
Transactions on Machine 
Learning and Data Mining 
Vol. 14, No. 2 (2021) 55 - 69 
© 2021, ibai-publishing  
P-ISSN: 1865-6781, E-ISSN 2509-9337 
ISBN 978-3-942952-89-7 
 

Bearing Lubricant Defect Segmentation Using Synthetic 
Data 

Richard Bellizzi1, Jason Galary2, Alfa Heryudono3 

1,2 Applications Development & Validation Testing Lab, Nye Lubricants, Fairhaven MA 
02719, USA 

rbellizzi@nyelubricants.com, jgalary@nyelubricants.com 
3 Department of Mathematics, University of Massachusetts Dartmouth, Dartmouth MA 02747, 

USA 
aheryudono@umassd.com 

Abstract. Lubricant testing often requires a post-test examination of specimens 
to obtain the desired critical measurement. Advancing these analysis methods 
aids in developing higher-performing products by allowing for improved insight 
into the lubricants’ performance. Building off previous work in Computer Vision 
and Machine Learning, this work aims to extend the use of these methods into 
the lubricant testing realm. Minimizing defects is a desirable outcome since part 
of the lubricants’ role is to protect the bearing’s surface. While large-scale defects 
are easy to interpret, it becomes difficult to differentiate between test results when 
comparing bearing examples with less apparent defects. Providing a more con-
sistent, granular analysis of these tests can help lubricant development withstand 
stringent requirements. 
R-Mask CNN methods provide an option to apply instance segmentation tech-
niques to classify areas of interest, allowing for an image with multiple instances 
of these defects. Since big data is the fuel for a system like this, there are certain 
limitations regarding the number of examples for lubricant bearing surface defect 
data. Leveraging data amplification techniques allows for a synthetic ‘big’ data 
set to accommodate the model’s needs. This paper lays out how these tools work 
synergistically to provide a model that can operationalize for a company sooner 
than waiting to generate a complete set of ideal data. 
 
Keywords: Machine Learning, Computer Vision, Defect Segmentation, Syn-
thetic Data 

1 Introduction 

In the first stage of this work, bearing defect detection provided general classification, 
which proved that machine learning could extract features allowing a model to 

mailto:rbellizzi@nyelubricants.com


56 Richard Bellizzi, Jason Galary, Alfa Heryudono 

recognize the presence of corrosion accurately [2]. While this established that machine 
learning could identify corrosion on bearings, improving this methodology to include 
additional defects provides a lubricant company, such as Nye, with a higher performing 
model. Computer Vision and Machine Learning methods are used in various industries 
to automate manual, repetitive visual inspection methods. The current bearing analysis 
process meets these criteria since the analysis is repetitive, manual, and the analyzed 
data, the bearings, are uniform in nature. This uniformity, or the idea that a clean sample 
always looks like another clean sample, provides the feasibility needed to consider 
these methods. This system focuses on bearings with various defects since obtaining a 
model that generalizes to new data requires a robust training space to extract the nec-
essary features. Previous work [2] showed that standard Convolutional Neural Network 
(CNN) models could accurately distinguish corrosion defects on these bearing samples. 
A Mask R-CNN [1,6,14] model builds off this recognition feature and adds instance 
segmentation and categorization of the desired characteristics within the images. Cor-
rosion defects and various ‘other’ defects provide the source labels in the data set used 
to train the Mask R-CNN [6]. The masks, therefore, combine these two types of defects 
into a ‘defect’ class for the model to recognize not only corrosion but these additional 
surface defects that occur. Additionally, the ‘clean’ images provide an excellent back-
ground to synthesize simulated defects when considering these bearings’ uniform na-
ture [1,9]. 

Several core approaches provide the backbone for the bearing defect detection and 
segmentation model. Considering the data-hungry nature of machine learning, which 
requires large amounts of data to generalize well, an intermediate data engineering step 
introduced to meet this demand bridged the gap. A synthetically generated extensive 
data set further supplements the training of this model, starting with a limited image 
data set provided by Nye Lubricants [1,9,14]. Testing new bearings and then scanning 
them to store as training data requires a decent number of resources. This resource bot-
tleneck limits the advantage that big data provides. By amplifying this data set and 
synthetically increasing it to a considerable size, the Mask R-CNN [6] has enough train-
ing data to extract the necessary Bearing Surface defect detection and segmentation 
features. [1,9,14] 

Advancing these industry analysis methods aids in developing higher performing 
products by allowing for improved insight into the lubricants’ performance. Building 
off previous work in Computer Vision and Machine Learning [1,2,3,6,9,10,14], this 
work aims to extend the use of these methods into the lubricant testing realm. Minimiz-
ing defects is always the goal for a lubricant since part of its role is to protect the bear-
ing’s surface. Interpreting the fine-grained results of high-performing products is pos-
sible given these new methods. As a tool alongside current methods, confusion on dif-
ferent interpretations of results have a comparison method now to differentiate the re-
sults discretely.  



Bearing Lubricant Defect Segmentation Using Synthetic Data 57 

2 Synthetic Data Generation 

The dataset supplied by Nye Lubricants consists of various bearing images like the 
examples shown in Figures 1 and 2. These images provide a starting point for amplifi-
cation once scanned on the Bearing Corrosion Analyzer (BCA) system used to digitize 
bearing corrosion test results. These bearing images show the bearings’ internal race 
after subjection to cycles of motion and stationary resting periods. After disassembling 
these bearings and isolating the bearing race for visual inspection, a technician assigns 
a rating of 0 to 5 in increments of 1. The bearing undergoes scanning on the BCA sys-
tem, and a TIFF file is stored to establish a working dataset. There are several examples 
of defects that Nye Lubricants considers in this work. The current standard classifies 
specifically only corrosion that occurs on these test bearings. With a digital representa-
tion of the data, further analysis can extrapolate additional disturbances to the bearing’s 
surface. When visually analyzing the bearings, specific parameters must be met for a 
defect to qualify as corrosion. While visually showing a disturbance, these specifica-
tions mean that certain disturbances may not be corrosion and therefore not considered 
in the rating. Nye’s goal is to build on this method and supply both the standard rating 
and a secondary rating that encompasses these additional defects. In this way, product 
development has enhanced feedback from these tests. 

 

 
Fig. 1. Source Bearing with One Type of Defect 

 
Fig. 2. Source Bearing with Multiple Types of Defects 



58 Richard Bellizzi, Jason Galary, Alfa Heryudono 

The supplied bearing data consists of around 900 RGB TIFF images with dimensions 
of 2590 x 1101, and they provide the initial starting point for amplification. Using the 
method presented by Immersive Limit [9], these 900 images separate into two different 
components, a background image, and a foreground image. The foreground represents 
the defects that might occur during operation in a corrosive environment. Immersive 
Limits’ work [9] builds off the MS Common Objects in Context (COCO) [10] work 
available on GitHub, which has been utilized in numerous projects to segment and clas-
sify images. A MATLAB tool, called the Image Labeler, supplied the platform for 
which the Nye bearing images were processed and labeled at a pixel level. The resulting 
pixel label masks provide a way to isolate and crop different defect examples for use as 
foregrounds. After isolating and extracting these examples, the new foreground images 
were saved as PNG files with transparent backgrounds, allowing them to combine on 
top of ‘clean’ bearing background images. Around 40 clean bearing images provided 
the background source for synthetic image generation, while a combined total of 450 
defect samples contributed to the foreground image set. After all the image components 
were cleaned and prepared for amplification, adapted python source code, modeled af-
ter the Immersive Limit [9] image generation example, was used to synthesize new 
bearing images. This synthetic generation entailed taking a background image and ran-
domly selecting different defect foregrounds for recombination. After applying random 
transformations in rotation, scale, and brightness, the foreground defects overlay onto 
the bearing background producing a new ‘synthetic’ example of a bearing with defects. 
In this way, the original sample data set evolves to a set of 100,000 synthetic images, 
with some examples shown in Figure 3. This amount of data approaches Big Data lev-
els, which provides feasible training data to the final model. [1,6,9,14] 

 
Fig. 2. Samples of Synthetically Generated Bearing Data with Masks 

2.1 R-Mask CNN Method 

The recent model for developing this system is the Mask R-CNN, which builds on 
Faster R-CNN and other work to improve segmentation in images [3-6,13]. Developed 
by the Facebook AI research team, this model has multiple components that allow it to 
locate regions of interest and then isolate anything contained in that region of interest. 
The first step in this model is the Region Proposal Network (RPN), responsible for 
establishing a bounding box containing a candidate object. Additionally, while the 
model identifies these areas of interest, it also classifies the object contained within the 



Bearing Lubricant Defect Segmentation Using Synthetic Data 59 

bounding box in parallel. These components so far are standard in the R-CNN [3] and 
Faster R-CNN models [13], with the latter visualized in Figure 4. These models provide 
a dual output response where the user obtains a box isolating the object and a label for 
that object. Introducing a binary mask in tandem with these responses, like in Mask R-
CNN, yields a robust segmentation model [6]. A mask consists of a binary representa-
tion of the image with the objects represented by their class label. This added detail 
provides the model with a pixel-to-pixel level of analysis and is desirable in most im-
aging methods, especially for bearings where defects can be minor. A cutting-edge 
method like this is slow to spread into industries where the technical skills required are 
still developing while data sources are limited. This work shows that these techniques 
can provide valuable insight into product development and digitizing data. It also 
pushes to invoke more research and practice into these methods to promote industrial 
growth within lubricant manufacturing and research. [6]  

 
Fig. 3. Faster R-CNN Framework 

Faster R-CNN is a system that motivated and provided the backbone for the Mask 
R-CNN [6,13]. The model provides the RPN system, which defines potential bounding 
boxes through two CNN components. Feeding the image into a convolutional network 
to generate features that map into an additional CNN that predicts the proposed regions 
of interest ends up being computationally faster than the Selective Search Algorithm 
used in Fast R-CNN and R-CNN [3]. Faster R-CNN uses an RoI Pooling method to 
combine overlapping region propositions to finalize the isolation and segmentation of 
the objects contained in the input image [13]. Mask R-CNN introduces a RoIAlign 
function that accomplishes this same feat through bi-linear interpolation to localize the 
necessary regions within objects, shown in Figure 5 [6]. This layer takes the output 
from the initial convolutional network and then generates a classification and location 
for each instance segmentation based on the information from the proposed region net-
work and the feature extraction network. This RoIAlign method allows for improved 
mask generation on a pixel level, making it promising for the scale of detail required 
for bearing corrosion detection. This efficiency is desirable due to the real-time capa-
bility of computing these detections, making it possible to outfit test rigs with timelapse 



60 Richard Bellizzi, Jason Galary, Alfa Heryudono 

video captures of corrosion development with the necessary segmentation extractions 
sampled at intervals.   

 
Fig. 4. RoI Align Bi-linear Interpolation Example 

The R-Mask CNN [6] method has been used in various examples to provide accurate 
segmentation models, such as in the Weeds example [9], which inspired this approach. 
Since these different use cases were possible, transferring this technology to bearing 
defects is a viable option for Nye. Various-sized data sets allowed a way to understand 
the R-Mask CNN models’ effectiveness when utilizing sizeable synthetic data sets 
[1,6,9,14]. The several data sets used during training increase at a factor of 10 five times 
to yield 101, 102, 103, 104, and 105 images per set, each used in analyzing the effective-
ness of synthetic bearing data. Using an approach like this allowed for an understanding 
of the limitations that synthetic data brings. Given that synthetic data relies on its core 
source for feature extraction, the possibility of saturation is likely to occur where in-
creasing the number of synthetic data yields no improvements. Utilizing the COCO 
utilities on Github [1,10] and the examples provided by both the original COCO crea-
tors [10] and the Immersive Limit work [9], the synthetic data sets were integrated and 
processed utilizing Python source code adaptations [1,5,9,14].  

Overall, R-Mask CNN [6] models are a well-established computer vision implemen-
tation, and it is well known for its use in automated driving technologies. This method-
ology is robust, and when used in the correct aspect, its capability extends into similar 
use-cases for defect detection [8,12]. Bearing defects on a uniform surface present a 
suitable scenario for this type of model. The only changes taking place are the various 
foreground occurrences, while a clean bearing always is the same. The core components 
utilized for this system come from the MRCNN Python library [1,5,9]. This library is 
a popular starting point for various other projects due to its flexibility for adaptations 
to different data sets. This adaptation feature utilizes transfer learning concepts, such 
that the model network is composed of the well-known Resnet101 CNN [3] layer struc-
ture. This pre-trained network initializes using various options for the starting weights, 
such as the MS COCO [10] weights or the ImageNet weights [5]. The MS COCO [10] 
weights were selected due to the network’s improved segmentation training using these 
weights, which translated well when segmenting the contoured bearing surface defects. 
These weights were used for all data sets to maintain consistent results between data 



Bearing Lubricant Defect Segmentation Using Synthetic Data 61 

sets. The advantage of a model using the MS COCO weights is the initial training on 
350K images with 80 different categories, which provides an extremely promising av-
enue for transfer learning on a small data set like Nye’s bearing data [10]. 

 

 
Fig. 5. Project Flow used to Implement a Bearing Defect Detection System 

The R-Mask CNN [1,5,6,9,14] implementation is trained in a Jupyter notebook [1] 
environment using an Nvidia GeForce GTX 1070 GPU as the hardware for computa-
tion. Even with the GPUs accelerated capabilities, the model required a decent amount 
of time for training. The training parameters were standardized across the different 
sized data sets to allow for a more direct comparison of each model’s capability to learn 
from synthetic data. With 3000 steps per epoch and a validation frequency of 50, the 
model trains for two epochs on the head layers and then trains one additional epoch 
across all layers contained in the network. The model input is a standard normalized 
bearing image with dimensions (512, 512, 3). The output is an image with bounding 
boxes identifying the proposed defect regions where highlighted contours overlay onto 
the different defects segmented by the model. Considering the Weeds model [9] per-
formed with accuracy upwards of 99 percent, the synthetic data method, scoring around 
95-98% on bearings, seems to work well given the right amount of training. In Figure 
6, the entire process flow maps out these tools to better represent how they come to-
gether to provide a functional model sooner than waiting for available data. 

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

 (1) 

 𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 (2) 

 𝑚𝑚𝑚𝑚𝑃𝑃 = 1
101

∑ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖)101
𝑖𝑖  (3) 



62 Richard Bellizzi, Jason Galary, Alfa Heryudono 

Evaluating the performance of these segmentations is essential as well. The tool pro-
vided for most computer vision methods is the Average Precision score [6]. Averaging 
this value across all validation or test images provides a Mean Average Precision 
(mAP). These measurements come from the COCO [10] data set standards which pro-
vide an effective way to evaluate the final models’ capability. Average Precision (AP), 
defined by the Area Under the Curve calculation performed on the Precision-Recall 
(PR) curve for each image, allows for measuring performance. The COCO mAP, shown 
in Equation 3, uses 101 interpolated points along the PR curve to calculate an AP [6]. 
Batching these calculations provides a mean Average Precision score (mAP). As shown 
in Equation 1, Precision uses the IoU score to calibrate what is True Positive (TP) and 
False Positive (FP) amongst the samples. Recall, shown in Equation 2, provides the 
second component for the AP, and its components are also determined using the same 
level as Precision. Overall it is calculated by taking the Intersection over Union (IoU), 
shown in Figure 7, and then calculating both the Precision and Recall. Using the IoU 
score as a threshold for determining positive matches, these scores compute across all 
images providing the inputs for the Average Precision calculation. In this work, an IoU 
of 50 percent, as an intermediate expectation, provided a way to examine the models’ 
capability in this application.  

 
Fig. 6. IoU Calculation Visualization 

While many more Machine Learning algorithms and methods [7,11] exist, those 
mentioned make up the core for achieving a system that automates bearing lubricant 
defect detection. Each method is best displayed by how each unfolded according to 
these results. For example, the core CNN models provide the region proposal and clas-
sification functionality, while the mask segmentation provides the final piece to im-
prove segmentation on a pixel level. Data engineering was required to obtain this pixel-
level detail with a focus on image manipulation methodologies. Transfer Learning is 
used to supplement training time and benefit from Big data training on networks within 
this application. Further supplementation still exists through modification of the syn-
thetic image generation methods. Utilizing all of these techniques in unison, shown in 
the overall project diagram Figure 6, presents how to provide a functional system that 
performs bearing lubricant defect detection with acceptable levels of accuracy. 



Bearing Lubricant Defect Segmentation Using Synthetic Data 63 

Consider the results presented as confirmation that these types of analysis systems are 
feasible in lubricant testing analysis.  

3 Project Results 

 

Fig. 7. 101 Image Training 

 

Fig. 8. 104 Image Training 



64 Richard Bellizzi, Jason Galary, Alfa Heryudono 

Table 1. Training Results on 512x512 Synthetic Images 

Dataset for Training Training Duration (mins) Training Loss COCO Batch mAP @ 
IoU=50 

101 Image Set 62.63 0.0721 0.2861 

102 Image Set 56.97 0.1839 0.3043 

103 Image Set 59.5 0.6054 0.4026 

104 Image Set 59.6 0.7657 0.4183 

105 Image Set 59.8 0.7690 0.4410 
 
 During model development, software flow and execution testing of the source code 
occurred on smaller data sets, and further debugging searched for any issues that the 
bearing source data caused [1,5]. After resolving these aspects, setting up separate note-
books allowed for individual runs for the five different-sized data sets. The model’s 
performance shows that accurate segmentation on bearing defect data is possible when 
training on these larger synthetic data sets. The model is confident on test predictions, 
with an example shown in Figure 10, primarily since a minimum prediction threshold 
of 95 percent filters weak predictions out. In this way, the model is an improvement 
over models developed in previous work [2]. The segmentations on test images, visu-
ally inspected to compare the models’ results with technician results, compared de-
cently well. The test bearing used is a newly acquired bearing specimen not included 
in supplying any of the foregrounds. The segmentation and confidence in the predic-
tions were adequate comparatively. As expected, the model segmented slightly more 
defects than the technician. Typically, only corrosion is covered, so the model can in-
deed pick up additional disturbances. While this means they were not equivalent, in all 
of the areas where the technician identified corrosion, the model detected a defect as 
well and with confidence over 95 percent. 

 

 
Fig. 9 Test Bearing Inference on Key Corrosion Locations 

The different tools that the GitHub library provides for analyzing the models’ per-
formance include a Precision-Recall curve along with a ground truth grid, which is like 



Bearing Lubricant Defect Segmentation Using Synthetic Data 65 

a confusion matrix of the predictions and the actual mask labels [1,6,10]. Using these 
tools, comparing the different size data sets is possible with the Average Precision (AP) 
score as the critical measurement [6,10]. Table 1 shows a comparison of the different-
sized data sets that ran successfully on a local GPU device. Training on these data sets 
was about equivalent as far as training duration goes, but interestingly enough, the train-
ing loss increases as the data set sized increases. This effect shows how the smaller data 
sets force overfitting, where the more extensive models allow for more defect scenarios 
and more robust training. With this analysis method, the different synthetic data sets 
compare using the Precision and the segmentation capability as the evaluation metrics. 

The final measure used to highlight synthetic data’s effectiveness includes a mean 
score calculated on the different validation data sets. Taking the AP score for each data 
set across all validation images, a mean score allows for direct comparison between 
them, calculated by sampling ten different mini batches from the data and the Average 
Precision computed across each batch [6,10]. These ten batches are then combined and 
averaged to get an overall AP score for each data set. The method of averaging across 
different mini batches allows for a view into the models’ general accuracy.  The result-
ing Mean APs for each data set size, plotted in Figure 11, show the overall validation 
AP score performances. 

 
Fig. 10. Mean Average Precision Score Progression from Dataset to Dataset 

4 Conclusions 

After training all these different sized data sets, adding additional synthetically gener-
ated images improves the model’s segmentation accuracy, as shown by monitoring the 
overall Average Precision score [6,10]. Figure 11 shows how, as data set sizes increase, 
the model improves its overall localization of the different defects, represented by an 



66 Richard Bellizzi, Jason Galary, Alfa Heryudono 

increasing mean Average Precision score. For example, both the 104 image-set and the 
105 image-set yielded high prediction confidences of 95 percent and higher on new test 
data. Even with similar performance, however, the Average Precision score [6,10] for 
each data set still shows the improvements in segmentation obtained by training on 
more synthetic data. Increasing too much yields expectations that increasing synthetic 
data too much may end up saturating the models’ feature learning. Because of this, the 
AP score eventually reaches a plateau, but this is only if the source data is not changed. 
Operationalizing this model allows for additional defects to be segmented and stored 
for additional source data in future training. Already, this setup provides a pipeline to 
further improve the model in robustness and accuracy. Since the 105 model offers 95 
percent to 99 percent confidence, operationalizing the trained network and deploying it 
onto the Bearing Analyzer system alongside the current algorithm supports research 
efforts with added functionality. Since the models’ AP score is steadily approaching a 
satisfactory threshold of greater than 0.5, this deployment provides benefits in contin-
uous model training and accuracy improvements while still obtaining automated defect 
segmentation in bearing specimen analysis. [6,10]  

Continuous improvement is standard in any development, even more so when a 
model still has errors in its predictions. Considering the pixel level labeling that sourced 
the foreground images, the model may retain some training data noise. For example, 
the model may merge pixels near each other, grouping the predictions even though the 
ground truth information labels them as separate entities. Machine Learning systems 
consume data to improve; therefore, adjusting the data inputs will only further aid the 
end application development. Further work plans to explore how to represent this sce-
nario better to provide insight into the models’ capability to accurately segment desired 
defects. Isolating what a ‘desired defect’ would mean requires that there needs to be 
some measure of transparency, size, or discoloration for each defect to quantify to the 
model when to ignore some disturbances while including others. Since this work builds 
on a standard test method, the current stipulations for determining a defect focus solely 
on corrosion, so nothing but arbitrary standards exist for these additional disturbances. 
By establishing an internal standard for this, the improvements to the products resulting 
from this work may inspire industry standards to a higher-performing level. 

Some key components still need to be added to improve the model further. Since the 
synthetic generation code only overlays a foreground if it does not cross an image edge, 
some defects on the image boundaries were not recognized or segmented, as seen in 
Figure 10. Manually injecting additional data that encompasses masks along the im-
age’s edges can fix this boundary bias issue alongside additional synthetic generation 
code adaptations [1,5,9]. The circular nature of the bearing forces the camera’s rectan-
gular viewing angle to take snapshots where some defects occur half in one frame and 
a half in the next. Re-training with these examples should help the model adjust accord-
ingly, allowing it to establish recognition in the middle and edges of the camera view. 
Another bias exists in the model since the focus of this work was on granularity. The 
defects that occur as small disturbances are the examples that human technicians strug-
gle to differentiate. Due to this, the defect foregrounds ranged from minor disturbances 
to medium disturbances to the surface. This exclusion of significant disturbances added 
a bias in the model to segment the examples under a specific size. With the edge issue 



Bearing Lubricant Defect Segmentation Using Synthetic Data 67 

mentioned previously, the larger defects also lacked representation, and therefore, the 
model also struggles to segment defects that cover large areas of the surface.  

Since the ground truths show numerous instances, but the model predicts only a few, 
the combination of defects seems like another core issue. The model predictions are 
compared to the validation set of ground truths to determine the training accuracy. 
While these ground truths come from the labeled data, the synthetic combination may 
create the masks that cause this ground truth to blow up or overlay on top of each other, 
adding more instances than appear. This ground truth effect, shown in Figure 11, rep-
resents how the predictions are high accuracy, but the ground truths do not line up. The 
ground truth dictates more predictions than the model yields, affecting training as the 
model combines separate ground truths into one prediction. This bearing models’ seg-
mentation and prediction capability on the different defects allows for further break 
down into an improved multi-class defect data set. The additional information helps 
identify some of the better features required for classifying these defects as either cor-
rosion or these ‘other’ surface defects as a next step. In the meantime, Nye gains a 
model adept at segmenting the different bearing images, simplifying the final test spec-
imen analysis for the technicians. Technicians can use their rationalization in tandem 
with this additional information to judge whether a defect is an example of corrosion 
or not. 

 

 
Fig. 111. Example Ground Truth Matrix on Validation Image 

Overall different applications require different needs, and the Weeds models’ imple-
mentation [9] performs a single class segmentation based on the weeds data. That model 
aimed to generalize weeds versus the background grass without necessarily separating 
the different weeds themselves [9]. A model trained to recognize surface defects versus 
the bearing background provides a single class segmentation solution to provide a 
working model to Nye. This initial setup improves upon knowing whether a bearing 
has defects after testing since it can go one step further and segment those defect in-
stances for the users’ interpretation. A feature like this does provide an avenue to con-
tinue to process test results until a more robust data set is available. A wider variety of 
the two different classes may help provide enough source data for synthetic images with 
ground truths containing more robust scenarios than this arrangement. Having more 
instances of these defects, along with the appropriate bias improvements, would pro-
vide the granularity to isolate the bearing surface’s different defect occurrences. Over-
all, the Bearing Defect model behaves as needed for aiding in the technicians’ break-
down and evaluation of test specimens. With constant human feedback to reinforce 
correct predictions over missing or incorrect predictions, the network improves contin-
uously and further adapts to better-performing products. Overall, the Synthetic Data 



68 Richard Bellizzi, Jason Galary, Alfa Heryudono 

Generation method with Mask R-CNN [1,5,9] methodology provides a functional 
trained model to Nye Lubricants with continued development and growth in mind.  

 
Fig. 12. System Framework for Lubricant Defect Detection 

Additional to this expanded quantification of surface defects, it is desirable to stand-
ardize and establish a pipeline framework for defect detection models. The inherent 
extraction capability combined with human feedback allows for new data to propagate 
back into the model’s feature learning. Larger companies have setups established, but 
generally, there is not a standard but somewhat various guidelines. Assigning some 
structure around the production style AI system helps other researchers steer their im-
plementations, freeing up focus for the data engineering tasks. A framework consisting 
of data corrections and long-term storage for data set growth assists development efforts 
with the continuous improvement culture in mind. Pipelines facilitate this mindset 
providing connection components for intelligent systems to receive frequent updates. 
This approach helps account for data drift while also improving the overall capability 
of the model. An example pipeline flow, displayed in Figure 13, shows how with just 
one step requiring human intervention, the overall process occurs behind the scenes of 
the researchers. Strategies like this abstract the complexity of the analysis and system 
improvements away from the users while still allowing for interpretable and quantifia-
ble data for statistical methods and decision-making tasks. The model and techniques 
laid out present a way to execute ideas like this, propelling different industrial systems 
into new data generation sources. 

Acknowledgments 

Thanks go to the University of Massachusetts Dartmouth Mathematical Consulting 
class members for their contributions in brainstorming and feedback on this work. Ad-
ditionally, thanks to the R&D members, Rob Mulkern and Kevin McBarron from Nye 
Lubricants, who assisted with generating the data for this work. Finally, thank you to 
both UMass and Nye for sponsoring this research. 



Bearing Lubricant Defect Segmentation Using Synthetic Data 69 

References 

1. P. Perner, U. Zscherpel, C. Jacobsen, A Comparision between Neural Networks and Deci-
sion Trees based on Data from Industrial Radiographic Testing, Pattern Recognition Letters 
22 (2001), pp. 47-54, PDF-File 

2. Bellizzi, R., Galary, J., and Heryudono, A.: Evaluation of convolutional neural networks and 
transfer learning for bearing corrosion inspection. International Journal of COMADEM 
(2021). 

3. Girshick, R., Donahue, J., Darrell, T., and Malik, J.: Rich feature hierarchies for accurate 
object detection and semantic segmentation. In: Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition (CVPR) (2014). 

4. Girshick, R., Donahue, J., Darrell, T., and Malik, J.: Region-based convolutional networks 
for accurate object detection and segmentation. IEEE transactions on pattern analysis and 
machine intelligence 38(1), 142-158 (2015). 

5. Detectron. https://github.com/facebookresearch/detectron, last accessed 2020/12. 
6. He, K., Gkioxari, G., Dollár, P., and Girshick, R.: Mask r-cnn. In: Proceedings of the IEEE 

international conference on computer vision, pp. 2961-2969, (2017). 
7. Jaakkola, T., and Barzilay, R.: Machine Learning MIT Course Book. Draft, MIT, (2016). 
8. Johnson, J. W. Adapting mask-rcnn for automatic nucleus segmentation. arXiv preprint 

arXiv:1805.00500, (2018). 
9. Ai weed detector. https://www.immersivelimit.com/blog/ai-weed-detector, last accessed 

2020/10. 
10. Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., and 

Zitnick, C. L.: Microsoft coco: Common objects in context. In: Fleet, D., Pajdla, T., Schiele, 
B., Tuytelaars, T. (eds.) Computer Vision - ECCV 2014 (Cham, 2014), Springer Interna-
tional Publishing, pp. 740-755. 

11. Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow, 
https://github.com/matterport/Mask_RCNN, last accessed 2021/1/24. 

12. Ng, A.: Machine Learning Yearning. Online Draft, last accessed 2018. 
13. Perner, P., Zscherpel, U., and Jacobsen, C.: A comparison between neural networks and 

decision trees based on data from industrial radiographic testing. Pattern Recognition Letters 
22(1), 47-54 (2001). 

14. Ren, S., He, K., Girshick, R., and Sun, J.: Faster r-cnn: Towards real-time object detection 
with region proposal networks. arXiv preprint arXiv:1506.01497, (2015). 

15. Computer vision tutorial: Implementing mask r-cnn for image segmentation (with python 
code), https://www.analyticsvidhya.com/blog/2019/07/computer-vision-implementing-
mask-r-cnn-image-segmentation/, last accessed 2020/12. 

https://www.immersivelimit.com/blog/ai-weed-detector
https://github.com/matterport/Mask_RCNN
https://www.analyticsvidhya.com/blog/2019/07/computer-vision-implementing-mask-r-cnn-image-segmentation/
https://www.analyticsvidhya.com/blog/2019/07/computer-vision-implementing-mask-r-cnn-image-segmentation/

	1 Introduction
	2 Synthetic Data Generation
	2.1 R-Mask CNN Method

	3 Project Results
	4 Conclusions
	Acknowledgments
	References

