and idempotent, making
it a closing operator.

In Theorem 3, we show that given a set dilation operator D, we can define
a closing operator T (A) = D−1 ⊙ D(A). In proposition 23, we prove that the
closing and opening operators are dual. Then we can define a corresponding
opening operator Q(A) = T (Ac)c.

Similarly, in Theorem 4, we show that given a set erosion operator E , we
can define an opening operator Q(A) = E−1⊙E(A). In proposition 23, we prove
that closing and opening operators are dual. Then we can define a corresponding
closing operator T (A) = Q(Ac)c.

Base on the above ideas, we have the following theorems:

Theorem 7. Let D : P(U) → P(U). If D is a set dilation operator, we can
define the closing operator T (A) = D−1⊙D(A), then the corresponding opening
operator is Q(A) = T (Ac)c.

Proof. By Theorem 3 and Proposition 23 .

Theorem 8. Let E : P(U) → P(U). If E is a set erosion operator, we can define
the opening operator Q(A) = E−1 ⊙ E(A), then we can find the corresponding
closing operator T (A) = Q(Ac)c.

Proof. By Theorem 4 and Proposition 23 .

Example 13. Instance Illustrating Theorem 7 In the Example 9, given
a set dilation operator D : P(U) → P(U) we define the corresponding closing
operator T (A) = D−1 ⊙ D(A). Now we can define the opening operator by its
dual property as following:
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Table 22. Illustrate an opening operator Q(A) defined by (T (Ac))c

A Ac T (Ac) Q(A) = (T (Ac))c

∅ {a, b, c} {a, b, c} ∅
{a} {b, c} {a, b, c} ∅
{b} {a, c} {a, b, c} ∅
{c} {a, b} {a, b, c} ∅
{a, b} {c} {c} {a, b}
{a, c} {b} {b} {a, c}
{b, c} {a} {a} {b, c}

{a, b, c} ∅ ∅ {a, b, c}

We can see that this opening operator is exactly the same as the opening
operator we show in Example 11, which applied using the theorem 5.

Example 14. Instance illustrating Theorem 8 In example 10, given a set
erosion operator E : P(U) → P(U) , we defined the corresponding opening op-
erator Q(A) = E−1 ⊙ E(A). Now we can define the closing operator by is dual
property as following:

Table 23. Illustrate a closing operator T (A) defined by (Q(Ac))c

A Ac Q(Ac) T (A) = (Q(Ac))c

∅ {a, b, c} {a, b, c} ∅
{a} {b, c} ∅ {a, b, c}
{b} {a, c} {a, c} {b}
{c} {a, b} {a, b} {c}
{a, b} {c} ∅ {a, b, c}
{a, c} {b} ∅ {a, b, c}
{b, c} {a} ∅ {a, b, c}

{a, b, c} ∅ ∅ {a, b, c}

We can see that this closing operator is exactly the same as the closing op-
erator we showed in the example 12, which applied the theorem 6.

Theorem 5 and Theorem 7 show that we have two different methods to define
opening operators by being given a set dilation operator. Theorem 6 and The-
orem 8 show that we have two different methods to define closing operators by
being given a set erosion operator. The interesting things are these two opening
operators we defined by the two Theorem 5 and Theorem 7 are exactly the same
operator, the two closing operators we defined by the Theorem 6 and Theorem
8 are also the same operator.
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Definition 17. Let F : P(U) → P(U) and G : P(U) → P(U). The operator F
is called the left adjoint to the operator G and G is called the right adjoint of the
operator F if and only if for every pair of subsets A,B ⊆ U ,

F(A) ⊆ B if and only if A ⊆ G(B)

Proposition 46. Let F be a set dilation operator and G its dual. If F is the
left adjoint to G, then F−1 = G.

Proposition 47. Let F be a set dilation operator and G its dual. If F is the
left adjoint to G, then

F ⊙ G ⊙ F = F
G ⊙ F ⊙ G = G

(F ⊙ G)⊙ (F ⊙ G) = F ⊙ G
(G ⊙ F)⊙ (G ⊙ F) = G ⊙ F

Proposition 48. Let F be a set dilation operator and G its dual. If F is the
left adjoint to G, then G−1 = F .

In mathematical morphology, dilation and erosion with the same structuring
element are adjoint and inverse of each other. Similarly, if the set dilation oper-
ator with its dual are adjoints, then the duals are inverses. Then, we can have
the following new theorems.

Theorem 9. Let F : P(U) → P(U) be a set dilation operator. Let G : P(U) →
P(U) be its dual, a set erosion operator. If F is the left adjoint to G, then G⊙F
is a closing operator.

Theorem 10. Let F : P(U) → P(U) be a set dilation operator. Let G : P(U) →
P(U) be its dual, which is a set erosion operator. If F is the left adjoint to G,
then F ⊙ G is an opening operator.

Proposition 49. Let F be a set dilation operator and G its dual. Suppose F is
the left adjoint to G. Let A,B ⊆ U . Then F ⊙ G(A) = A and F ⊙ G(B) = B
implies F ⊙ G(A ∪B) = A ∪B.

Proposition 50. Let F : P(U) → P(U) and G : P(U) → P(U) are duals with
F being the set dilation operator. Suppose

F(A) ⊆ B if and only if A ⊆ G(B)

Then

F ⊙ F(A) ⊆ B if and only if A ⊆ G ⊙ G(B)
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Now we can prove that the composition of an opening operator with it dual
closing operator is idempotent and likewise the composition of a closing opera-
tor with its dual opening operator is idempotent. Recall that set operators are
associative and so parenthesization is not necessary.

Proposition 51. Let F be a set dilation operator and G its dual. Suppose F is
the left adjoint to G. Let T = G ⊙ F be the closing operator associated with F
and G and let Q = F⊙G be the opening operator associated with F and G. Then

T ⊙ Q⊙ T ⊙Q = T ⊙ Q
Q⊙ T ⊙Q⊙ T = Q⊙ T

Proposition 52. Let T : P(U) → P(U) and Q : P(U) → P(U) be dual opening
and closing operators: Q(A) = T (Ac)c. Then

1. T (T ⊙ Q(A) ∩Q⊙ T ⊙Q(A)c) = T ⊙ Q(A) ∩Q⊙ T ⊙Q(A)c

2. Q(T ⊙ Q(A) ∩Q⊙ T ⊙Q(A)c) = ∅
3. T (T ⊙ Q⊙ T (A) ∩Q⊙ T (A)c) = T ⊙ Q⊙ T (A) ∩Q⊙ T (A)c

4. Q(T ⊙ Q⊙ T (A) ∩Q⊙ T (A)c) = ∅

5 Conclusion

We have shown how the important properties in mathematical morphology hold
in a general setting of symbolic or non-numeric sets. We develop many set oper-
ators, including increasing operators, decreasing operators, expansive operators,
contractive operators, union preserving operators, intersection preserving opera-
tors, set dilation operators and set erosion operators, dual operators, and adjoint
operators. We also developed the theory of set operators on non-numeric sets to
remove outliers and fill in holes.

The composition of the set erosion operator with its dual, the set dilation
operator, results in an operator that is contractive, increasing, and idempotent.
It is an operator that has the property of producing open sets. With such an
operator, we can take a set that has paper shred garbage nearby or touching
the set and operate on it to remove the garbage. This happens for arbitrary sets
just in the analogous way that the opening operator of real analysis produces
that subset of the original set where every point in the subset is an interior
point with respect to the structuring elements. Opening a set that is opened
just produces the open set. Opening is idempotent. Simply, we say a set erosion
operator followed by its dual set dilation operator is an opening operator, which
removes outliers.

The composition of the set dilation operator with its dual, the set erosion
operator results in an operator that is expansive, increasing, and idempotent.
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It is an operator that has the property of producing closed sets. With such an
operator, we can take a set that has even many small holes and operate on it to
produce a set in which the holes are eliminated. This happens for arbitrary sets
just in the analogous way that the closing operator of real analysis produces a
set that includes the original set plus all its limit points. Closing a set that is
closed just produces the closed set. Closing is idempotent. Simply, we say a set
dilation operator followed by its dual set erosion operator is a closing operator,
which fills the missing holes.

Additionally, the original set dilation operator, has for its dual the set erosion
operator, so it is the case that the closing operator has for its dual the opening
operator. The composition of a closing operator with an opening operator is
idempotent. Similarly the composition of an opening operator with a closing
operator is idempotent. With the above properties, there is enough structure in
a set dilation operator and its dual, to produce operator compositions that can fill
holes and gaps in the observed data and eliminate paper shred garbage, thereby
changing the observed data set into one whose pattern is closer to the pattern
in the underlying population from which the observed data set was sampled.

We intend to apply set operators to text processing, working with dictionar-
ies, thesaurus, and nets such as wordnet, and work on document understanding
using set operators.
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