
Transactions on Machine Learning
and Data Mining
Vol. 1, No. 1 (2008) 17 - 30
c©ISSN:1865-6781 (Journal),
IBaI Publishing ISSN 1864-9734

Classification Based on Consistent Itemset Rules

Yohji Shidara, Mineichi Kudo, and Atsuyoshi Nakamura

Graduate School of Information Science and Technology,
Hokkaido University,

Kita 14, Nishi 9, Kita-ku, Sapporo 060-0814, Hokkaido, Japan
{shidara, atsu, mine}@main.ist.hokudai.ac.jp

Abstract. We propose an approach to build a classifier composing con-
sistent (100% confident) rules. Recently, associative classifiers that utilize
association rules have been widely studied, and it has been shown that
the associative classifiers often outperform traditional classifiers. In this
case, it is important to collect high-quality (association) rules. Many al-
gorithms find only rules with high support values, because reducing the
minimum support to be satisfied is computationally demanding. How-
ever, it may be effective to collect rules with low support values but high
confidence values. Therefore, we propose an algorithm that produces a
wide variety of 100% confident rules including low support rules. To
achieve this goal, we adopt a specific-to-general rule searching strategy,
in contrast to previous approaches. Our experimental results show that
the proposed method achieves higher accuracies in several datasets taken
from UCI machine learning repository.

Keywords: Consistent Itemset Rules, Data Mining, Classification

1 Introduction

Associative classifiers, which integrate association mining and classification, have
been widely studied as a new classification approach [1–6]. According to several
reports [1–3], higher classification accuracies are achieved by associative classi-
fiers than by using traditional classifiers such as C4.5 [7] and RIPPER [8]. The
associative classifiers assume that the input dataset is a set of itemsets, that is,
a transaction database (databases in table-form are converted into transaction
databases beforehand.). Here, a transaction is a set of items. The pioneer of as-
sociative classification, CBA [1], builds a classifier from a set of association rules

18 Y. Shidara, M. Kudo, A. Nakamura

obtained by an association rule mining technique such as Apriori [9]. Here, only
high quality-rules are selected to construct a ruleset (a classifier).

In many mining techniques, the rules are found in a general-to-specific man-
ner. In this case, starting from a null item, the number of items used in a temporal
rule condition increases during the rule narrowing process. Note that a rule with
a null item in the condition part explains every instance. In such an approach,
items are added to a rule condition in such a way that a rule maintains a mini-
mum support. Such a minimum-support requirement brings the efficiency of the
mining process. One of challenging issues is to extract more rules having lower
supports (below a required minimum support) but sufficiently high confidences
to improve association classifiers. This has not been carried so far due to the
impractical increase in computational cost that is mainly consumed to examine
many combinations of items while keeping a small value of support. We over-
come this difficulty by taking the reverse strategy, that is, a specific-to-general
approach. In this approach, confidence is given more priority than support. As
a result, regardless of their values of support, more rules with a high confidence
value can be found efficiently. Note that an individual instance can be regarded
as a 100% confident rule itself, while the support value of the corresponding rule
is quite low (such a rule might explain only one instance.). They are the most
specific rules. We merge some instances by taking intersection (the set of com-
mon items among them) to make them more general. This merging is done only
when the consistency (explaining instances of one class only) is maintained. As a
consequence, we obtain the most general rules, in the set inclusion relation, keep-
ing consistency. In addition, such rules are expected to be highly interpretable
because they represent some unique patterns for a class.

In the proposed method, we consider combinations of instances instead of
combinations of items. The latter is more popular than the former. This exchange
enables us to have an algorithm that runs in a linear order with respect to the
number of items. Although the naive version of the proposed algorithm still
requires a combinatorial number of examinations of instances, we can reduce
the computational cost in its randomized version.

Our contribution is summarized as follows: 1) a novel rule extraction method
is proposed as an extension of the subclass method [10–12], so that a transaction
database consisting of itemsets is now able to be dealt with, 2) a classification
rule combining obtained consistent (association) rules is proposed, and 3) it is
shown that the proposed classifier achieves higher classification accuracies in
several datasets than do such as C4.5 [7], RIPPER [8], CBA [1], CMAR [2] and
CPAR [3].

The initial version of the classifier is proposed in [13]. In this paper, we de-
veloped the classifier by simplifying rules while maintaining consistency. Exper-
imental results show that this modification improves the average classification
accuracy of the proposed classifier. Moreover, we discuss the effect of setting
of discretization granularity for numerical attributes on the performance of our
classifier.

Classification Based on Consistent Itemset Rules 19

2 Methodology

Our method is built on the basis of the subclass method [10–12], which is a
classifier only applicable to numerical attributes. We expand the framework of
the subclass method so as to deal with transaction databases.

2.1 Problem setting

Let D be a dataset, I = {I1, I2, . . . , In} be the set of all items in D, and C =
{c1, c2, . . . , ck} be the set of the class labels. We refer to a pair of an itemset
X ⊆ I and a class label c ∈ C as an instance, that is, (X, c) ∈ D denotes an
instance. For simplicity, we also call X instance. A rule r is written in the form
r : A → c, where A ⊆ I and c ∈ C. If A ⊆ X holds, we say that “itemset
A covers (explains) instance X” or “rule r : A → c covers (explains) instance
X .” Let Dc denote the family of the itemsets of the instances whose class label
is c (positive instances), and let Dc be the itemsets of the remaining instances
(negative instances). If itemset A does not cover any instance of Dc, then we say
that itemset A is consistent (to Dc). For an itemset family S, let R(S) denote the
set of the common items seen in every instance of S, that is, R(S) =

⋂
X∈S X .

For class c, a subclass S is defined as a subset of Dc that satisfies the following:

1. R(S) is consistent to Dc.
2. S is maximal, that is, no instance in Dc can be added to S while keeping

consistency of R(S).

Here, R(S) is called Consistent Common Itemset (CCI) in class c (∈ C) if S is
a subclass of c. The family of the subclasses for class c is denoted by Ωc and the
set of all subclasses over all classes is denoted by Ω (=

⋃
c∈C Ωc). Then, what we

want to obtain is the family of subclasses Ω as well as CCIs (R(S)’s for S ∈ Ω)
for all the classes.

An example: For an illustrative dataset (Table 1), there are two CCIs for
not-play class and five CCIs for play class as follows:

1. {sunny, humid} → not-play
2. {rainy, windy} → not-play
3. {windless, normal-humidity} → play
4. {overcast} → play
5. {rainy, windless} → play
6. {mild-temperature, normal-humidity} → play
7. {sunny, normal-humidity} → play

Here, each rule corresponds to one subclass (e.g., #1 rule corresponds to S =
{1, 2, 4}) and each itemset in the condition part shows one CCI (e.g., #1 rule
shows R(S) = {sunny, humid}). The procedure of finding these rules will be
described in the following section.

20 Y. Shidara, M. Kudo, A. Nakamura

Table 1. An illustrative dataset.

ID X c

1 {sunny, hot, humid, windless} not-play
2 {sunny, hot, humid, windy} not-play
3 {rainy, cool, normal-humidity, windy} not-play
4 {sunny, mild-temperature, humid, windless} not-play
5 {rainy, mild-temperature, humid, windy} not-play

6 {overcast, hot, humid, windless} play
7 {rainy, mild-temperature, humid, windless} play
8 {rainy, cool, normal-humidity, windless} play
9 {overcast, cool, normal-humidity, windy} play
10 {sunny, cool, normal-humidity, windless} play
11 {rainy, mild-temperature, normal-humidity, windless} play
12 {sunny, mild-temperature, normal-humidity, windy} play
13 {overcast, mild-temperature, humid, windy} play
14 {overcast, hot, normal-humidity, windless} play

2.2 Rule extraction procedure

We employ a randomized algorithm [10] to obtain a subset Ω′ ⊆ Ω to econo-
mize the computational cost of enumerating all members of Ω. According to a
theoretical analysis [10], the suboptimal subclass family Ω′ (a subset of CCIs)
obtained by this randomized algorithm with a fixed iteration number has the
following properties:

1. Larger subclasses (CCIs with larger coverage rates) are more likely to be
found than smaller subclasses in the earlier iterations (The procedure is
described later.).

2. Characteristic subclasses are also more likely to be found. Here, a “char-
acteristic subclass” is one that includes instances covered by only a few
subclasses.

Now let us explain the algorithm briefly. The algorithm executes multiple
scans for all positive instances. The scanning is repeated t times for a given t.
Each scan is made according to a random order, that is, a permutation σ =
(σ1, σ2, . . . , σ|Dc|) randomly chosen. According to order σ, we merge the positive
instances into S (initialized by the empty set) in order, as long as the addition
does not break the consistency of R(S). Otherwise we skip the positive instance.
Because of the fact that the merging process does not make R(S) larger than
before, in the set inclusion relation, and the fact that all positive instances are
scanned, it is guaranteed that one subclass is necessarily found by one scan.
Here, the dataset is assumed to be consistent in the weakest sense, that is, all of
the positive instances themselves are assumed to be consistent to the negative
instances. We may find the same subclass for different σ’s. Thus, the duplicated
subclasses are removed in the last stage.

If we test all possible |Dc|! permutations, we can obtain the complete family
Ωc of the subclasses of class c. However, even for not so large |Dc|, this number

Classification Based on Consistent Itemset Rules 21

becomes infeasible. So we terminate the iteration by a given iteration number
t. As described already, we can expect that almost all important subclasses are
found even for a moderate iteration number, say t = 1, 000, for each target class.
For the constant t, the randomized algorithm runs in O(|Dc||Dc||I|) for each
target class, where |Dc| is the number of instances in a target class, |Dc| is the
number of instances in non-target classes and |I| is the number of the items.

An example: Let us show how to obtain a rule “{sunny, humid} → not-play”
from Table 1.

Assume that the permutation is decided as σ = (1, 2, 3, 4, 5).

1. Instance #1 is put into S. Here, S = {1} and R(S) = {sunny, hot, humid,
windless}. This R(S) is consistent, because no negative instance (Nos. 6–14)
has all of the items at once.

2. When instance #2 is put into S, R(S) becomes {sunny, hot, humid}. R(S)
is still consistent.

3. If instance #3 is put into S, R(S) becomes ∅, and the consistency is broken
(because ∅ is included in any itemset). So we skip instance #3 for merging.

4. When instance #4 is put into S, R(S) becomes {sunny, humid}. The con-
sistency of the itemset is still kept.

5. If instance #5 is put into S, R(S) becomes {humid}, and the consistency
is again broken because the negative instances #6, #7 and #13 include
{humid}. So we skip this instance too.

Through this scan we obtain a CCI: R(S) = {sunny, humid} with the corre-
sponding of S = {1, 2, 4}.

Note that another scan with a different σ produces another rule. For example,
with σ = (3, 5, 1, 2, 4) we have another rule“{rainy, windy} → not-play.” By
repeating scanning with all 120(= 5!) permutations, all of the subclasses for
class not-play are obtained. In this example, there are only two subclasses for
class not-play and five subclasses for class play.

2.3 Classification

Once CCIs have been obtained in each class, we can proceed to build a classifier.
We design a classifier relying on the following belief (note that all of the rules
are 100% confident to the training set):

1. Rules with larger coverage rates are more reliable.
2. Class assignment by a larger number of rules is more reliable.

In order to satisfy both of these, we introduce a score to a rule and sum up
the scores of rules that explain a given instance. Here, the score of a rule is
measured by its coverage rate of positive instances. We classify an instance into
a class with the highest score, sum of the rules covering the instance.

22 Y. Shidara, M. Kudo, A. Nakamura

Let us assume that a (class unknown) instance is given with an itemset A.
Next, let SA,c be the set of subclasses S (∈ Ωc) whose R(S) is included in A,
that is,

SA,c = {S ∈ Ωc | R(S) ⊆ A}.
Then our classification rule is written as

ĉ = argmax
c∈C

∑

S∈SA,c

|S|
|Dc| .

Here, |S|/|Dc| (0 < |S|/|Dc| ≤ 1) is the score of subclass S (or equivalently
CCI R(S)). Note that the score can be obtained without additional calculation
during the rule generalization process by counting the number of instances put
into the subclass.

A tie-break is resolved by assigning it to the class with the largest population.
If none of the rules are matched, the largest class is also chosen. We call this
combining way the “Consistent Common Itemsets Classifier (shortly, CCIC)”
approach.

3 Experimental Results

We conducted an experiment to evaluate the performance of the CCIC approach.

3.1 Settings

According to the literature [1–3], we used 26 datasets from UCI Machine Learn-
ing Repository [14]. A summary of datasets is shown in Table 2.

Every instance in the dataset is converted into an itemset. Numerical at-
tributes are discretized into 5 bins. Here, the intervals of specifying the bins
are taken so as to make the populations of the attribute values equal in each
attribute. The number of iterations is set to t = 1, 000. The negative instances
that break the consistency of any positive instance are removed in order to keep
the consistency of the dataset in a weakest sense.

We also present the accuracies of C4.5 [7], RIPPER [8], CBA [1], CMAR [2]
and CPAR [3] as competitors. All of their results are taken from reference [3].
This is allowed because the experimental conditions are almost the same.

3.2 Accuracy of CCIC

The results of CCIC are shown in Table 3. The average accuracy is obtained by
10-fold cross validation. In total, CCIC was the third in accuracy but was the
first in the number of wins (8/26).

As can be seen from the results, the performance of the CCIC approach
depends on the problem. Let us examine the reasons for this dependency. Since
CCIC uses only consistent rules, the level of accuracy may decrease if a sufficient
number of consistent rules is not found. Even if many consistent rules are found,

Classification Based on Consistent Itemset Rules 23

Table 2. Summary of the datasets. Three missing rates are: 1) the rate of attributes
including missing values, 2) the rate of instances including missing values, and 3) the
rate of missing values to all values.

dataset #attr. #inst. #classes major class missing
(cat.) (num.) (%) (attr.) (inst.) (val.)

anneal 38 32 6 898 6 0.76 0.763 1.000 0.650
austra 14 8 6 690 2 0.56 - - -
auto 25 10 15 205 7 0.33 0.280 0.224 0.012
breast 10 - 10 699 2 0.66 0.100 0.023 0.002
cleve 13 7 6 303 2 0.54 0.154 0.023 0.002
crx 15 9 6 690 2 0.56 0.467 0.054 0.006
diabetes 8 - 8 768 2 0.65 - - -
german 20 13 7 1000 2 0.70 - - -
glass 9 - 9 214 7 0.36 - - -
heart 13 - 13 270 2 0.56 - - -
hepati 19 13 6 155 2 0.79 0.789 0.484 0.057
horse 22 15 7 368 2 0.63 0.955 0.981 0.238
hypo 25 18 7 3163 2 0.95 0.320 0.999 0.067
iono 34 - 34 351 2 0.64 - - -
iris 4 - 4 150 3 0.33 - - -
labor 16 8 8 57 2 0.65 1.000 0.982 0.357
led7 7 7 - 3200 10 0.11 - - -
lymph 18 15 3 148 4 0.55 - - -
pima 8 - 8 768 2 0.65 - - -
sick 29 22 7 2800 2 0.94 0.276 1.000 0.056
sonar 60 - 60 208 2 0.53 - - -
tic-tac 9 9 - 958 2 0.65 - - -
vehicle 18 - 18 846 4 0.26 - - -
waveform 21 - 21 5000 3 0.34 - - -
wine 13 - 13 178 3 0.40 - - -
zoo 16 16 - 101 7 0.41 - - -

24 Y. Shidara, M. Kudo, A. Nakamura

Table 3. Accuracy comparison. The best score is indicated in boldface. The column
#CCIs is the average number of CCIs found by the proposed method. The column
‘drop’ is the average ratio of test instances that are not matched with any rule. The
bottom row #bests shows the number of datasets for which the method recorded the
best accuracy.

dataset C4.5 RIPPER CBA CMAR CPAR CCIC #CCIs drop

anneal 0.948 0.958 0.979 0.973 0.984 0.966 128.0 0.02
austra 0.847 0.873 0.849 0.861 0.862 0.877 714.6 0.00
auto 0.801 0.728 0.783 0.781 0.820 0.787 334.2 0.07
breast 0.950 0.951 0.963 0.964 0.960 0.964 266.5 0.00
cleve 0.782 0.822 0.828 0.822 0.815 0.828 584.9 0.00
crx 0.849 0.849 0.847 0.849 0.857 0.875 716.8 0.00
diabetes 0.742 0.747 0.745 0.758 0.751 0.723 833.6 0.01
german 0.723 0.698 0.734 0.749 0.734 0.748 1635.6 0.00
glass 0.687 0.691 0.739 0.701 0.744 0.705 193.0 0.09
heart 0.808 0.807 0.819 0.822 0.826 0.837 548.0 0.00
hepati 0.806 0.767 0.818 0.805 0.794 0.827 270.3 0.01
horse 0.826 0.848 0.821 0.826 0.842 0.845 601.3 0.02
hypo 0.992 0.989 0.989 0.984 0.981 0.972 183.4 0.01
iono 0.900 0.912 0.923 0.915 0.926 0.923 999.7 0.00
iris 0.953 0.940 0.947 0.940 0.947 0.933 35.0 0.02
labor 0.793 0.840 0.863 0.897 0.847 0.833 77.0 0.04
led7 0.735 0.697 0.719 0.725 0.736 0.729 153.1 0.00
lymph 0.735 0.790 0.778 0.831 0.823 0.810 260.6 0.05
pima 0.755 0.731 0.729 0.751 0.738 0.732 829.2 0.01
sick 0.985 0.977 0.970 0.975 0.968 0.941 438.1 0.01
sonar 0.702 0.784 0.775 0.794 0.793 0.836 1655.2 0.00
tic-tac 0.994 0.980 0.996 0.992 0.986 0.989 268.9 0.00
vehicle 0.726 0.627 0.687 0.688 0.695 0.703 1715.2 0.00
waveform 0.781 0.760 0.800 0.832 0.809 0.802 2944.7 0.02
wine 0.927 0.916 0.950 0.950 0.955 0.961 407.8 0.00
zoo 0.922 0.881 0.968 0.971 0.951 0.891 8.8 0.11

average 0.8334 0.8293 0.8469 0.8522 0.8517 0.8476

#bests 5 1 2 7 5 8

Classification Based on Consistent Itemset Rules 25

their coverage rates might be low, that is, the consistent rules may explain only
a part of the positive instances. When an instance is not matched by any rule,
it is assigned to the largest population class in our classifier. This is one possible
reason for the performance degradation. Indeed, in some datasets such as auto,
glass and zoo, more than 5% of the test instances were not matched with any
rule (see column ‘drop’ in Table 3).

4 Removing redundant attributes/items and adjusting
the granularity

4.1 Model selection

So far, we considered CCIs as consistent and maximal itemsets. In other words,
a CCI holds the common properties seen in a maximal set of positive instances
but not seen in any negative instance. However, in practice, some redundant
items can be included in such a CCI. This is mainly due to the lack of sufficient
number of positive instances. When the number of possible items is large and
the number of instances explained by a CCI is small, there are, in general, some
redundant items in the CCI. By the word “redundant”, we mean that some of
items can be removed while keeping consistency. It is widely known in pattern
recognition that it is better to remain only necessary attributes as long as the
consistency is kept. Note that, in our framework, only a single item is chosen from
an attribute in each instance. That is, the number of attributes/items should be
appropriately chosen according to the number of instances. So, we will carry out
removal of redundant attributes in the following.

In our CCIC, there is one principal parameter that affects much the results.
That is the number of bins used for discretizing a numerical variable into a set
of binary variables (a set of items). In this way, a numerical value is translated
into B binary values of which only one value takes one, according to the bin in
which the value is. Then the chosen bin is represented as an item. In the previous
experiment, we set B to 5 in common to all numerical variables. It should be
noted that more bins cause less commonality of instances, that is, the probability
of falling in a same bin becomes smaller. As a result, in a large value of B, to
keep/increase the commonality among positive instances, more attributes are
needed. Therefore, B is the key parameter in our approach.

In total, the number of attributes and the number of bins affect both to
the performance of our CCI approach. In the viewpoint of model selection, we
should select appropriately both the numbers depending on datasets. It is desir-
able to attain this from the basic statistics of a dataset, e.g. from the number
of instances per attribute. However, there are many factors affecting the per-
formance other than such a size. For example, the possible best classification
rate is the most useful information, but it is hardly obtained. As a result, we
confirm experimentally the effectiveness of removing redundant attributes and
of selecting the number of bins.

26 Y. Shidara, M. Kudo, A. Nakamura

4.2 CCIC with a minimal itemset

We carried out removing of redundant attributes. We check every attribute as
a candidate for removal in a random order. If the removal does not hurt the
consistency, we remove it. Otherwise we leave the attribute. A processed CCI is
referred to as an eCCI (an economized CCI).

Table 4. Comparison of the accuracies of CCIC and eCCIC. The figure in parentheses
denotes the number of bins in each attribute. The column ‘drop’ is the average ratio
of test instances that are not matched with any rule.

accuracy drop
dataset CCIC(5) eCCIC(5) eCCIC(B) CCIC(5) eCCIC(5) eCCIC(B)

anneal 0.966 0.969 0.969 5 0.02 0.02 0.02
austra 0.877 0.871 0.884 3 0.00 0.00 0.00
auto 0.787 0.802 0.806 10 0.07 0.01 0.00
breast 0.964 0.964 0.964 5 0.00 0.00 0.00
cleve 0.828 0.834 0.834 3 0.00 0.00 0.00
crx 0.875 0.875 0.875 5 0.00 0.00 0.00
diabetes 0.723 0.717 0.740 3 0.01 0.01 0.00
german 0.748 0.745 0.755 3 0.00 0.00 0.00
glass 0.705 0.682 0.691 10 0.09 0.02 0.03
heart 0.837 0.841 0.852 10 0.00 0.00 0.00
hepati 0.827 0.839 0.839 5 0.01 0.01 0.01
horse 0.845 0.845 0.850 3 0.02 0.02 0.01
hypo 0.972 0.974 0.984 10 0.01 0.00 0.00
iono 0.923 0.920 0.920 5 0.00 0.00 0.00
iris 0.933 0.933 0.940 3 0.02 0.02 0.01
labor 0.833 0.850 0.907 3 0.04 0.04 0.00
led7 0.729 0.728 0.728 - 0.00 0.00 0.00
lymph 0.810 0.831 0.865 3 0.05 0.00 0.00
pima 0.732 0.729 0.729 5 0.01 0.01 0.01
sick 0.941 0.942 0.977 10 0.01 0.01 0.01
sonar 0.836 0.841 0.841 5 0.00 0.00 0.00
tic-tac 0.989 0.989 0.989 - 0.00 0.00 0.00
vehicle 0.703 0.690 0.695 10 0.00 0.00 0.00
waveform 0.802 0.803 0.821 3 0.02 0.01 0.01
wine 0.961 0.966 0.966 5 0.00 0.00 0.00
zoo 0.891 0.933 0.933 - 0.11 0.02 0.02

average 0.8476 0.8505 0.8598

The result is shown in Table 4 (see the column named eCCIC(5)). On average,
eCCIC (the classifier using eCCIs) is better than CCIC at 0.29%. It can also be
seen that more test instances are matched by the rules of eCCIC compared with
those of CCIC (compare the ‘drop’ ratio). This means that original CCIs were
reduced and the corresponding rules became more general. In almost all cases in
which such a generalization is recognized, the accuracy has been improved (see,
auto, hypo, lymph, waveform and zoo).

Classification Based on Consistent Itemset Rules 27

As shown in Table 4, some instances are still not explained by any rule even
after the removing prepossessing. On the other hand, as seen in Table 4, CCIC
is better than eCCIC for datasets for which many consistent rules are found
and almost all instances are covered by them. Therefore, a more systematic way
other than a random removal would be worth studying.

4.3 Adjustment of bin size

Next, we examined the effect of the bin size B for discretizing numerical vari-
ables. Discretization has been studied in a wide range of fields including quanti-
zation, data compression, representation of data, rough sets, and so on. Indeed,
discretization of numerical values is often discussed in frequent itemset mining
(for example, see [15]). In addition, in rough sets, such a trial is called “granu-
larity” [16, 17] and has been well studied.

We compared the classification accuracies of eCCIC for B = 3, 5, 10 (B = 5
in the previous experiments). The result is shown in Figure 1. Figure 1 shows
the classification accuracy vs. the relative data size, that is, the ratio of the
number of instances per class to the number of numerical attributes. We plotted
those for 11 datasets with numerical attributes only. We can see roughly such a
tendency that a rough discretization (a smaller number of bins) works better for
large datasets. On the contrary, a finer discretization is better for small datasets.

To examine how degree the number of bins affects the number of attributes
used in eCCIs, we investigated the relationship between three values of B and the
accuracy. Figure 2 shows the average ratio of used attributes in eCCIC rules.
In Figure 2, all datasets are displayed but the accuracy does not change for
datasets with categorical attributes only. From Figure 2, we see that the number
of attributes increases as the number of bins decreases. This implies that if the
number of bins is smaller, then a larger number of attributes is necessary for
finding the commonalty among many positive instances. Therefore, the result of
Figure 1 is consistent with our basic strategy to use more attributes for a larger
dataset and less attributes for a smaller dataset.

It is not easy to determine automatically an appropriate value of B, because it
depends on the problem. For showing the possibility, the best accuracy achievable
using one of three values of B is shown in Table 4. The average accuracy was
increased to 0.8598 and the number of wins was 12 of 26 among 5 competitors
plus this eCCIC classifier.

4.4 Scalability

All of the experiments were performed on a 2 GHz Intel Core Duo PC (running
Mac OS X 10.5.1) with 2 GB of main memory. The implementation was not
multithreaded. The most time-consuming dataset was waveform; its execution
time of 10-fold cross validation (including both training and test) with eCCIC
was about 529 seconds. However, the algorithm is easily parallelized to reduce
the running time with less overheads because each iteration is completely inde-
pendent.

28 Y. Shidara, M. Kudo, A. Nakamura

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1 10 100

A
cc

ur
ac

y

instances / (# numerical attributes * # classes)

3 bins
5 bins

10 bins

Fig. 1. Accuracy change in eCCIC for three different bin numbers. Only numerical
datasets are displayed.

Average ratio of used items in eCCIC rules w.r.t. number of bins

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

3
5
10

ann aus aut bre cle crx dia ger gla hea hep hor hyp ion iri lab led lym pim sic son tic veh wav win zoo

Fig. 2. Average ratio of used attributes/items in eCCIC rules.

Classification Based on Consistent Itemset Rules 29

5 Discussion

We have proposed a novel way to collect consistent rules and showed the effec-
tiveness of a classifier using them. At the current stage, we consider only consis-
tent (100% confidence) rules which explain only positive instances. However, in
many practical situations, it would be preferable to incorporate with consistency-
relaxed rules. When noisy measurement or wrong labelling can happen, such a
relaxation is sometimes adequate. To achieve such a relaxation, possible ap-
proaches are usage of multiple subsets of instances systematically/randomly se-
lected, such as boosting and bagging, and relaxing the exclusiveness against
negative instances in our algorithm.

6 Conclusion

A classifier, called CCIC, consisting of consistent rules and its redundancy-
removed version eCCIC have been proposed. CCIC and eCCIC combine many
consistent itemsets for classification. Thus, they can be seen associative classi-
fiers. Experimental results showed that CCIC and eCCIC outperformed other
classifiers in several datasets.

We have also discussed on how degree discretization affects the performance
of the proposed classifier. The results suggest that an appropriate choice of
discretization ways has a large possibility to improve the performance of the
proposed classifier.

In future works, we will consider different ways of combining consistent rules
and adoption of consistency-relaxed rules to improve the performance of the
classifier. In addition, rule selection should be considered in order to reduce
redundancy of the ruleset.

References

1. Liu, B., Hsu, W., Ma, Y.: Integrating classification and association rule mining.
In: Knowledge Discovery and Data Mining. (1998) 80–86

2. Li, W., Han, J., Pei, J.: CMAR: accurate and efficient classification based on
multipleclass-association rules. In: Proceedings of IEEE International Conference
on Data Mining (ICDM2001). (2001) 369–376

3. Yin, X., Han, J.: CPAR: Classification based on predictive association rules. In:
3rd SIAM International Conference on Data Mining (SDM’03). (2003)

4. Zaiane, O.R., Antonie, M.L.: Classifying text documents by associating terms
with text categories. In: Proceedings of the 13th Australasian database conference.
(2002) 215–222

5. Wang, Y., Wong, A.K.C.: From association to classification: Inference using weight
of evidence. IEEE Transactions on Knowledge and Data Engineering 15(3) (March
2003) 764–767

6. Dong, G., Zhang, X., Wong, L., Li, J.: CAEP: Classification by aggregating emerg-
ing patterns. In: Discovery Science. (1999) 30–42

30 Y. Shidara, M. Kudo, A. Nakamura

7. Quinlan, J.R.: C4.5: programs for machine learning. Morgan Kaufmann Publishers
Inc. (1993)

8. Cohen, W.W.: Fast effective rule induction. In: Proceedings of the 12th Interna-
tional Conference on Machine Learning. (1995) 115–123

9. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Pro-
ceedings of the 20th International Conference on Very Large Data Bases (VLDB).
(1994) 487–499

10. Kudo, M., Yanagi, S., Shimbo, M.: Construction of class regions by a randomized
algorithm: A randomized subclass method. Pattern Recognition 29(4) (1996) 581–
588

11. Kudo, M., Shimbo, M.: Feature selection based on the structual indices of cate-
gories. Pattern Recognition 26(6) (1993) 891–901

12. Kudo, M., Shimbo, M.: Analysis of the structure of classes and its applications
– subclass approach. Current Topics in Pattern Recognition Research 1 (1994)
69–81

13. Shidara, Y., Nakamura, A., Kudo, M.: CCIC: Consistent common itemsets classi-
fier. In Perner, P., ed.: Machine Learning and Data Mining in Pattern Recognition.
Volume 4571 of Lecture Notes in Computer Science., Leipzig, Germany, Springer
(July 2007) 490–498

14. Asuncion, A., Newman, D.: UCI machine learning repository. http://www.ics.

uci.edu/~mlearn/MLRepository.html (2007)
15. Srikant, R., Agrawal, R.: Mining quantitative association rules in large relational

tables. In Jagadish, H.V., Mumick, I.S., eds.: Proceedings of the 1996 ACM
SIGMOD International Conference on Management of Data, Montreal, Quebec,
Canada (4–6 1996) 1–12

16. Lin, T.Y.: Granular computing: From rough sets and neighborhood systems to info
rmation granulation and computing in words. In: European Congress on Intelligent
Techniques and Soft Computing. (1997) 1602–1606

17. Lin, T.Y.: Granular Computing on Binary Relation I : Data Mining and Neighbor-
hood Systems, II : Rough Set Representations and Belief Functions. Physica-Verlag
(1998)

